source-engine/engine/cmodel.cpp

3025 lines
85 KiB
C++
Raw Normal View History

2020-04-22 16:56:21 +00:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: BSP collision!
//
// $NoKeywords: $
//=============================================================================//
#include "cmodel_engine.h"
#include "cmodel_private.h"
#include "dispcoll_common.h"
#include "coordsize.h"
#include "quakedef.h"
#include <string.h>
#include <stdlib.h>
#include "mathlib/mathlib.h"
#include "common.h"
#include "sysexternal.h"
#include "zone.h"
#include "utlvector.h"
#include "const.h"
#include "gl_model_private.h"
#include "vphysics_interface.h"
#include "icliententity.h"
#include "engine/ICollideable.h"
#include "enginethreads.h"
#include "sys_dll.h"
#include "collisionutils.h"
#include "tier0/tslist.h"
#include "tier0/vprof.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
CCollisionBSPData g_BSPData; // the global collision bsp
#define g_BSPData dont_use_g_BSPData_directly
#ifdef COUNT_COLLISIONS
CCollisionCounts g_CollisionCounts; // collision test counters
#endif
csurface_t CCollisionBSPData::nullsurface = { "**empty**", 0, 0 }; // generic null collision model surface
csurface_t *CCollisionBSPData::GetSurfaceAtIndex( unsigned short surfaceIndex )
{
if ( surfaceIndex == SURFACE_INDEX_INVALID )
{
return &nullsurface;
}
return &map_surfaces[surfaceIndex];
}
#if TEST_TRACE_POOL
CTSPool<TraceInfo_t> g_TraceInfoPool;
#else
class CTraceInfoPool : public CTSList<TraceInfo_t *>
{
public:
CTraceInfoPool() = default;
2020-04-22 16:56:21 +00:00
};
CTraceInfoPool g_TraceInfoPool;
#endif
TraceInfo_t *BeginTrace()
{
#if TEST_TRACE_POOL
TraceInfo_t *pTraceInfo = g_TraceInfoPool.GetObject();
#else
TraceInfo_t *pTraceInfo;
if ( !g_TraceInfoPool.PopItem( &pTraceInfo ) )
{
pTraceInfo = new TraceInfo_t;
}
#endif
if ( pTraceInfo->m_BrushCounters[0].Count() != GetCollisionBSPData()->numbrushes + 1 )
{
memset( pTraceInfo->m_Count, 0, sizeof( pTraceInfo->m_Count ) );
pTraceInfo->m_nCheckDepth = -1;
for ( int i = 0; i < MAX_CHECK_COUNT_DEPTH; i++ )
{
pTraceInfo->m_BrushCounters[i].SetCount( GetCollisionBSPData()->numbrushes + 1 );
pTraceInfo->m_DispCounters[i].SetCount( g_DispCollTreeCount );
memset( pTraceInfo->m_BrushCounters[i].Base(), 0, pTraceInfo->m_BrushCounters[i].Count() * sizeof(TraceCounter_t) );
memset( pTraceInfo->m_DispCounters[i].Base(), 0, pTraceInfo->m_DispCounters[i].Count() * sizeof(TraceCounter_t) );
}
}
PushTraceVisits( pTraceInfo );
return pTraceInfo;
}
void PushTraceVisits( TraceInfo_t *pTraceInfo )
{
++pTraceInfo->m_nCheckDepth;
Assert( (pTraceInfo->m_nCheckDepth >= 0) && (pTraceInfo->m_nCheckDepth < MAX_CHECK_COUNT_DEPTH) );
int i = pTraceInfo->m_nCheckDepth;
pTraceInfo->m_Count[i]++;
if ( pTraceInfo->m_Count[i] == 0 )
{
pTraceInfo->m_Count[i]++;
memset( pTraceInfo->m_BrushCounters[i].Base(), 0, pTraceInfo->m_BrushCounters[i].Count() * sizeof(TraceCounter_t) );
memset( pTraceInfo->m_DispCounters[i].Base(), 0, pTraceInfo->m_DispCounters[i].Count() * sizeof(TraceCounter_t) );
}
}
void PopTraceVisits( TraceInfo_t *pTraceInfo )
{
--pTraceInfo->m_nCheckDepth;
Assert( pTraceInfo->m_nCheckDepth >= -1 );
}
void EndTrace( TraceInfo_t *&pTraceInfo )
{
PopTraceVisits( pTraceInfo );
Assert( pTraceInfo->m_nCheckDepth == -1 );
#if TEST_TRACE_POOL
g_TraceInfoPool.PutObject( pTraceInfo );
#else
g_TraceInfoPool.PushItem( pTraceInfo );
#endif
pTraceInfo = NULL;
}
static ConVar map_noareas( "map_noareas", "0", 0, "Disable area to area connection testing." );
void FloodAreaConnections (CCollisionBSPData *pBSPData);
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
vcollide_t *CM_GetVCollide( int modelIndex )
{
cmodel_t *pModel = CM_InlineModelNumber( modelIndex );
if( !pModel )
return NULL;
// return the model's collision data
return &pModel->vcollisionData;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
cmodel_t *CM_InlineModel( const char *name )
{
// error checking!
if( !name )
return NULL;
// JAYHL2: HACKHACK Get rid of this
if( !strncmp( name, "maps/", 5 ) )
return CM_InlineModelNumber( 0 );
// check for valid name
if( name[0] != '*' )
Sys_Error( "CM_InlineModel: bad model name!" );
// check for valid model
int ndxModel = atoi( name + 1 );
if( ( ndxModel < 1 ) || ( ndxModel >= GetCollisionBSPData()->numcmodels ) )
Sys_Error( "CM_InlineModel: bad model number!" );
return CM_InlineModelNumber( ndxModel );
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
cmodel_t *CM_InlineModelNumber( int index )
{
CCollisionBSPData *pBSPDataData = GetCollisionBSPData();
if( ( index < 0 ) || ( index > pBSPDataData->numcmodels ) )
return NULL;
return ( &pBSPDataData->map_cmodels[ index ] );
}
int CM_BrushContents_r( CCollisionBSPData *pBSPData, int nodenum )
{
int contents = 0;
while (1)
{
if (nodenum < 0)
{
int leafIndex = -1 - nodenum;
cleaf_t &leaf = pBSPData->map_leafs[leafIndex];
for ( int i = 0; i < leaf.numleafbrushes; i++ )
{
unsigned short brushIndex = pBSPData->map_leafbrushes[ leaf.firstleafbrush + i ];
contents |= pBSPData->map_brushes[brushIndex].contents;
}
return contents;
}
cnode_t &node = pBSPData->map_rootnode[nodenum];
contents |= CM_BrushContents_r( pBSPData, node.children[0] );
nodenum = node.children[1];
}
return contents;
}
int CM_InlineModelContents( int index )
{
cmodel_t *pModel = CM_InlineModelNumber( index );
if ( !pModel )
return 0;
return CM_BrushContents_r( GetCollisionBSPData(), pModel->headnode );
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
int CM_NumClusters( void )
{
return GetCollisionBSPData()->numclusters;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
char *CM_EntityString( void )
{
return GetCollisionBSPData()->map_entitystring.Get();
}
void CM_DiscardEntityString( void )
{
GetCollisionBSPData()->map_entitystring.Discard();
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
int CM_LeafContents( int leafnum )
{
const CCollisionBSPData *pBSPData = GetCollisionBSPData();
Assert( leafnum >= 0 );
Assert( leafnum < pBSPData->numleafs );
return pBSPData->map_leafs[leafnum].contents;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
int CM_LeafCluster( int leafnum )
{
const CCollisionBSPData *pBSPData = GetCollisionBSPData();
Assert( leafnum >= 0 );
Assert( leafnum < pBSPData->numleafs );
return pBSPData->map_leafs[leafnum].cluster;
}
int CM_LeafFlags( int leafnum )
{
const CCollisionBSPData *pBSPData = GetCollisionBSPData();
Assert( leafnum >= 0 );
Assert( leafnum < pBSPData->numleafs );
return pBSPData->map_leafs[leafnum].flags;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
int CM_LeafArea( int leafnum )
{
const CCollisionBSPData *pBSPData = GetCollisionBSPData();
Assert( leafnum >= 0 );
Assert( leafnum < pBSPData->numleafs );
return pBSPData->map_leafs[leafnum].area;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CM_FreeMap(void)
{
// get the current collision bsp -- there is only one!
CCollisionBSPData *pBSPData = GetCollisionBSPData();
// free the collision bsp data
CollisionBSPData_Destroy( pBSPData );
}
// This turns on all the area portals that are "always on" in the map.
void CM_InitPortalOpenState( CCollisionBSPData *pBSPData )
{
for ( int i=0; i < pBSPData->numportalopen; i++ )
{
pBSPData->portalopen[i] = false;
}
}
/*
==================
CM_LoadMap
Loads in the map and all submodels
==================
*/
cmodel_t *CM_LoadMap( const char *name, bool allowReusePrevious, unsigned *checksum )
{
static unsigned int last_checksum = 0xFFFFFFFF;
// get the current bsp -- there is currently only one!
CCollisionBSPData *pBSPData = GetCollisionBSPData();
Assert( physcollision );
if( !strcmp( pBSPData->map_name, name ) && allowReusePrevious )
{
*checksum = last_checksum;
return &pBSPData->map_cmodels[0]; // still have the right version
}
// only pre-load if the map doesn't already exist
CollisionBSPData_PreLoad( pBSPData );
if ( !name || !name[0] )
{
*checksum = 0;
return &pBSPData->map_cmodels[0]; // cinematic servers won't have anything at all
}
// read in the collision model data
CMapLoadHelper::Init( 0, name );
CollisionBSPData_Load( name, pBSPData );
CMapLoadHelper::Shutdown( );
// Push the displacement bounding boxes down the tree and set leaf data.
CM_DispTreeLeafnum( pBSPData );
CM_InitPortalOpenState( pBSPData );
FloodAreaConnections(pBSPData);
#ifdef COUNT_COLLISIONS
// initialize counters
CollisionCounts_Init( &g_CollisionCounts );
#endif
return &pBSPData->map_cmodels[0];
}
//-----------------------------------------------------------------------------
//
// Methods associated with colliding against the world + models
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// returns a vcollide that can be used to collide against this model
//-----------------------------------------------------------------------------
vcollide_t* CM_VCollideForModel( int modelindex, const model_t* pModel )
{
if ( pModel )
{
switch( pModel->type )
{
case mod_brush:
return CM_GetVCollide( modelindex-1 );
case mod_studio:
Assert( modelloader->IsLoaded( pModel ) );
return g_pMDLCache->GetVCollide( pModel->studio );
}
}
return 0;
}
//=======================================================================
/*
==================
CM_PointLeafnum_r
==================
*/
int CM_PointLeafnumMinDistSqr_r( CCollisionBSPData *pBSPData, const Vector& p, int num, float &minDistSqr )
{
float d;
cnode_t *node;
cplane_t *plane;
while (num >= 0)
{
node = pBSPData->map_rootnode + num;
plane = node->plane;
if (plane->type < 3)
d = p[plane->type] - plane->dist;
else
d = DotProduct (plane->normal, p) - plane->dist;
minDistSqr = fpmin( d*d, minDistSqr );
if (d < 0)
num = node->children[1];
else
num = node->children[0];
}
#ifdef COUNT_COLLISIONS
g_CollisionCounts.m_PointContents++; // optimize counter
#endif
return -1 - num;
}
int CM_PointLeafnum_r( CCollisionBSPData *pBSPData, const Vector& p, int num)
{
float d;
cnode_t *node;
cplane_t *plane;
while (num >= 0)
{
node = pBSPData->map_rootnode + num;
plane = node->plane;
if (plane->type < 3)
d = p[plane->type] - plane->dist;
else
d = DotProduct (plane->normal, p) - plane->dist;
if (d < 0)
num = node->children[1];
else
num = node->children[0];
}
#ifdef COUNT_COLLISIONS
g_CollisionCounts.m_PointContents++; // optimize counter
#endif
return -1 - num;
}
int CM_PointLeafnum (const Vector& p)
{
// get the current collision bsp -- there is only one!
CCollisionBSPData *pBSPData = GetCollisionBSPData();
if (!pBSPData->numplanes)
return 0; // sound may call this without map loaded
return CM_PointLeafnum_r (pBSPData, p, 0);
}
void CM_SnapPointToReferenceLeaf_r( CCollisionBSPData *pBSPData, const Vector& p, int num, float tolerance, Vector *pSnapPoint )
{
float d, snapDist;
cnode_t *node;
cplane_t *plane;
while (num >= 0)
{
node = pBSPData->map_rootnode + num;
plane = node->plane;
if (plane->type < 3)
{
d = p[plane->type] - plane->dist;
snapDist = (*pSnapPoint)[plane->type] - plane->dist;
}
else
{
d = DotProduct (plane->normal, p) - plane->dist;
snapDist = DotProduct (plane->normal, *pSnapPoint) - plane->dist;
}
if (d < 0)
{
num = node->children[1];
if ( snapDist > 0 )
{
*pSnapPoint -= plane->normal * (snapDist + tolerance);
}
}
else
{
num = node->children[0];
if ( snapDist < 0 )
{
*pSnapPoint += plane->normal * (-snapDist + tolerance);
}
}
}
}
void CM_SnapPointToReferenceLeaf(const Vector &referenceLeafPoint, float tolerance, Vector *pSnapPoint)
{
// get the current collision bsp -- there is only one!
CCollisionBSPData *pBSPData = GetCollisionBSPData();
if (pBSPData->numplanes)
{
CM_SnapPointToReferenceLeaf_r(pBSPData, referenceLeafPoint, 0, tolerance, pSnapPoint);
}
}
/*
=============
CM_BoxLeafnums
Fills in a list of all the leafs touched
=============
*/
struct leafnums_t
{
int leafTopNode;
int leafMaxCount;
int *pLeafList;
CCollisionBSPData *pBSPData;
};
int CM_BoxLeafnums( leafnums_t &context, const Vector &center, const Vector &extents, int nodenum )
{
2021-11-13 21:07:58 +00:00
int leafCount = 0;
const int NODELIST_MAX = 1024;
int nodeList[NODELIST_MAX];
int nodeReadIndex = 0;
int nodeWriteIndex = 0;
cplane_t *plane;
cnode_t *node;
int prev_topnode = -1;
while (1)
{
if (nodenum < 0)
{
// This handles the case when the box lies completely
// within a single node. In that case, the top node should be
// the parent of the leaf
if (context.leafTopNode == -1)
context.leafTopNode = prev_topnode;
if (leafCount < context.leafMaxCount)
{
context.pLeafList[leafCount] = -1 - nodenum;
leafCount++;
}
if ( nodeReadIndex == nodeWriteIndex )
return leafCount;
nodenum = nodeList[nodeReadIndex];
nodeReadIndex = (nodeReadIndex+1) & (NODELIST_MAX-1);
}
else
{
node = &context.pBSPData->map_rootnode[nodenum];
plane = node->plane;
// s = BoxOnPlaneSide (leaf_mins, leaf_maxs, plane);
// s = BOX_ON_PLANE_SIDE(*leaf_mins, *leaf_maxs, plane);
float d0 = DotProduct( plane->normal, center ) - plane->dist;
float d1 = DotProductAbs( plane->normal, extents );
prev_topnode = nodenum;
if (d0 >= d1)
nodenum = node->children[0];
else if (d0 < -d1)
nodenum = node->children[1];
else
{ // go down both
if (context.leafTopNode == -1)
context.leafTopNode = nodenum;
nodeList[nodeWriteIndex] = node->children[0];
nodeWriteIndex = (nodeWriteIndex+1) & (NODELIST_MAX-1);
// check for overflow of the ring buffer
Assert(nodeWriteIndex != nodeReadIndex);
nodenum = node->children[1];
}
}
}
2020-04-22 16:56:21 +00:00
}
int CM_BoxLeafnums ( const Vector& mins, const Vector& maxs, int *list, int listsize, int *topnode)
{
leafnums_t context;
context.pLeafList = list;
context.leafTopNode = -1;
context.leafMaxCount = listsize;
// get the current collision bsp -- there is only one!
context.pBSPData = GetCollisionBSPData();
Vector center = (mins+maxs)*0.5f;
Vector extents = maxs - center;
int leafCount = CM_BoxLeafnums(context, center, extents, context.pBSPData->map_cmodels[0].headnode );
if (topnode)
*topnode = context.leafTopNode;
return leafCount;
}
// UNDONE: This is a version that returns only leaves with valid clusters
// UNDONE: Use this in the PVS calcs for networking
#if 0
int CM_BoxClusters( leafnums_t * RESTRICT pContext, const Vector &center, const Vector &extents, int nodenum )
{
const int NODELIST_MAX = 1024;
int nodeList[NODELIST_MAX];
int nodeReadIndex = 0;
int nodeWriteIndex = 0;
cplane_t *RESTRICT plane;
cnode_t *RESTRICT node;
int prev_topnode = -1;
int leafCount = 0;
while (1)
{
if (nodenum < 0)
{
int leafIndex = -1 - nodenum;
// This handles the case when the box lies completely
// within a single node. In that case, the top node should be
// the parent of the leaf
if (pContext->leafTopNode == -1)
pContext->leafTopNode = prev_topnode;
if (leafCount < pContext->leafMaxCount)
{
cleaf_t *RESTRICT pLeaf = &pContext->pBSPData->map_leafs[leafIndex];
if ( pLeaf->cluster >= 0 )
{
pContext->pLeafList[leafCount] = leafIndex;
leafCount++;
}
}
if ( nodeReadIndex == nodeWriteIndex )
return leafCount;
nodenum = nodeList[nodeReadIndex];
nodeReadIndex = (nodeReadIndex+1) & (NODELIST_MAX-1);
}
else
{
node = &pContext->pBSPData->map_rootnode[nodenum];
plane = node->plane;
float d0 = DotProduct( plane->normal, center ) - plane->dist;
float d1 = DotProductAbs( plane->normal, extents );
prev_topnode = nodenum;
if (d0 >= d1)
nodenum = node->children[0];
else if (d0 < -d1)
nodenum = node->children[1];
else
{ // go down both
if (pContext->leafTopNode == -1)
pContext->leafTopNode = nodenum;
nodenum = node->children[0];
nodeList[nodeWriteIndex] = node->children[1];
nodeWriteIndex = (nodeWriteIndex+1) & (NODELIST_MAX-1);
// check for overflow of the ring buffer
Assert(nodeWriteIndex != nodeReadIndex);
}
}
}
}
int CM_BoxClusters_headnode ( CCollisionBSPData *pBSPData, const Vector& mins, const Vector& maxs, int *list, int listsize, int nodenum, int *topnode)
{
leafnums_t context;
context.pLeafList = list;
context.leafTopNode = -1;
context.leafMaxCount = listsize;
Vector center = 0.5f * (mins + maxs);
Vector extents = maxs - center;
context.pBSPData = pBSPData;
int leafCount = CM_BoxClusters( &context, center, extents, nodenum );
if (topnode)
*topnode = context.leafTopNode;
return leafCount;
}
#endif
static int FASTCALL CM_BrushBoxContents( CCollisionBSPData *pBSPData, const Vector &vMins, const Vector &vMaxs, cbrush_t *pBrush )
{
if ( pBrush->IsBox())
{
cboxbrush_t *pBox = &pBSPData->map_boxbrushes[pBrush->GetBox()];
if ( !IsBoxIntersectingBox( vMins, vMaxs, pBox->mins, pBox->maxs ) )
return 0;
}
else
{
if (!pBrush->numsides)
return 0;
Vector vCenter = 0.5f *(vMins + vMaxs);
Vector vExt = vMaxs - vCenter;
int i, j;
cplane_t *plane;
float dist;
Vector vOffset;
float d1;
cbrushside_t *side;
for (i=0 ; i<pBrush->numsides ; i++)
{
side = &pBSPData->map_brushsides[pBrush->firstbrushside+i];
plane = side->plane;
// FIXME: special case for axial
// general box case
// push the plane out appropriately for mins/maxs
// FIXME: use signbits into 8 way lookup for each mins/maxs
for (j=0 ; j<3 ; j++)
{
if (plane->normal[j] < 0)
vOffset[j] = vExt[j];
else
vOffset[j] = -vExt[j];
}
dist = DotProduct (vOffset, plane->normal);
dist = plane->dist - dist;
d1 = DotProduct (vCenter, plane->normal) - dist;
// if completely in front of face, no intersection
if (d1 > 0)
return 0;
}
}
// inside this brush
return pBrush->contents;
}
static int FASTCALL CM_BrushPointContents( CCollisionBSPData *pBSPData, const Vector &vPos, cbrush_t *pBrush )
{
if ( pBrush->IsBox())
{
cboxbrush_t *pBox = &pBSPData->map_boxbrushes[pBrush->GetBox()];
if ( !IsPointInBox( vPos, pBox->mins, pBox->maxs ) )
return 0;
}
else
{
if (!pBrush->numsides)
return 0;
cplane_t *plane;
cbrushside_t *side;
for ( int i = 0 ; i < pBrush->numsides; i++ )
{
side = &pBSPData->map_brushsides[pBrush->firstbrushside+i];
plane = side->plane;
float flDist = DotProduct (vPos, plane->normal) - plane->dist;
// if completely in front of face, no intersection
if (flDist > 0)
return 0;
}
}
// inside this brush
return pBrush->contents;
}
/*
==================
CM_PointContents
==================
*/
int CM_PointContents ( const Vector &p, int headnode)
{
int l;
// get the current collision bsp -- there is only one!
CCollisionBSPData *pBSPData = GetCollisionBSPData();
if (!pBSPData->numnodes) // map not loaded
return 0;
l = CM_PointLeafnum_r (pBSPData, p, headnode);
cleaf_t *pLeaf = &pBSPData->map_leafs[l];
int nContents = pLeaf->contents;
for ( int i = 0; i < pLeaf->numleafbrushes; i++ )
{
int nBrush = pBSPData->map_leafbrushes[pLeaf->firstleafbrush + i];
cbrush_t * RESTRICT pBrush = &pBSPData->map_brushes[nBrush];
nContents |= CM_BrushPointContents( pBSPData, p, pBrush );
}
return nContents;
}
/*
==================
CM_TransformedPointContents
Handles offseting and rotation of the end points for moving and
rotating entities
==================
*/
int CM_TransformedPointContents ( const Vector& p, int headnode, const Vector& origin, QAngle const& angles)
{
Vector p_l;
Vector temp;
Vector forward, right, up;
int l;
// get the current collision bsp -- there is only one!
CCollisionBSPData *pBSPData = GetCollisionBSPData();
// subtract origin offset
VectorSubtract (p, origin, p_l);
// rotate start and end into the models frame of reference
if ( angles[0] || angles[1] || angles[2] )
{
AngleVectors (angles, &forward, &right, &up);
VectorCopy (p_l, temp);
p_l[0] = DotProduct (temp, forward);
p_l[1] = -DotProduct (temp, right);
p_l[2] = DotProduct (temp, up);
}
l = CM_PointLeafnum_r (pBSPData, p_l, headnode);
return pBSPData->map_leafs[l].contents;
}
/*
===============================================================================
BOX TRACING
===============================================================================
*/
// Custom SIMD implementation for box brushes
const fltx4 Four_DistEpsilons={DIST_EPSILON,DIST_EPSILON,DIST_EPSILON,DIST_EPSILON};
const int32 ALIGN16 g_CubeFaceIndex0[4] ALIGN16_POST = {0,1,2,-1};
const int32 ALIGN16 g_CubeFaceIndex1[4] ALIGN16_POST = {3,4,5,-1};
bool IntersectRayWithBoxBrush( TraceInfo_t *pTraceInfo, const cbrush_t *pBrush, cboxbrush_t *pBox )
{
// Suppress floating-point exceptions in this function because invDelta's
// components can get arbitrarily large -- up to FLT_MAX -- and overflow
// when multiplied. Only applicable when FP_EXCEPTIONS_ENABLED is defined.
FPExceptionDisabler hideExceptions;
// Load the unaligned ray/box parameters into SIMD registers
fltx4 start = LoadUnaligned3SIMD(pTraceInfo->m_start.Base());
fltx4 extents = LoadUnaligned3SIMD(pTraceInfo->m_extents.Base());
fltx4 delta = LoadUnaligned3SIMD(pTraceInfo->m_delta.Base());
fltx4 boxMins = LoadAlignedSIMD( pBox->mins.Base() );
fltx4 boxMaxs = LoadAlignedSIMD( pBox->maxs.Base() );
// compute the mins/maxs of the box expanded by the ray extents
// relocate the problem so that the ray start is at the origin.
fltx4 offsetMins = SubSIMD(boxMins, start);
fltx4 offsetMaxs = SubSIMD(boxMaxs, start);
fltx4 offsetMinsExpanded = SubSIMD(offsetMins, extents);
fltx4 offsetMaxsExpanded = AddSIMD(offsetMaxs, extents);
// Check to see if both the origin (start point) and the end point (delta) are on the front side
// of any of the box sides - if so there can be no intersection
fltx4 startOutMins = CmpLtSIMD(Four_Zeros, offsetMinsExpanded);
fltx4 endOutMins = CmpLtSIMD(delta,offsetMinsExpanded);
fltx4 minsMask = AndSIMD( startOutMins, endOutMins );
fltx4 startOutMaxs = CmpGtSIMD(Four_Zeros, offsetMaxsExpanded);
fltx4 endOutMaxs = CmpGtSIMD(delta,offsetMaxsExpanded);
fltx4 maxsMask = AndSIMD( startOutMaxs, endOutMaxs );
if ( IsAnyNegative(SetWToZeroSIMD(OrSIMD(minsMask,maxsMask))))
return false;
fltx4 crossPlane = OrSIMD(XorSIMD(startOutMins,endOutMins), XorSIMD(startOutMaxs,endOutMaxs));
// now build the per-axis interval of t for intersections
fltx4 invDelta = LoadUnaligned3SIMD(pTraceInfo->m_invDelta.Base());
fltx4 tmins = MulSIMD( offsetMinsExpanded, invDelta );
fltx4 tmaxs = MulSIMD( offsetMaxsExpanded, invDelta );
// now sort the interval per axis
fltx4 mint = MinSIMD( tmins, tmaxs );
fltx4 maxt = MaxSIMD( tmins, tmaxs );
// only axes where we cross a plane are relevant
mint = MaskedAssign( crossPlane, mint, Four_Negative_FLT_MAX );
maxt = MaskedAssign( crossPlane, maxt, Four_FLT_MAX );
// now find the intersection of the intervals on all axes
fltx4 firstOut = FindLowestSIMD3(maxt);
fltx4 lastIn = FindHighestSIMD3(mint);
// NOTE: This is really a scalar quantity now [t0,t1] == [lastIn,firstOut]
firstOut = MinSIMD(firstOut, Four_Ones);
lastIn = MaxSIMD(lastIn, Four_Zeros);
// If the final interval is valid lastIn<firstOut, check for separation
fltx4 separation = CmpGtSIMD(lastIn, firstOut);
if ( IsAllZeros(separation) )
{
bool bStartOut = IsAnyNegative(SetWToZeroSIMD(OrSIMD(startOutMins,startOutMaxs)));
offsetMinsExpanded = SubSIMD(offsetMinsExpanded, Four_DistEpsilons);
offsetMaxsExpanded = AddSIMD(offsetMaxsExpanded, Four_DistEpsilons);
tmins = MulSIMD( offsetMinsExpanded, invDelta );
tmaxs = MulSIMD( offsetMaxsExpanded, invDelta );
fltx4 minface0 = LoadAlignedSIMD( (float *) g_CubeFaceIndex0 );
fltx4 minface1 = LoadAlignedSIMD( (float *) g_CubeFaceIndex1 );
fltx4 faceMask = CmpLeSIMD( tmins, tmaxs );
mint = MinSIMD( tmins, tmaxs );
maxt = MaxSIMD( tmins, tmaxs );
fltx4 faceId = MaskedAssign( faceMask, minface0, minface1 );
// only axes where we cross a plane are relevant
mint = MaskedAssign( crossPlane, mint, Four_Negative_FLT_MAX );
maxt = MaskedAssign( crossPlane, maxt, Four_FLT_MAX );
fltx4 firstOutTmp = FindLowestSIMD3(maxt);
// implement FindHighest of 3, but use intermediate masks to find the
// corresponding index in faceId to the highest at the same time
fltx4 compareOne = RotateLeft( mint );
faceMask = CmpGtSIMD(mint, compareOne);
// compareOne is [y,z,G,x]
fltx4 max_xy = MaxSIMD( mint, compareOne );
fltx4 faceRot = RotateLeft(faceId);
fltx4 faceId_xy = MaskedAssign(faceMask, faceId, faceRot);
// max_xy is [max(x,y), ... ]
compareOne = RotateLeft2( mint );
faceRot = RotateLeft2(faceId);
// compareOne is [z, G, x, y]
faceMask = CmpGtSIMD( max_xy, compareOne );
fltx4 max_xyz = MaxSIMD( max_xy, compareOne );
faceId = MaskedAssign( faceMask, faceId_xy, faceRot );
fltx4 lastInTmp = SplatXSIMD( max_xyz );
firstOut = MinSIMD(firstOutTmp, Four_Ones);
lastIn = MaxSIMD(lastInTmp, Four_Zeros);
separation = CmpGtSIMD(lastIn, firstOut);
Assert(IsAllZeros(separation));
if ( IsAllZeros(separation) )
{
uint32 faceIndex = SubInt(faceId, 0);
Assert(faceIndex<6);
float t1 = SubFloat(lastIn,0);
trace_t * RESTRICT pTrace = &pTraceInfo->m_trace;
// this condition is copied from the brush case to avoid hitting an assert and
// overwriting a previous start solid with a new shorter fraction
if ( bStartOut && pTraceInfo->m_ispoint && pTrace->fractionleftsolid > t1 )
{
bStartOut = false;
}
if ( !bStartOut )
{
float t2 = SubFloat(firstOut,0);
pTrace->startsolid = true;
pTrace->contents = pBrush->contents;
if ( t2 >= 1.0f )
{
pTrace->allsolid = true;
pTrace->fraction = 0.0f;
}
else if ( t2 > pTrace->fractionleftsolid )
{
pTrace->fractionleftsolid = t2;
if (pTrace->fraction <= t2)
{
pTrace->fraction = 1.0f;
pTrace->surface = pTraceInfo->m_pBSPData->nullsurface;
}
}
}
else
{
static const int signbits[3]={1,2,4};
if ( t1 < pTrace->fraction )
{
pTraceInfo->m_bDispHit = false;
pTrace->fraction = t1;
pTrace->plane.normal = vec3_origin;
pTrace->surface = *pTraceInfo->m_pBSPData->GetSurfaceAtIndex( pBox->surfaceIndex[faceIndex] );
if ( faceIndex >= 3 )
{
faceIndex -= 3;
pTrace->plane.dist = pBox->maxs[faceIndex];
pTrace->plane.normal[faceIndex] = 1.0f;
pTrace->plane.signbits = 0;
}
else
{
pTrace->plane.dist = -pBox->mins[faceIndex];
pTrace->plane.normal[faceIndex] = -1.0f;
pTrace->plane.signbits = signbits[faceIndex];
}
pTrace->plane.type = faceIndex;
pTrace->contents = pBrush->contents;
return true;
}
}
}
}
return false;
}
// slightly different version of the above. This folds in more of the trace_t output because CM_ComputeTraceEndpts() isn't called after this
// so this routine needs to properly compute start/end points and fractions in all cases
bool IntersectRayWithBox( const Ray_t &ray, const VectorAligned &inInvDelta, const VectorAligned &inBoxMins, const VectorAligned &inBoxMaxs, trace_t *RESTRICT pTrace )
{
// mark trace as not hitting
pTrace->startsolid = false;
pTrace->allsolid = false;
pTrace->fraction = 1.0f;
// Load the unaligned ray/box parameters into SIMD registers
fltx4 start = LoadUnaligned3SIMD(ray.m_Start.Base());
fltx4 extents = LoadUnaligned3SIMD(ray.m_Extents.Base());
fltx4 delta = LoadUnaligned3SIMD(ray.m_Delta.Base());
fltx4 boxMins = LoadAlignedSIMD( inBoxMins.Base() );
fltx4 boxMaxs = LoadAlignedSIMD( inBoxMaxs.Base() );
// compute the mins/maxs of the box expanded by the ray extents
// relocate the problem so that the ray start is at the origin.
fltx4 offsetMins = SubSIMD(boxMins, start);
fltx4 offsetMaxs = SubSIMD(boxMaxs, start);
fltx4 offsetMinsExpanded = SubSIMD(offsetMins, extents);
fltx4 offsetMaxsExpanded = AddSIMD(offsetMaxs, extents);
// Check to see if both the origin (start point) and the end point (delta) are on the front side
// of any of the box sides - if so there can be no intersection
fltx4 startOutMins = CmpLtSIMD(Four_Zeros, offsetMinsExpanded);
fltx4 endOutMins = CmpLtSIMD(delta,offsetMinsExpanded);
fltx4 minsMask = AndSIMD( startOutMins, endOutMins );
fltx4 startOutMaxs = CmpGtSIMD(Four_Zeros, offsetMaxsExpanded);
fltx4 endOutMaxs = CmpGtSIMD(delta,offsetMaxsExpanded);
fltx4 maxsMask = AndSIMD( startOutMaxs, endOutMaxs );
if ( IsAnyNegative(SetWToZeroSIMD(OrSIMD(minsMask,maxsMask))))
return false;
fltx4 crossPlane = OrSIMD(XorSIMD(startOutMins,endOutMins), XorSIMD(startOutMaxs,endOutMaxs));
// now build the per-axis interval of t for intersections
fltx4 invDelta = LoadAlignedSIMD(inInvDelta.Base());
fltx4 tmins = MulSIMD( offsetMinsExpanded, invDelta );
fltx4 tmaxs = MulSIMD( offsetMaxsExpanded, invDelta );
// now sort the interval per axis
fltx4 mint = MinSIMD( tmins, tmaxs );
fltx4 maxt = MaxSIMD( tmins, tmaxs );
// only axes where we cross a plane are relevant
mint = MaskedAssign( crossPlane, mint, Four_Negative_FLT_MAX );
maxt = MaskedAssign( crossPlane, maxt, Four_FLT_MAX );
// now find the intersection of the intervals on all axes
fltx4 firstOut = FindLowestSIMD3(maxt);
fltx4 lastIn = FindHighestSIMD3(mint);
// NOTE: This is really a scalar quantity now [t0,t1] == [lastIn,firstOut]
firstOut = MinSIMD(firstOut, Four_Ones);
lastIn = MaxSIMD(lastIn, Four_Zeros);
// If the final interval is valid lastIn<firstOut, check for separation
fltx4 separation = CmpGtSIMD(lastIn, firstOut);
if ( IsAllZeros(separation) )
{
bool bStartOut = IsAnyNegative(SetWToZeroSIMD(OrSIMD(startOutMins,startOutMaxs)));
offsetMinsExpanded = SubSIMD(offsetMinsExpanded, Four_DistEpsilons);
offsetMaxsExpanded = AddSIMD(offsetMaxsExpanded, Four_DistEpsilons);
tmins = MulSIMD( offsetMinsExpanded, invDelta );
tmaxs = MulSIMD( offsetMaxsExpanded, invDelta );
fltx4 minface0 = LoadAlignedSIMD( (float *) g_CubeFaceIndex0 );
fltx4 minface1 = LoadAlignedSIMD( (float *) g_CubeFaceIndex1 );
fltx4 faceMask = CmpLeSIMD( tmins, tmaxs );
mint = MinSIMD( tmins, tmaxs );
maxt = MaxSIMD( tmins, tmaxs );
fltx4 faceId = MaskedAssign( faceMask, minface0, minface1 );
// only axes where we cross a plane are relevant
mint = MaskedAssign( crossPlane, mint, Four_Negative_FLT_MAX );
maxt = MaskedAssign( crossPlane, maxt, Four_FLT_MAX );
fltx4 firstOutTmp = FindLowestSIMD3(maxt);
//fltx4 lastInTmp = FindHighestSIMD3(mint);
// implement FindHighest of 3, but use intermediate masks to find the
// corresponding index in faceId to the highest at the same time
fltx4 compareOne = RotateLeft( mint );
faceMask = CmpGtSIMD(mint, compareOne);
// compareOne is [y,z,G,x]
fltx4 max_xy = MaxSIMD( mint, compareOne );
fltx4 faceRot = RotateLeft(faceId);
fltx4 faceId_xy = MaskedAssign(faceMask, faceId, faceRot);
// max_xy is [max(x,y), ... ]
compareOne = RotateLeft2( mint );
faceRot = RotateLeft2(faceId);
// compareOne is [z, G, x, y]
faceMask = CmpGtSIMD( max_xy, compareOne );
fltx4 max_xyz = MaxSIMD( max_xy, compareOne );
faceId = MaskedAssign( faceMask, faceId_xy, faceRot );
fltx4 lastInTmp = SplatXSIMD( max_xyz );
firstOut = MinSIMD(firstOutTmp, Four_Ones);
lastIn = MaxSIMD(lastInTmp, Four_Zeros);
separation = CmpGtSIMD(lastIn, firstOut);
Assert(IsAllZeros(separation));
if ( IsAllZeros(separation) )
{
uint32 faceIndex = SubInt(faceId, 0);
Assert(faceIndex<6);
float t1 = SubFloat(lastIn,0);
// this condition is copied from the brush case to avoid hitting an assert and
// overwriting a previous start solid with a new shorter fraction
if ( bStartOut && ray.m_IsRay && pTrace->fractionleftsolid > t1 )
{
bStartOut = false;
}
if ( !bStartOut )
{
float t2 = SubFloat(firstOut,0);
pTrace->startsolid = true;
pTrace->contents = CONTENTS_SOLID;
pTrace->fraction = 0.0f;
pTrace->startpos = ray.m_Start + ray.m_StartOffset;
pTrace->endpos = pTrace->startpos;
if ( t2 >= 1.0f )
{
pTrace->allsolid = true;
}
else if ( t2 > pTrace->fractionleftsolid )
{
pTrace->fractionleftsolid = t2;
pTrace->startpos += ray.m_Delta * pTrace->fractionleftsolid;
}
return true;
}
else
{
static const int signbits[3]={1,2,4};
if ( t1 <= 1.0f )
{
pTrace->fraction = t1;
pTrace->plane.normal = vec3_origin;
if ( faceIndex >= 3 )
{
faceIndex -= 3;
pTrace->plane.dist = inBoxMaxs[faceIndex];
pTrace->plane.normal[faceIndex] = 1.0f;
pTrace->plane.signbits = 0;
}
else
{
pTrace->plane.dist = -inBoxMins[faceIndex];
pTrace->plane.normal[faceIndex] = -1.0f;
pTrace->plane.signbits = signbits[faceIndex];
}
pTrace->plane.type = faceIndex;
pTrace->contents = CONTENTS_SOLID;
Vector startVec;
VectorAdd( ray.m_Start, ray.m_StartOffset, startVec );
if (pTrace->fraction == 1)
{
VectorAdd( startVec, ray.m_Delta, pTrace->endpos);
}
else
{
VectorMA( startVec, pTrace->fraction, ray.m_Delta, pTrace->endpos );
}
return true;
}
}
}
}
return false;
}
/*
================
CM_ClipBoxToBrush
================
*/
template <bool IS_POINT>
void FASTCALL CM_ClipBoxToBrush( TraceInfo_t * RESTRICT pTraceInfo, const cbrush_t * RESTRICT brush )
{
if ( brush->IsBox() )
{
cboxbrush_t *pBox = &pTraceInfo->m_pBSPData->map_boxbrushes[brush->GetBox()];
IntersectRayWithBoxBrush( pTraceInfo, brush, pBox );
return;
}
if (!brush->numsides)
return;
trace_t * RESTRICT trace = &pTraceInfo->m_trace;
const Vector& p1 = pTraceInfo->m_start;
const Vector& p2= pTraceInfo->m_end;
int brushContents = brush->contents;
#ifdef COUNT_COLLISIONS
g_CollisionCounts.m_BrushTraces++;
#endif
float enterfrac = NEVER_UPDATED;
float leavefrac = 1.f;
bool getout = false;
bool startout = false;
cbrushside_t* leadside = NULL;
float dist;
cbrushside_t * RESTRICT side = &pTraceInfo->m_pBSPData->map_brushsides[brush->firstbrushside];
for ( const cbrushside_t * const sidelimit = side + brush->numsides; side < sidelimit; side++ )
{
cplane_t *plane = side->plane;
const Vector &planeNormal = plane->normal;
if (!IS_POINT)
{
// general box case
// push the plane out apropriately for mins/maxs
dist = DotProductAbs( planeNormal, pTraceInfo->m_extents );
dist = plane->dist + dist;
}
else
{
// special point case
dist = plane->dist;
// don't trace rays against bevel planes
if ( side->bBevel )
continue;
}
float d1 = DotProduct (p1, planeNormal) - dist;
float d2 = DotProduct (p2, planeNormal) - dist;
// if completely in front of face, no intersection
if( d1 > 0.f )
{
startout = true;
// d1 > 0.f && d2 > 0.f
if( d2 > 0.f )
return;
}
else
{
// d1 <= 0.f && d2 <= 0.f
if( d2 <= 0.f )
continue;
// d2 > 0.f
getout = true;
}
// crosses face
if (d1 > d2)
{ // enter
// NOTE: This could be negative if d1 is less than the epsilon.
// If the trace is short (d1-d2 is small) then it could produce a large
// negative fraction.
float f = (d1-DIST_EPSILON);
if ( f < 0.f )
f = 0.f;
f = f / (d1-d2);
if (f > enterfrac)
{
enterfrac = f;
leadside = side;
}
}
else
{ // leave
float f = (d1+DIST_EPSILON) / (d1-d2);
if (f < leavefrac)
leavefrac = f;
}
}
// when this happens, we entered the brush *after* leaving the previous brush.
// Therefore, we're still outside!
// NOTE: We only do this test against points because fractionleftsolid is
// not possible to compute for brush sweeps without a *lot* more computation
// So, client code will never get fractionleftsolid for box sweeps
if (IS_POINT && startout)
{
// Add a little sludge. The sludge should already be in the fractionleftsolid
// (for all intents and purposes is a leavefrac value) and enterfrac values.
// Both of these values have +/- DIST_EPSILON values calculated in. Thus, I
// think the test should be against "0.0." If we experience new "left solid"
// problems you may want to take a closer look here!
// if ((trace->fractionleftsolid - enterfrac) > -1e-6)
if ((trace->fractionleftsolid - enterfrac) > 0.0f )
startout = false;
}
if (!startout)
{ // original point was inside brush
trace->startsolid = true;
// return starting contents
trace->contents = brushContents;
if (!getout)
{
trace->allsolid = true;
trace->fraction = 0.0f;
trace->fractionleftsolid = 1.0f;
}
else
{
// if leavefrac == 1, this means it's never been updated or we're in allsolid
// the allsolid case was handled above
if ((leavefrac != 1) && (leavefrac > trace->fractionleftsolid))
{
trace->fractionleftsolid = leavefrac;
// This could occur if a previous trace didn't start us in solid
if (trace->fraction <= leavefrac)
{
trace->fraction = 1.0f;
trace->surface = pTraceInfo->m_pBSPData->nullsurface;
}
}
}
return;
}
// We haven't hit anything at all until we've left...
if (enterfrac < leavefrac)
{
if (enterfrac > NEVER_UPDATED && enterfrac < trace->fraction)
{
// WE HIT SOMETHING!!!!!
if (enterfrac < 0)
enterfrac = 0;
trace->fraction = enterfrac;
pTraceInfo->m_bDispHit = false;
trace->plane = *(leadside->plane);
trace->surface = *pTraceInfo->m_pBSPData->GetSurfaceAtIndex( leadside->surfaceIndex );
trace->contents = brushContents;
}
}
}
inline bool IsTraceBoxIntersectingBoxBrush( TraceInfo_t *pTraceInfo, cboxbrush_t *pBox )
{
fltx4 start = LoadUnaligned3SIMD(pTraceInfo->m_start.Base());
fltx4 mins = LoadUnaligned3SIMD(pTraceInfo->m_mins.Base());
fltx4 maxs = LoadUnaligned3SIMD(pTraceInfo->m_maxs.Base());
fltx4 boxMins = LoadAlignedSIMD( pBox->mins.Base() );
fltx4 boxMaxs = LoadAlignedSIMD( pBox->maxs.Base() );
fltx4 offsetMins = AddSIMD(mins, start);
fltx4 offsetMaxs = AddSIMD(maxs,start);
fltx4 minsOut = MaxSIMD(boxMins, offsetMins);
fltx4 maxsOut = MinSIMD(boxMaxs, offsetMaxs);
fltx4 separated = CmpGtSIMD(minsOut, maxsOut);
fltx4 sep3 = SetWToZeroSIMD(separated);
return IsAllZeros(sep3);
}
/*
================
CM_TestBoxInBrush
================
*/
static void FASTCALL CM_TestBoxInBrush( TraceInfo_t *pTraceInfo, const cbrush_t *brush )
{
if ( brush->IsBox())
{
cboxbrush_t *pBox = &pTraceInfo->m_pBSPData->map_boxbrushes[brush->GetBox()];
if ( !IsTraceBoxIntersectingBoxBrush( pTraceInfo, pBox ) )
return;
}
else
{
if (!brush->numsides)
return;
const Vector& mins = pTraceInfo->m_mins;
const Vector& maxs = pTraceInfo->m_maxs;
const Vector& p1 = pTraceInfo->m_start;
int i, j;
cplane_t *plane;
float dist;
Vector ofs(0,0,0);
float d1;
cbrushside_t *side;
for (i=0 ; i<brush->numsides ; i++)
{
side = &pTraceInfo->m_pBSPData->map_brushsides[brush->firstbrushside+i];
plane = side->plane;
// FIXME: special case for axial
// general box case
// push the plane out appropriately for mins/maxs
// FIXME: use signbits into 8 way lookup for each mins/maxs
for (j=0 ; j<3 ; j++)
{
if (plane->normal[j] < 0)
ofs[j] = maxs[j];
else
ofs[j] = mins[j];
}
dist = DotProduct (ofs, plane->normal);
dist = plane->dist - dist;
d1 = DotProduct (p1, plane->normal) - dist;
// if completely in front of face, no intersection
if (d1 > 0)
return;
}
}
// inside this brush
trace_t *trace = &pTraceInfo->m_trace;
trace->startsolid = trace->allsolid = true;
trace->fraction = 0;
trace->fractionleftsolid = 1.0f;
trace->contents = brush->contents;
}
#if defined(_X360)
#define PREFETCH_ELEMENT(ofs,base) __dcbt(ofs,(void*)base)
#else
#define PREFETCH_ELEMENT(a,b)
#endif
/*
================
CM_TraceToLeaf
================
*/
template <bool IS_POINT>
void FASTCALL CM_TraceToLeaf( TraceInfo_t * RESTRICT pTraceInfo, int ndxLeaf, float startFrac, float endFrac )
{
VPROF("CM_TraceToLeaf");
// get the leaf
cleaf_t * RESTRICT pLeaf = &pTraceInfo->m_pBSPData->map_leafs[ndxLeaf];
//
// trace ray/box sweep against all brushes in this leaf
//
const int numleafbrushes = pLeaf->numleafbrushes;
const int lastleafbrush = pLeaf->firstleafbrush + numleafbrushes;
const CRangeValidatedArray<unsigned short> &map_leafbrushes = pTraceInfo->m_pBSPData->map_leafbrushes;
CRangeValidatedArray<cbrush_t> & map_brushes = pTraceInfo->m_pBSPData->map_brushes;
TraceCounter_t * RESTRICT pCounters = pTraceInfo->GetBrushCounters();
TraceCounter_t count = pTraceInfo->GetCount();
for( int ndxLeafBrush = pLeaf->firstleafbrush; ndxLeafBrush < lastleafbrush; ndxLeafBrush++ )
{
// get the current brush
int ndxBrush = map_leafbrushes[ndxLeafBrush];
cbrush_t * RESTRICT pBrush = &map_brushes[ndxBrush];
// make sure we only check this brush once per trace/stab
if ( !pTraceInfo->Visit( pBrush, ndxBrush, count, pCounters ) )
continue;
const int traceContents = pTraceInfo->m_contents;
const int releventContents = ( pBrush->contents & traceContents );
// only collide with objects you are interested in
if( !releventContents )
continue;
// Many traces rely on CONTENTS_OPAQUE always being hit, even if it is nodraw. AI blocklos brushes
// need this, for instance. CS and Terror visibility checks don't want this behavior, since
// blocklight brushes also are CONTENTS_OPAQUE and SURF_NODRAW, and are actually in the playable
// area in several maps.
// NOTE: This is no longer true - no traces should rely on hitting CONTENTS_OPAQUE unless they
// actually want to hit blocklight brushes. No other brushes are marked with those bits
// so it should be renamed CONTENTS_BLOCKLIGHT. CONTENTS_BLOCKLOS has its own field now
// so there is no reason to ignore nodraw opaques since you can merely remove CONTENTS_OPAQUE to
// get that behavior
if ( releventContents == CONTENTS_OPAQUE && (traceContents & CONTENTS_IGNORE_NODRAW_OPAQUE) )
{
// if the only reason we hit this brush is because it is opaque, make sure it isn't nodraw
bool isNoDraw = false;
if ( pBrush->IsBox())
{
cboxbrush_t *pBox = &pTraceInfo->m_pBSPData->map_boxbrushes[pBrush->GetBox()];
for (int i=0 ; i<6 && !isNoDraw ;i++)
{
csurface_t *surface = pTraceInfo->m_pBSPData->GetSurfaceAtIndex( pBox->surfaceIndex[i] );
if ( surface->flags & SURF_NODRAW )
{
isNoDraw = true;
break;
}
}
}
else
{
cbrushside_t *side = &pTraceInfo->m_pBSPData->map_brushsides[pBrush->firstbrushside];
for (int i=0 ; i<pBrush->numsides && !isNoDraw ;i++, side++)
{
csurface_t *surface = pTraceInfo->m_pBSPData->GetSurfaceAtIndex( side->surfaceIndex );
if ( surface->flags & SURF_NODRAW )
{
isNoDraw = true;
break;
}
}
}
if ( isNoDraw )
{
continue;
}
}
// trace against the brush and find impact point -- if any?
// NOTE: pTraceInfo->m_trace.fraction == 0.0f only when trace starts inside of a brush!
CM_ClipBoxToBrush<IS_POINT>( pTraceInfo, pBrush );
if( !pTraceInfo->m_trace.fraction )
return;
}
// TODO: this may be redundant
if( pTraceInfo->m_trace.startsolid )
return;
// Collide (test) against displacement surfaces in this leaf.
if( pLeaf->dispCount )
{
VPROF("CM_TraceToLeafDisps");
//
// trace ray/swept box against all displacement surfaces in this leaf
//
pCounters = pTraceInfo->GetDispCounters();
count = pTraceInfo->GetCount();
if (IsX360())
{
// set up some relatively constant variables we'll use in the loop below
fltx4 traceStart = LoadUnaligned3SIMD(pTraceInfo->m_start.Base());
fltx4 traceDelta = LoadUnaligned3SIMD(pTraceInfo->m_delta.Base());
fltx4 traceInvDelta = LoadUnaligned3SIMD(pTraceInfo->m_invDelta.Base());
static const fltx4 vecEpsilon = {DISPCOLL_DIST_EPSILON,DISPCOLL_DIST_EPSILON,DISPCOLL_DIST_EPSILON,DISPCOLL_DIST_EPSILON};
// only used in !IS_POINT version:
fltx4 extents;
if (!IS_POINT)
{
extents = LoadUnaligned3SIMD(pTraceInfo->m_extents.Base());
}
// TODO: this loop probably ought to be unrolled so that we can make a more efficient
// job of intersecting rays against boxes. The simple SIMD version used here,
// though about 6x faster than the fpu version, is slower still than intersecting
// against four boxes simultaneously.
for( int i = 0; i < pLeaf->dispCount; i++ )
{
int dispIndex = pTraceInfo->m_pBSPData->map_dispList[pLeaf->dispListStart + i];
alignedbbox_t * RESTRICT pDispBounds = &g_pDispBounds[dispIndex];
// only collide with objects you are interested in
if( !( pDispBounds->GetContents() & pTraceInfo->m_contents ) )
continue;
if( pTraceInfo->m_isswept )
{
// make sure we only check this brush once per trace/stab
if ( !pTraceInfo->Visit( pDispBounds->GetCounter(), count, pCounters ) )
continue;
}
if ( IS_POINT )
{
if (!IsBoxIntersectingRay( LoadAlignedSIMD(pDispBounds->mins.Base()), LoadAlignedSIMD(pDispBounds->maxs.Base()),
traceStart, traceDelta, traceInvDelta, vecEpsilon ))
continue;
}
else
{
fltx4 mins = SubSIMD(LoadAlignedSIMD(pDispBounds->mins.Base()),extents);
fltx4 maxs = AddSIMD(LoadAlignedSIMD(pDispBounds->maxs.Base()),extents);
if (!IsBoxIntersectingRay( mins, maxs,
traceStart, traceDelta, traceInvDelta, vecEpsilon ))
continue;
}
CDispCollTree * RESTRICT pDispTree = &g_pDispCollTrees[dispIndex];
CM_TraceToDispTree<IS_POINT>( pTraceInfo, pDispTree, startFrac, endFrac );
if( !pTraceInfo->m_trace.fraction )
break;
}
}
else
{
// utterly nonoptimal FPU pathway
for( int i = 0; i < pLeaf->dispCount; i++ )
{
int dispIndex = pTraceInfo->m_pBSPData->map_dispList[pLeaf->dispListStart + i];
alignedbbox_t * RESTRICT pDispBounds = &g_pDispBounds[dispIndex];
// only collide with objects you are interested in
if( !( pDispBounds->GetContents() & pTraceInfo->m_contents ) )
continue;
if( pTraceInfo->m_isswept )
{
// make sure we only check this brush once per trace/stab
if ( !pTraceInfo->Visit( pDispBounds->GetCounter(), count, pCounters ) )
continue;
}
if ( IS_POINT && !IsBoxIntersectingRay( pDispBounds->mins, pDispBounds->maxs, pTraceInfo->m_start, pTraceInfo->m_delta, pTraceInfo->m_invDelta, DISPCOLL_DIST_EPSILON ) )
{
continue;
}
if ( !IS_POINT && !IsBoxIntersectingRay( pDispBounds->mins - pTraceInfo->m_extents, pDispBounds->maxs + pTraceInfo->m_extents,
pTraceInfo->m_start, pTraceInfo->m_delta, pTraceInfo->m_invDelta, DISPCOLL_DIST_EPSILON ) )
{
continue;
}
CDispCollTree * RESTRICT pDispTree = &g_pDispCollTrees[dispIndex];
CM_TraceToDispTree<IS_POINT>( pTraceInfo, pDispTree, startFrac, endFrac );
if( !pTraceInfo->m_trace.fraction )
break;
}
}
CM_PostTraceToDispTree( pTraceInfo );
}
}
/*
================
CM_TestInLeaf
================
*/
static void FASTCALL CM_TestInLeaf( TraceInfo_t *pTraceInfo, int ndxLeaf )
{
// get the leaf
cleaf_t *pLeaf = &pTraceInfo->m_pBSPData->map_leafs[ndxLeaf];
//
// trace ray/box sweep against all brushes in this leaf
//
TraceCounter_t *pCounters = pTraceInfo->GetBrushCounters();
TraceCounter_t count = pTraceInfo->GetCount();
for( int ndxLeafBrush = 0; ndxLeafBrush < pLeaf->numleafbrushes; ndxLeafBrush++ )
{
// get the current brush
int ndxBrush = pTraceInfo->m_pBSPData->map_leafbrushes[pLeaf->firstleafbrush+ndxLeafBrush];
cbrush_t *pBrush = &pTraceInfo->m_pBSPData->map_brushes[ndxBrush];
// make sure we only check this brush once per trace/stab
if ( !pTraceInfo->Visit( pBrush, ndxBrush, count, pCounters ) )
continue;
// only collide with objects you are interested in
if( !( pBrush->contents & pTraceInfo->m_contents ) )
continue;
//
// test to see if the point/box is inside of any solid
// NOTE: pTraceInfo->m_trace.fraction == 0.0f only when trace starts inside of a brush!
//
CM_TestBoxInBrush( pTraceInfo, pBrush );
if( !pTraceInfo->m_trace.fraction )
return;
}
// TODO: this may be redundant
if( pTraceInfo->m_trace.startsolid )
return;
// if there are no displacement surfaces in this leaf -- we are done testing
if( pLeaf->dispCount )
{
// test to see if the point/box is inside of any of the displacement surface
CM_TestInDispTree( pTraceInfo, pLeaf, pTraceInfo->m_start, pTraceInfo->m_mins, pTraceInfo->m_maxs, pTraceInfo->m_contents, &pTraceInfo->m_trace );
}
}
//-----------------------------------------------------------------------------
// Computes the ray endpoints given a trace.
//-----------------------------------------------------------------------------
static inline void CM_ComputeTraceEndpoints( const Ray_t& ray, trace_t& tr )
{
// The ray start is the center of the extents; compute the actual start
Vector start;
VectorAdd( ray.m_Start, ray.m_StartOffset, start );
if (tr.fraction == 1)
VectorAdd(start, ray.m_Delta, tr.endpos);
else
VectorMA( start, tr.fraction, ray.m_Delta, tr.endpos );
if (tr.fractionleftsolid == 0)
{
VectorCopy (start, tr.startpos);
}
else
{
if (tr.fractionleftsolid == 1.0f)
{
tr.startsolid = tr.allsolid = 1;
tr.fraction = 0.0f;
VectorCopy( start, tr.endpos );
}
VectorMA( start, tr.fractionleftsolid, ray.m_Delta, tr.startpos );
}
}
//-----------------------------------------------------------------------------
// Purpose: Get a list of leaves for a trace.
//-----------------------------------------------------------------------------
void CM_RayLeafnums_r( const Ray_t &ray, CCollisionBSPData *pBSPData, int iNode,
float p1f, float p2f, const Vector &vecPoint1, const Vector &vecPoint2,
int *pLeafList, int nMaxLeafCount, int &nLeafCount )
{
cnode_t *pNode = NULL;
cplane_t *pPlane = NULL;
float flDist1 = 0.0f, flDist2 = 0.0f;
float flOffset = 0.0f;
float flDist;
float flFrac1, flFrac2;
int nSide;
float flMid;
Vector vecMid;
// A quick check so we don't flood the message on overflow - or keep testing beyond our means!
if ( nLeafCount >= nMaxLeafCount )
return;
// Find the point distances to the seperating plane and the offset for the size of the box.
// NJS: Hoisted loop invariant comparison to pTraceInfo->m_ispoint
if( ray.m_IsRay )
{
while( iNode >= 0 )
{
pNode = pBSPData->map_rootnode + iNode;
pPlane = pNode->plane;
if ( pPlane->type < 3 )
{
flDist1 = vecPoint1[pPlane->type] - pPlane->dist;
flDist2 = vecPoint2[pPlane->type] - pPlane->dist;
flOffset = ray.m_Extents[pPlane->type];
}
else
{
flDist1 = DotProduct( pPlane->normal, vecPoint1 ) - pPlane->dist;
flDist2 = DotProduct( pPlane->normal, vecPoint2 ) - pPlane->dist;
flOffset = 0.0f;
}
// See which sides we need to consider
if ( flDist1 > flOffset && flDist2 > flOffset )
{
iNode = pNode->children[0];
continue;
}
if ( flDist1 < -flOffset && flDist2 < -flOffset )
{
iNode = pNode->children[1];
continue;
}
break;
}
}
else
{
while( iNode >= 0 )
{
pNode = pBSPData->map_rootnode + iNode;
pPlane = pNode->plane;
if ( pPlane->type < 3 )
{
flDist1 = vecPoint1[pPlane->type] - pPlane->dist;
flDist2 = vecPoint2[pPlane->type] - pPlane->dist;
flOffset = ray.m_Extents[pPlane->type];
}
else
{
flDist1 = DotProduct( pPlane->normal, vecPoint1 ) - pPlane->dist;
flDist2 = DotProduct( pPlane->normal, vecPoint2 ) - pPlane->dist;
flOffset = fabs( ray.m_Extents[0] * pPlane->normal[0] ) +
fabs( ray.m_Extents[1] * pPlane->normal[1] ) +
fabs( ray.m_Extents[2] * pPlane->normal[2] );
}
// See which sides we need to consider
if ( flDist1 > flOffset && flDist2 > flOffset )
{
iNode = pNode->children[0];
continue;
}
if ( flDist1 < -flOffset && flDist2 < -flOffset )
{
iNode = pNode->children[1];
continue;
}
break;
}
}
// If < 0, we are in a leaf node.
if ( iNode < 0 )
{
if ( nLeafCount < nMaxLeafCount )
{
pLeafList[nLeafCount] = -1 - iNode;
nLeafCount++;
}
else
{
DevMsg( 1, "CM_RayLeafnums_r: Max leaf count along ray exceeded!\n" );
}
return;
}
// Put the crosspoint DIST_EPSILON pixels on the near side.
if ( flDist1 < flDist2 )
{
flDist = 1.0 / ( flDist1 - flDist2 );
nSide = 1;
flFrac2 = ( flDist1 + flOffset + DIST_EPSILON ) * flDist;
flFrac1 = ( flDist1 - flOffset - DIST_EPSILON ) * flDist;
}
else if ( flDist1 > flDist2 )
{
flDist = 1.0 / ( flDist1-flDist2 );
nSide = 0;
flFrac2 = ( flDist1 - flOffset - DIST_EPSILON ) * flDist;
flFrac1 = ( flDist1 + flOffset + DIST_EPSILON ) * flDist;
}
else
{
nSide = 0;
flFrac1 = 1.0f;
flFrac2 = 0.0f;
}
// Move up to the node
flFrac1 = clamp( flFrac1, 0.0f, 1.0f );
flMid = p1f + ( p2f - p1f ) * flFrac1;
VectorLerp( vecPoint1, vecPoint2, flFrac1, vecMid );
CM_RayLeafnums_r( ray, pBSPData, pNode->children[nSide], p1f, flMid, vecPoint1, vecMid, pLeafList, nMaxLeafCount, nLeafCount );
// Go past the node
flFrac2 = clamp( flFrac2, 0.0f, 1.0f );
flMid = p1f + ( p2f - p1f ) * flFrac2;
VectorLerp( vecPoint1, vecPoint2, flFrac2, vecMid );
CM_RayLeafnums_r( ray, pBSPData, pNode->children[nSide^1], flMid, p2f, vecMid, vecPoint2, pLeafList, nMaxLeafCount, nLeafCount );
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CM_RayLeafnums( const Ray_t &ray, int *pLeafList, int nMaxLeafCount, int &nLeafCount )
{
CCollisionBSPData *pBSPData = GetCollisionBSPData();
if ( !pBSPData->numnodes )
return;
Vector vecEnd;
VectorAdd( ray.m_Start, ray.m_Delta, vecEnd );
CM_RayLeafnums_r( ray, pBSPData, 0/*headnode*/, 0.0f, 1.0f, ray.m_Start, vecEnd, pLeafList, nMaxLeafCount, nLeafCount );
}
/*
==================
CM_RecursiveHullCheck
==================
Attempt to do whatever is nessecary to get this function to unroll at least once
*/
template <bool IS_POINT>
static void FASTCALL CM_RecursiveHullCheckImpl( TraceInfo_t *pTraceInfo, int num, const float p1f, const float p2f, const Vector& p1, const Vector& p2)
{
if (pTraceInfo->m_trace.fraction <= p1f)
return; // already hit something nearer
cnode_t *node = NULL;
cplane_t *plane;
float t1 = 0, t2 = 0, offset = 0;
float frac, frac2;
float idist;
Vector mid;
int side;
float midf;
// find the point distances to the seperating plane
// and the offset for the size of the box
while( num >= 0 )
{
node = pTraceInfo->m_pBSPData->map_rootnode + num;
plane = node->plane;
byte type = plane->type;
float dist = plane->dist;
if (type < 3)
{
t1 = p1[type] - dist;
t2 = p2[type] - dist;
offset = pTraceInfo->m_extents[type];
}
else
{
t1 = DotProduct (plane->normal, p1) - dist;
t2 = DotProduct (plane->normal, p2) - dist;
if( IS_POINT )
{
offset = 0;
}
else
{
offset = fabsf(pTraceInfo->m_extents[0]*plane->normal[0]) +
fabsf(pTraceInfo->m_extents[1]*plane->normal[1]) +
fabsf(pTraceInfo->m_extents[2]*plane->normal[2]);
}
}
// see which sides we need to consider
if (t1 > offset && t2 > offset )
// if (t1 >= offset && t2 >= offset)
{
num = node->children[0];
continue;
}
if (t1 < -offset && t2 < -offset)
{
num = node->children[1];
continue;
}
break;
}
// if < 0, we are in a leaf node
if (num < 0)
{
CM_TraceToLeaf<IS_POINT>(pTraceInfo, -1-num, p1f, p2f);
return;
}
// put the crosspoint DIST_EPSILON pixels on the near side
if (t1 < t2)
{
idist = 1.0/(t1-t2);
side = 1;
frac2 = (t1 + offset + DIST_EPSILON)*idist;
frac = (t1 - offset - DIST_EPSILON)*idist;
}
else if (t1 > t2)
{
idist = 1.0/(t1-t2);
side = 0;
frac2 = (t1 - offset - DIST_EPSILON)*idist;
frac = (t1 + offset + DIST_EPSILON)*idist;
}
else
{
side = 0;
frac = 1;
frac2 = 0;
}
// move up to the node
frac = clamp( frac, 0.f, 1.f );
midf = p1f + (p2f - p1f)*frac;
VectorLerp( p1, p2, frac, mid );
CM_RecursiveHullCheckImpl<IS_POINT>(pTraceInfo, node->children[side], p1f, midf, p1, mid);
// go past the node
frac2 = clamp( frac2, 0.f, 1.f );
midf = p1f + (p2f - p1f)*frac2;
VectorLerp( p1, p2, frac2, mid );
CM_RecursiveHullCheckImpl<IS_POINT>(pTraceInfo, node->children[side^1], midf, p2f, mid, p2);
}
void FASTCALL CM_RecursiveHullCheck ( TraceInfo_t *pTraceInfo, int num, const float p1f, const float p2f )
{
const Vector& p1 = pTraceInfo->m_start;
const Vector& p2 = pTraceInfo->m_end;
if( pTraceInfo->m_ispoint )
{
CM_RecursiveHullCheckImpl<true>( pTraceInfo, num, p1f, p2f, p1, p2);
}
else
{
CM_RecursiveHullCheckImpl<false>( pTraceInfo, num, p1f, p2f, p1, p2);
}
}
void CM_ClearTrace( trace_t *trace )
{
memset( trace, 0, sizeof(*trace));
trace->fraction = 1.f;
trace->fractionleftsolid = 0;
trace->surface = CCollisionBSPData::nullsurface;
}
//-----------------------------------------------------------------------------
//
// The following versions use ray... gradually I'm gonna remove other versions
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Test an unswept box
//-----------------------------------------------------------------------------
static inline void CM_UnsweptBoxTrace( TraceInfo_t *pTraceInfo, const Ray_t& ray, int headnode, int brushmask )
{
int leafs[1024];
int i, numleafs;
leafnums_t context;
context.pLeafList = leafs;
context.leafTopNode = -1;
context.leafMaxCount = ARRAYSIZE(leafs);
context.pBSPData = pTraceInfo->m_pBSPData;
bool bFoundNonSolidLeaf = false;
numleafs = CM_BoxLeafnums ( context, ray.m_Start, ray.m_Extents+Vector(1,1,1), headnode);
for (i=0 ; i<numleafs ; i++)
{
if ((pTraceInfo->m_pBSPData->map_leafs[leafs[i]].contents & CONTENTS_SOLID) == 0)
{
bFoundNonSolidLeaf = true;
}
CM_TestInLeaf ( pTraceInfo, leafs[i] );
if (pTraceInfo->m_trace.allsolid)
break;
}
if (!bFoundNonSolidLeaf)
{
pTraceInfo->m_trace.allsolid = pTraceInfo->m_trace.startsolid = 1;
pTraceInfo->m_trace.fraction = 0.0f;
pTraceInfo->m_trace.fractionleftsolid = 1.0f;
}
}
//-----------------------------------------------------------------------------
// Purpose: Ray/Hull trace against the world without the RecursiveHullTrace
//-----------------------------------------------------------------------------
void CM_BoxTraceAgainstLeafList( const Ray_t &ray, int *pLeafList, int nLeafCount, int nBrushMask,
bool bComputeEndpoint, trace_t &trace )
{
// For multi-check avoidance.
TraceInfo_t *pTraceInfo = BeginTrace();
// Setup trace data.
CM_ClearTrace( &pTraceInfo->m_trace );
// Get the collision bsp tree.
pTraceInfo->m_pBSPData = GetCollisionBSPData();
// Check if the map is loaded.
if ( !pTraceInfo->m_pBSPData->numnodes )
{
trace = pTraceInfo->m_trace;
EndTrace( pTraceInfo );
return;
}
// Setup global trace data. (This is nasty! I hate this.)
pTraceInfo->m_bDispHit = false;
pTraceInfo->m_DispStabDir.Init();
pTraceInfo->m_contents = nBrushMask;
VectorCopy( ray.m_Start, pTraceInfo->m_start );
VectorAdd( ray.m_Start, ray.m_Delta, pTraceInfo->m_end );
VectorMultiply( ray.m_Extents, -1.0f, pTraceInfo->m_mins );
VectorCopy( ray.m_Extents, pTraceInfo->m_maxs );
VectorCopy( ray.m_Extents, pTraceInfo->m_extents );
pTraceInfo->m_delta = ray.m_Delta;
pTraceInfo->m_invDelta = ray.InvDelta();
pTraceInfo->m_ispoint = ray.m_IsRay;
pTraceInfo->m_isswept = ray.m_IsSwept;
if ( !ray.m_IsSwept )
{
Vector vecBoxMin( ( ray.m_Start.x - ray.m_Extents.x - 1 ), ( ray.m_Start.y - ray.m_Extents.y - 1 ), ( ray.m_Start.z - ray.m_Extents.z - 1 ) );
Vector vecBoxMax( ( ray.m_Start.x + ray.m_Extents.x + 1 ), ( ray.m_Start.y + ray.m_Extents.y + 1 ), ( ray.m_Start.z + ray.m_Extents.z + 1 ) );
bool bFoundNonSolidLeaf = false;
for ( int iLeaf = 0; iLeaf < nLeafCount; ++iLeaf )
{
if ( ( pTraceInfo->m_pBSPData->map_leafs[pLeafList[iLeaf]].contents & CONTENTS_SOLID ) == 0 )
{
bFoundNonSolidLeaf = true;
}
CM_TestInLeaf( pTraceInfo, pLeafList[iLeaf] );
if ( pTraceInfo->m_trace.allsolid )
break;
}
if ( !bFoundNonSolidLeaf )
{
pTraceInfo->m_trace.allsolid = pTraceInfo->m_trace.startsolid = 1;
pTraceInfo->m_trace.fraction = 0.0f;
pTraceInfo->m_trace.fractionleftsolid = 1.0f;
}
}
else
{
for ( int iLeaf = 0; iLeaf < nLeafCount; ++iLeaf )
{
// NOTE: startFrac and endFrac are not really used.
if ( pTraceInfo->m_ispoint )
CM_TraceToLeaf<true>( pTraceInfo, pLeafList[iLeaf], 1.0f, 1.0f );
else
CM_TraceToLeaf<false>( pTraceInfo, pLeafList[iLeaf], 1.0f, 1.0f );
}
}
// Compute the trace start and end points.
if ( bComputeEndpoint )
{
CM_ComputeTraceEndpoints( ray, pTraceInfo->m_trace );
}
// Copy off the results
trace = pTraceInfo->m_trace;
EndTrace( pTraceInfo );
Assert( !ray.m_IsRay || trace.allsolid || ( trace.fraction >= trace.fractionleftsolid ) );
}
void CM_BoxTrace( const Ray_t& ray, int headnode, int brushmask, bool computeEndpt, trace_t& tr )
{
VPROF("BoxTrace");
// for multi-check avoidance
TraceInfo_t *pTraceInfo = BeginTrace();
#ifdef COUNT_COLLISIONS
// for statistics, may be zeroed
g_CollisionCounts.m_Traces++;
#endif
// fill in a default trace
CM_ClearTrace( &pTraceInfo->m_trace );
pTraceInfo->m_pBSPData = GetCollisionBSPData();
// check if the map is not loaded
if (!pTraceInfo->m_pBSPData->numnodes)
{
tr = pTraceInfo->m_trace;
EndTrace( pTraceInfo );
return;
}
pTraceInfo->m_bDispHit = false;
pTraceInfo->m_DispStabDir.Init();
pTraceInfo->m_contents = brushmask;
VectorCopy (ray.m_Start, pTraceInfo->m_start);
VectorAdd (ray.m_Start, ray.m_Delta, pTraceInfo->m_end);
VectorMultiply (ray.m_Extents, -1.0f, pTraceInfo->m_mins);
VectorCopy (ray.m_Extents, pTraceInfo->m_maxs);
VectorCopy (ray.m_Extents, pTraceInfo->m_extents);
pTraceInfo->m_delta = ray.m_Delta;
pTraceInfo->m_invDelta = ray.InvDelta();
pTraceInfo->m_ispoint = ray.m_IsRay;
pTraceInfo->m_isswept = ray.m_IsSwept;
if (!ray.m_IsSwept)
{
// check for position test special case
CM_UnsweptBoxTrace( pTraceInfo, ray, headnode, brushmask );
}
else
{
// general sweeping through world
CM_RecursiveHullCheck( pTraceInfo, headnode, 0, 1 );
}
// Compute the trace start + end points
if (computeEndpt)
{
CM_ComputeTraceEndpoints( ray, pTraceInfo->m_trace );
}
// Copy off the results
tr = pTraceInfo->m_trace;
EndTrace( pTraceInfo );
Assert( !ray.m_IsRay || tr.allsolid || (tr.fraction >= tr.fractionleftsolid) );
}
void CM_TransformedBoxTrace( const Ray_t& ray, int headnode, int brushmask,
const Vector& origin, QAngle const& angles, trace_t& tr )
{
matrix3x4_t localToWorld;
Ray_t ray_l;
// subtract origin offset
VectorCopy( ray.m_StartOffset, ray_l.m_StartOffset );
VectorCopy( ray.m_Extents, ray_l.m_Extents );
// Are we rotated?
bool rotated = (angles[0] || angles[1] || angles[2]);
// rotate start and end into the models frame of reference
if (rotated)
{
// NOTE: In this case, the bbox is rotated into the space of the BSP as well
// to insure consistency at all orientations, we must rotate the origin of the ray
// and reapply the offset to the center of the box. That way all traces with the
// same box centering will have the same transformation into local space
Vector worldOrigin = ray.m_Start + ray.m_StartOffset;
AngleMatrix( angles, origin, localToWorld );
VectorIRotate( ray.m_Delta, localToWorld, ray_l.m_Delta );
VectorITransform( worldOrigin, localToWorld, ray_l.m_Start );
ray_l.m_Start -= ray.m_StartOffset;
}
else
{
VectorSubtract( ray.m_Start, origin, ray_l.m_Start );
VectorCopy( ray.m_Delta, ray_l.m_Delta );
}
ray_l.m_IsRay = ray.m_IsRay;
ray_l.m_IsSwept = ray.m_IsSwept;
// sweep the box through the model, don't compute endpoints
CM_BoxTrace( ray_l, headnode, brushmask, false, tr );
// If we hit, gotta fix up the normal...
if (( tr.fraction != 1 ) && rotated )
{
// transform the normal from the local space of this entity to world space
Vector temp;
VectorCopy (tr.plane.normal, temp);
VectorRotate( temp, localToWorld, tr.plane.normal );
}
CM_ComputeTraceEndpoints( ray, tr );
}
/*
===============================================================================
PVS / PAS
===============================================================================
*/
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pBSPData -
// *out -
//-----------------------------------------------------------------------------
void CM_NullVis( CCollisionBSPData *pBSPData, byte *out )
{
int numClusterBytes = (pBSPData->numclusters+7)>>3;
byte *out_p = out;
while (numClusterBytes)
{
*out_p++ = 0xff;
numClusterBytes--;
}
}
/*
===================
CM_DecompressVis
===================
*/
void CM_DecompressVis( CCollisionBSPData *pBSPData, int cluster, int visType, byte *out )
{
int c;
byte *out_p;
int numClusterBytes;
if ( !pBSPData )
{
Assert( false ); // Shouldn't ever happen.
}
if ( cluster > pBSPData->numclusters || cluster < 0 )
{
// This can happen if this is called while the level is loading. See Map_VisCurrentCluster.
CM_NullVis( pBSPData, out );
return;
}
// no vis info, so make all visible
if ( !pBSPData->numvisibility || !pBSPData->map_vis )
{
CM_NullVis( pBSPData, out );
return;
}
byte *in = ((byte *)pBSPData->map_vis) + pBSPData->map_vis->bitofs[cluster][visType];
numClusterBytes = (pBSPData->numclusters+7)>>3;
out_p = out;
// no vis info, so make all visible
if ( !in )
{
CM_NullVis( pBSPData, out );
return;
}
do
{
if (*in)
{
*out_p++ = *in++;
continue;
}
c = in[1];
in += 2;
if ((out_p - out) + c > numClusterBytes)
{
c = numClusterBytes - (out_p - out);
ConMsg( "warning: Vis decompression overrun\n" );
}
while (c)
{
*out_p++ = 0;
c--;
}
} while (out_p - out < numClusterBytes);
}
//-----------------------------------------------------------------------------
// Purpose: Decompress the RLE bitstring for PVS or PAS of one cluster
// Input : *dest - buffer to store the decompressed data
// cluster - index of cluster of interest
// visType - DVIS_PAS or DVIS_PAS
// Output : byte * - pointer to the filled buffer
//-----------------------------------------------------------------------------
const byte *CM_Vis( byte *dest, int destlen, int cluster, int visType )
{
// get the current collision bsp -- there is only one!
CCollisionBSPData *pBSPData = GetCollisionBSPData();
if ( !dest || visType > 2 || visType < 0 )
{
Sys_Error( "CM_Vis: error");
return NULL;
}
if ( cluster == -1 )
{
int len = (pBSPData->numclusters+7)>>3;
if ( len > destlen )
{
Sys_Error( "CM_Vis: buffer not big enough (%i but need %i)\n",
destlen, len );
}
memset( dest, 0, (pBSPData->numclusters+7)>>3 );
}
else
{
CM_DecompressVis( pBSPData, cluster, visType, dest );
}
return dest;
}
static byte pvsrow[MAX_MAP_LEAFS/8];
int CM_ClusterPVSSize()
{
return sizeof( pvsrow );
}
const byte *CM_ClusterPVS (int cluster)
{
return CM_Vis( pvsrow, CM_ClusterPVSSize(), cluster, DVIS_PVS );
}
/*
===============================================================================
AREAPORTALS
===============================================================================
*/
void FloodArea_r (CCollisionBSPData *pBSPData, carea_t *area, int floodnum)
{
int i;
dareaportal_t *p;
if (area->floodvalid == pBSPData->floodvalid)
{
if (area->floodnum == floodnum)
return;
Sys_Error( "FloodArea_r: reflooded");
}
area->floodnum = floodnum;
area->floodvalid = pBSPData->floodvalid;
p = &pBSPData->map_areaportals[area->firstareaportal];
for (i=0 ; i<area->numareaportals ; i++, p++)
{
if (pBSPData->portalopen[p->m_PortalKey])
{
FloodArea_r (pBSPData, &pBSPData->map_areas[p->otherarea], floodnum);
}
}
}
/*
====================
FloodAreaConnections
====================
*/
void FloodAreaConnections ( CCollisionBSPData *pBSPData )
{
int i;
carea_t *area;
int floodnum;
// all current floods are now invalid
pBSPData->floodvalid++;
floodnum = 0;
// area 0 is not used
for (i=1 ; i<pBSPData->numareas ; i++)
{
area = &pBSPData->map_areas[i];
if (area->floodvalid == pBSPData->floodvalid)
continue; // already flooded into
floodnum++;
FloodArea_r (pBSPData, area, floodnum);
}
}
void CM_SetAreaPortalState( int portalnum, int isOpen )
{
// get the current collision bsp -- there is only one!
CCollisionBSPData *pBSPData = GetCollisionBSPData();
// Portalnums in the BSP file are 1-based instead of 0-based
if (portalnum > pBSPData->numareaportals)
{
Sys_Error( "portalnum > numareaportals");
}
pBSPData->portalopen[portalnum] = (isOpen != 0);
FloodAreaConnections (pBSPData);
}
void CM_SetAreaPortalStates( const int *portalnums, const int *isOpen, int nPortals )
{
if ( nPortals == 0 )
return;
CCollisionBSPData *pBSPData = GetCollisionBSPData();
// get the current collision bsp -- there is only one!
for ( int i=0; i < nPortals; i++ )
{
// Portalnums in the BSP file are 1-based instead of 0-based
if (portalnums[i] > pBSPData->numareaportals)
Sys_Error( "portalnum > numareaportals");
pBSPData->portalopen[portalnums[i]] = (isOpen[i] != 0);
}
FloodAreaConnections( pBSPData );
}
bool CM_AreasConnected (int area1, int area2)
{
// get the current collision bsp -- there is only one!
CCollisionBSPData *pBSPData = GetCollisionBSPData();
if (map_noareas.GetInt())
return true;
if (area1 >= pBSPData->numareas || area2 >= pBSPData->numareas)
{
Sys_Error( "area(1==%i, 2==%i) >= numareas (%i): Check if engine->ResetPVS() was called from ClientSetupVisibility", area1, area2, pBSPData->numareas );
}
return (pBSPData->map_areas[area1].floodnum == pBSPData->map_areas[area2].floodnum);
}
/*
=================
CM_WriteAreaBits
Writes a length byte followed by a bit vector of all the areas
that area in the same flood as the area parameter
This is used by the client refreshes to cull visibility
=================
*/
int CM_WriteAreaBits ( byte *buffer, int buflen, int area )
{
int i;
int floodnum;
int bytes;
// get the current collision bsp -- there is only one!
CCollisionBSPData *pBSPData = GetCollisionBSPData();
bytes = (pBSPData->numareas+7)>>3;
if ( map_noareas.GetInt() )
{
// for debugging, send everything
Q_memset( buffer, 255, 3 );
}
else
{
if ( buflen < 32 )
{
Sys_Error( "CM_WriteAreaBits with buffer size < 32\n" );
}
Q_memset( buffer, 0, 32 );
floodnum = pBSPData->map_areas[area].floodnum;
for (i=0 ; i<pBSPData->numareas ; i++)
{
if (pBSPData->map_areas[i].floodnum == floodnum || !area)
buffer[i>>3] |= 1<<(i&7);
}
}
return bytes;
}
bool CM_GetAreaPortalPlane( const Vector &vViewOrigin, int portalKey, VPlane *pPlane )
{
CCollisionBSPData *pBSPData = GetCollisionBSPData();
// First, find the leaf and area the viewer is in.
int iLeaf = CM_PointLeafnum( vViewOrigin );
if( iLeaf < 0 || iLeaf >= pBSPData->numleafs )
return false;
int iArea = pBSPData->map_leafs[iLeaf].area;
if( iArea < 0 || iArea >= pBSPData->numareas )
return false;
carea_t *pArea = &pBSPData->map_areas[iArea];
for( int i=0; i < pArea->numareaportals; i++ )
{
dareaportal_t *pPortal = &pBSPData->map_areaportals[pArea->firstareaportal + i];
if( pPortal->m_PortalKey == portalKey )
{
cplane_t *pMapPlane = &pBSPData->map_planes[pPortal->planenum];
pPlane->m_Normal = pMapPlane->normal;
pPlane->m_Dist = pMapPlane->dist;
return true;
}
}
return false;
}
/*
=============
CM_HeadnodeVisible
Returns true if any leaf under headnode has a cluster that
is potentially visible
=============
*/
bool CM_HeadnodeVisible (int nodenum, const byte *visbits, int vissize )
{
int leafnum;
int cluster;
cnode_t *node;
// get the current collision bsp -- there is only one!
CCollisionBSPData *pBSPData = GetCollisionBSPData();
if (nodenum < 0)
{
leafnum = -1-nodenum;
cluster = pBSPData->map_leafs[leafnum].cluster;
if (cluster == -1)
return false;
if (visbits[cluster>>3] & (1<<(cluster&7)))
return true;
return false;
}
node = &pBSPData->map_rootnode[nodenum];
if (CM_HeadnodeVisible(node->children[0], visbits, vissize ))
return true;
return CM_HeadnodeVisible(node->children[1], visbits, vissize );
}
//-----------------------------------------------------------------------------
// Purpose: returns true if the box is in a cluster that is visible in the visbits
// Input : mins - box extents
// maxs -
// *visbits - pvs or pas of some cluster
// Output : true if visible, false if not
//-----------------------------------------------------------------------------
2021-11-13 21:07:58 +00:00
#define MAX_BOX_LEAVES 256
int CM_BoxVisible( const Vector& mins, const Vector& maxs, const byte *visbits, int vissize )
{
int leafList[MAX_BOX_LEAVES];
int topnode;
// FIXME: Could save a loop here by traversing the tree in this routine like the code above
int count = CM_BoxLeafnums( mins, maxs, leafList, MAX_BOX_LEAVES, &topnode );
for ( int i = 0; i < count; i++ )
{
int cluster = CM_LeafCluster( leafList[i] );
int offset = cluster>>3;
2022-04-25 14:21:00 +00:00
if( offset == -1 )
return true;
2021-11-13 21:07:58 +00:00
if ( offset > vissize )
{
Sys_Error( "CM_BoxVisible: cluster %i, offset %i out of bounds %i\n", cluster, offset, vissize );
}
if (visbits[cluster>>3] & (1<<(cluster&7)))
{
return true;
}
}
return false;
2020-04-22 16:56:21 +00:00
}
//-----------------------------------------------------------------------------
// Returns the world-space center of an entity
//-----------------------------------------------------------------------------
void CM_WorldSpaceCenter( ICollideable *pCollideable, Vector *pCenter )
{
Vector vecLocalCenter;
VectorAdd( pCollideable->OBBMins(), pCollideable->OBBMaxs(), vecLocalCenter );
vecLocalCenter *= 0.5f;
if ( ( pCollideable->GetCollisionAngles() == vec3_angle ) || ( vecLocalCenter == vec3_origin ) )
{
VectorAdd( vecLocalCenter, pCollideable->GetCollisionOrigin(), *pCenter );
}
else
{
VectorTransform( vecLocalCenter, pCollideable->CollisionToWorldTransform(), *pCenter );
}
}
//-----------------------------------------------------------------------------
// Returns the world-align bounds of an entity
//-----------------------------------------------------------------------------
void CM_WorldAlignBounds( ICollideable *pCollideable, Vector *pMins, Vector *pMaxs )
{
if ( pCollideable->GetCollisionAngles() == vec3_angle )
{
*pMins = pCollideable->OBBMins();
*pMaxs = pCollideable->OBBMaxs();
}
else
{
ITransformAABB( pCollideable->CollisionToWorldTransform(), pCollideable->OBBMins(), pCollideable->OBBMaxs(), *pMins, *pMaxs );
*pMins -= pCollideable->GetCollisionOrigin();
*pMaxs -= pCollideable->GetCollisionOrigin();
}
}
//-----------------------------------------------------------------------------
// Returns the world-space bounds of an entity
//-----------------------------------------------------------------------------
void CM_WorldSpaceBounds( ICollideable *pCollideable, Vector *pMins, Vector *pMaxs )
{
if ( pCollideable->GetCollisionAngles() == vec3_angle )
{
VectorAdd( pCollideable->GetCollisionOrigin(), pCollideable->OBBMins(), *pMins );
VectorAdd( pCollideable->GetCollisionOrigin(), pCollideable->OBBMaxs(), *pMaxs );
}
else
{
TransformAABB( pCollideable->CollisionToWorldTransform(), pCollideable->OBBMins(), pCollideable->OBBMaxs(), *pMins, *pMaxs );
}
}
void CM_SetupAreaFloodNums( byte areaFloodNums[MAX_MAP_AREAS], int *pNumAreas )
{
CCollisionBSPData *pBSPData = GetCollisionBSPData();
*pNumAreas = pBSPData->numareas;
if ( pBSPData->numareas > MAX_MAP_AREAS )
Error( "pBSPData->numareas > MAX_MAP_AREAS" );
for ( int i=0; i < pBSPData->numareas; i++ )
{
Assert( pBSPData->map_areas[i].floodnum < MAX_MAP_AREAS );
areaFloodNums[i] = (byte)pBSPData->map_areas[i].floodnum;
}
}
// -----------------------------------------------------------------------------
// CFastLeafAccessor implementation.
// -----------------------------------------------------------------------------
CFastPointLeafNum::CFastPointLeafNum()
{
m_flDistToExitLeafSqr = -1;
m_vCachedPos.Init();
}
int CFastPointLeafNum::GetLeaf( const Vector &vPos )
{
if ( vPos.DistToSqr( m_vCachedPos ) > m_flDistToExitLeafSqr )
{
m_vCachedPos = vPos;
CCollisionBSPData *pBSPData = GetCollisionBSPData();
2021-10-23 11:41:59 +00:00
m_flDistToExitLeafSqr = 1e24;
2020-04-22 16:56:21 +00:00
m_iCachedLeaf = CM_PointLeafnumMinDistSqr_r( pBSPData, vPos, 0, m_flDistToExitLeafSqr );
}
return m_iCachedLeaf;
}
bool FASTCALL IsBoxIntersectingRayNoLowest( fltx4 boxMin, fltx4 boxMax,
const fltx4 & origin, const fltx4 & delta, const fltx4 & invDelta, // ray parameters
const fltx4 & vTolerance ///< eg from ReplicateX4(flTolerance)
)
{
/*
Assert( boxMin[0] <= boxMax[0] );
Assert( boxMin[1] <= boxMax[1] );
Assert( boxMin[2] <= boxMax[2] );
*/
#if defined(_X360) && defined(DBGFLAG_ASSERT)
unsigned int r;
AssertMsg( (XMVectorGreaterOrEqualR(&r, SetWToZeroSIMD(boxMax),SetWToZeroSIMD(boxMin)), XMComparisonAllTrue(r)), "IsBoxIntersectingRay : boxmax < boxmin" );
#endif
// test if delta is tiny along any dimension
fltx4 bvDeltaTinyComponents = CmpInBoundsSIMD( delta, Four_Epsilons );
// push box extents out by tolerance (safe to do because pass by copy, not ref)
boxMin = SubSIMD(boxMin, vTolerance);
boxMax = AddSIMD(boxMax, vTolerance);
// for the very short components of the ray, check if the origin is inside the box;
// if not, then it doesn't intersect.
fltx4 bvOriginOutsideBox = OrSIMD( CmpLtSIMD(origin,boxMin), CmpGtSIMD(origin,boxMax) );
bvDeltaTinyComponents = SetWToZeroSIMD(bvDeltaTinyComponents);
// work out entry and exit points for the ray. This may produce strange results for
// very short delta components, but those will be masked out by bvDeltaTinyComponents
// anyway. We could early-out on bvOriginOutsideBox, but it won't be ready to branch
// on for fourteen cycles.
fltx4 vt1 = SubSIMD( boxMin, origin );
fltx4 vt2 = SubSIMD( boxMax, origin );
vt1 = MulSIMD( vt1, invDelta );
vt2 = MulSIMD( vt2, invDelta );
// ensure that vt1<vt2
{
fltx4 temp = MaxSIMD( vt1, vt2 );
vt1 = MinSIMD( vt1, vt2 );
vt2 = temp;
}
// Non-parallel case
// Find the t's corresponding to the entry and exit of
// the ray along x, y, and z. The find the furthest entry
// point, and the closest exit point. Once that is done,
// we know we don't collide if the closest exit point
// is behind the starting location. We also don't collide if
// the closest exit point is in front of the furthest entry point
fltx4 closestExit,furthestEntry;
{
VectorAligned temp;
StoreAlignedSIMD(temp.Base(),vt2);
closestExit = ReplicateX4( min( min(temp.x,temp.y), temp.z) );
StoreAlignedSIMD(temp.Base(),vt1);
furthestEntry = ReplicateX4( max( max(temp.x,temp.y), temp.z) );
}
// now start testing. We bail out if:
// any component with tiny delta has origin outside the box
if (!IsAllZeros(AndSIMD(bvOriginOutsideBox, bvDeltaTinyComponents)))
return false;
else
{
// however if there are tiny components inside the box, we
// know that they are good. (we didn't really need to run
// the other computations on them, but it was faster to do
// so than branching around them).
// now it's the origin INSIDE box (eg, tiny components & ~outside box)
bvOriginOutsideBox = AndNotSIMD(bvOriginOutsideBox,bvDeltaTinyComponents);
}
// closest exit is in front of furthest entry
fltx4 tminOverTmax = CmpGtSIMD( furthestEntry, closestExit );
// closest exit is behind start, or furthest entry after end
fltx4 outOfBounds = OrSIMD( CmpGtSIMD(furthestEntry, LoadOneSIMD()), CmpGtSIMD( LoadZeroSIMD(), closestExit ) );
fltx4 failedComponents = OrSIMD(tminOverTmax, outOfBounds); // any 1's here mean return false
// but, if a component is tiny and has its origin inside the box, ignore the computation against bogus invDelta.
failedComponents = AndNotSIMD(bvOriginOutsideBox,failedComponents);
return ( IsAllZeros( SetWToZeroSIMD( failedComponents ) ) );
}
// function to time IsBoxIntersectingRay
#if 0
/*
//-----------------------------------------------------------------------------
bool FASTCALL IsBoxIntersectingRay( fltx4 boxMin, fltx4 boxMax,
fltx4 origin, fltx4 delta, fltx4 invDelta, // ray parameters
fltx4 vTolerance ///< eg from ReplicateX4(flTolerance)
)
{
*/
CON_COMMAND( opt_test_collision, "Quick timing test in IsBoxIntersectingRay" )
{
int numIters = 100000;
if (args.ArgC() >= 1)
{
numIters = Q_atoi(args.Arg(1));
}
{
fltx4 boxMin = {1,1,1,0};
fltx4 boxMax = {2,2,2,0};
fltx4 origin = {0,0,0,0};
fltx4 delta = {3,4,3,0};
fltx4 invdelta = {1.0f/3.0f, 1.0f/4.0f, 1.0f/3.0f,0};
fltx4 flTolerance = ReplicateX4(.0001f);
double startTime = Plat_FloatTime();
for (int i = numIters ; i > 0 ; --i)
IsBoxIntersectingRayNoLowest(boxMin,boxMax,origin,delta,invdelta,flTolerance);
double endTime = Plat_FloatTime();
Msg("without FindLowest algorithm: %.4f secs for %d runs\n",endTime - startTime,numIters);
}
{
fltx4 boxMin = {1,1,1,0};
fltx4 boxMax = {2,2,2,0};
fltx4 origin = {0,0,0,0};
fltx4 delta = {3,4,3,0};
fltx4 invdelta = {1.0f/3.0f, 1.0f/4.0f, 1.0f/3.0f,0};
fltx4 flTolerance = ReplicateX4(.0001f);
double startTime = Plat_FloatTime();
for (int i = numIters ; i > 0 ; --i)
IsBoxIntersectingRay(boxMin,boxMax,origin,delta,invdelta,flTolerance);
double endTime = Plat_FloatTime();
Msg("using FindLowest algorithm: %.4f secs for %d runs\n",endTime - startTime,numIters);
}
}
CON_COMMAND( opt_test_rotation, "Quick timing test of vector rotation my m3x4" )
{
int numIters = 100000;
if (args.ArgC() >= 1)
{
numIters = Q_atoi(args.Arg(1));
}
// construct an array of 1024 random vectors
FourVectors testData[1024];
SeedRandSIMD(Plat_MSTime());
for (int i = 0 ; i < 1024 ; ++i)
{
testData[i].x = RandSIMD();
testData[i].y = RandSIMD();
testData[i].z = RandSIMD();
}
// for also testing store latency
FourVectors outScratch[16];
matrix3x4_t rota;
AngleIMatrix(QAngle(30,60,90), rota);
// THREE DOT PRODUCTS
{
double startTime = Plat_FloatTime();
for (int i = numIters ; i > 0 ; --i)
{
int in = i & 1023;
int out = i & 15;
outScratch[out].x = testData[in] * *reinterpret_cast<Vector *>(rota[0]);
outScratch[out].y = testData[in] * *reinterpret_cast<Vector *>(rota[1]);
outScratch[out].z = testData[in] * *reinterpret_cast<Vector *>(rota[2]);
}
double endTime = Plat_FloatTime();
Msg("THREE DOT PRODUCTS: %.4f secs for %d runs\n",endTime - startTime,numIters);
}
// REPEATED CALLS TO ROTATEBY
{
double startTime = Plat_FloatTime();
for (int i = numIters ; i > 0 ; --i)
{
int in = i & 1023;
int out = i & 15;
outScratch[out] = testData[in];
outScratch[out].RotateBy(rota);
}
double endTime = Plat_FloatTime();
Msg("REPEATED CALLS TO ROTATEBY: %.4f secs for %d runs\n",endTime - startTime,numIters);
}
// ROTATEBYMANY
{
double startTime = Plat_FloatTime();
int lastBatch = numIters - 1023;
int i;
for (i = 0 ; i < lastBatch ; i+=1024 )
{
FourVectors::RotateManyBy(testData, 1024, rota);
}
if (i < numIters)
{
FourVectors::RotateManyBy(testData, numIters-i, rota);
}
double endTime = Plat_FloatTime();
Msg("ROTATEBYMANY: %.4f secs for %d runs\n",endTime - startTime,numIters);
}
// test
FourVectors res1, res2;
res2 = testData[0];
res1.x = testData[0] * *reinterpret_cast<Vector *>(rota[0]);
res1.y = testData[0] * *reinterpret_cast<Vector *>(rota[1]);
res1.z = testData[0] * *reinterpret_cast<Vector *>(rota[2]);
res2.RotateBy(rota);
Msg("%.3f %.3f %.3f %.3f \t%.3f %.3f %.3f %.3f\n", SubFloat(res1.x, 0), SubFloat(res1.x, 1), SubFloat(res1.x, 2), SubFloat(res1.x, 3),
SubFloat(res2.x, 0), SubFloat(res2.x, 1), SubFloat(res2.x, 2), SubFloat(res2.x, 3));
Msg("%.3f %.3f %.3f %.3f \t%.3f %.3f %.3f %.3f\n", SubFloat(res1.y, 0), SubFloat(res1.y, 1), SubFloat(res1.y, 2), SubFloat(res1.y, 3),
SubFloat(res2.y, 0), SubFloat(res2.y, 1), SubFloat(res2.y, 2), SubFloat(res2.y, 3));
Msg("%.3f %.3f %.3f %.3f \t%.3f %.3f %.3f %.3f\n", SubFloat(res1.z, 0), SubFloat(res1.z, 1), SubFloat(res1.z, 2), SubFloat(res1.z, 3),
SubFloat(res2.z, 0), SubFloat(res2.z, 1), SubFloat(res2.z, 2), SubFloat(res2.z, 3));
}
#endif