mirror of
https://github.com/nillerusr/source-engine.git
synced 2025-01-10 01:16:47 +00:00
952 lines
29 KiB
C
952 lines
29 KiB
C
// This file renders vertex buffers, converts raw meshes
|
|
// to GL meshes, and manages threads that do the raw-mesh
|
|
// building (found in cave_mesher.c)
|
|
|
|
|
|
#include "stb_voxel_render.h"
|
|
|
|
#define STB_GLEXT_DECLARE "glext_list.h"
|
|
#include "stb_gl.h"
|
|
#include "stb_image.h"
|
|
#include "stb_glprog.h"
|
|
|
|
#include "caveview.h"
|
|
#include "cave_parse.h"
|
|
#include "stb.h"
|
|
#include "sdl.h"
|
|
#include "sdl_thread.h"
|
|
#include <math.h>
|
|
#include <assert.h>
|
|
|
|
//#define STBVOX_CONFIG_TEX1_EDGE_CLAMP
|
|
|
|
|
|
// currently no dynamic way to set mesh cache size or view distance
|
|
//#define SHORTVIEW
|
|
|
|
|
|
stbvox_mesh_maker g_mesh_maker;
|
|
|
|
GLuint main_prog;
|
|
GLint uniform_locations[64];
|
|
|
|
//#define MAX_QUADS_PER_DRAW (65536 / 4) // assuming 16-bit indices, 4 verts per quad
|
|
//#define FIXED_INDEX_BUFFER_SIZE (MAX_QUADS_PER_DRAW * 6 * 2) // 16*1024 * 12 == ~192KB
|
|
|
|
// while uploading texture data, this holds our each texture
|
|
#define TEX_SIZE 64
|
|
uint32 texture[TEX_SIZE][TEX_SIZE];
|
|
|
|
GLuint voxel_tex[2];
|
|
|
|
// chunk state
|
|
enum
|
|
{
|
|
STATE_invalid,
|
|
STATE_needed,
|
|
STATE_requested,
|
|
STATE_abandoned,
|
|
STATE_valid,
|
|
};
|
|
|
|
// mesh is 32x32x255 ... this is hardcoded in that
|
|
// a mesh covers 2x2 minecraft chunks, no #defines for it
|
|
typedef struct
|
|
{
|
|
int state;
|
|
int chunk_x, chunk_y;
|
|
int num_quads;
|
|
float priority;
|
|
int vbuf_size, fbuf_size;
|
|
|
|
float transform[3][3];
|
|
float bounds[2][3];
|
|
|
|
GLuint vbuf;// vbuf_tex;
|
|
GLuint fbuf, fbuf_tex;
|
|
|
|
} chunk_mesh;
|
|
|
|
void scale_texture(unsigned char *src, int x, int y, int w, int h)
|
|
{
|
|
int i,j,k;
|
|
assert(w == 256 && h == 256);
|
|
for (j=0; j < TEX_SIZE; ++j) {
|
|
for (i=0; i < TEX_SIZE; ++i) {
|
|
uint32 val=0;
|
|
for (k=0; k < 4; ++k) {
|
|
val >>= 8;
|
|
val += src[ 4*(x+(i>>2)) + 4*w*(y+(j>>2)) + k]<<24;
|
|
}
|
|
texture[j][i] = val;
|
|
}
|
|
}
|
|
}
|
|
|
|
void build_base_texture(int n)
|
|
{
|
|
int x,y;
|
|
uint32 color = stb_rand() | 0x808080;
|
|
for (y=0; y<TEX_SIZE; ++y)
|
|
for (x=0; x<TEX_SIZE; ++x) {
|
|
texture[y][x] = (color + (stb_rand()&0x1f1f1f))|0xff000000;
|
|
}
|
|
}
|
|
|
|
void build_overlay_texture(int n)
|
|
{
|
|
int x,y;
|
|
uint32 color = stb_rand();
|
|
if (color & 16)
|
|
color = 0xff000000;
|
|
else
|
|
color = 0xffffffff;
|
|
for (y=0; y<TEX_SIZE; ++y)
|
|
for (x=0; x<TEX_SIZE; ++x) {
|
|
texture[y][x] = 0;
|
|
}
|
|
|
|
for (y=0; y < TEX_SIZE/8; ++y) {
|
|
for (x=0; x < TEX_SIZE; ++x) {
|
|
texture[y][x] = color;
|
|
texture[TEX_SIZE-1-y][x] = color;
|
|
texture[x][y] = color;
|
|
texture[x][TEX_SIZE-1-y] = color;
|
|
}
|
|
}
|
|
}
|
|
|
|
// view radius of about 1024 = 2048 columns / 32 columns-per-mesh = 2^11 / 2^5 = 64x64
|
|
// so we need bigger than 64x64 so we can precache, which means we have to be
|
|
// non-power-of-two, or we have to be pretty huge
|
|
#define CACHED_MESH_NUM_X 128
|
|
#define CACHED_MESH_NUM_Y 128
|
|
|
|
|
|
chunk_mesh cached_chunk_mesh[CACHED_MESH_NUM_Y][CACHED_MESH_NUM_X];
|
|
|
|
void free_chunk(int slot_x, int slot_y)
|
|
{
|
|
chunk_mesh *cm = &cached_chunk_mesh[slot_y][slot_x];
|
|
if (cm->state == STATE_valid) {
|
|
glDeleteTextures(1, &cm->fbuf_tex);
|
|
glDeleteBuffersARB(1, &cm->vbuf);
|
|
glDeleteBuffersARB(1, &cm->fbuf);
|
|
cached_chunk_mesh[slot_y][slot_x].state = STATE_invalid;
|
|
}
|
|
}
|
|
|
|
void upload_mesh(chunk_mesh *cm, uint8 *build_buffer, uint8 *face_buffer)
|
|
{
|
|
glGenBuffersARB(1, &cm->vbuf);
|
|
glBindBufferARB(GL_ARRAY_BUFFER_ARB, cm->vbuf);
|
|
glBufferDataARB(GL_ARRAY_BUFFER_ARB, cm->num_quads*4*sizeof(uint32), build_buffer, GL_STATIC_DRAW_ARB);
|
|
glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
|
|
|
|
glGenBuffersARB(1, &cm->fbuf);
|
|
glBindBufferARB(GL_TEXTURE_BUFFER_ARB, cm->fbuf);
|
|
glBufferDataARB(GL_TEXTURE_BUFFER_ARB, cm->num_quads*sizeof(uint32), face_buffer , GL_STATIC_DRAW_ARB);
|
|
glBindBufferARB(GL_TEXTURE_BUFFER_ARB, 0);
|
|
|
|
glGenTextures(1, &cm->fbuf_tex);
|
|
glBindTexture(GL_TEXTURE_BUFFER_ARB, cm->fbuf_tex);
|
|
glTexBufferARB(GL_TEXTURE_BUFFER_ARB, GL_RGBA8UI, cm->fbuf);
|
|
glBindTexture(GL_TEXTURE_BUFFER_ARB, 0);
|
|
}
|
|
|
|
static void upload_mesh_data(raw_mesh *rm)
|
|
{
|
|
int cx = rm->cx;
|
|
int cy = rm->cy;
|
|
int slot_x = (cx >> 1) & (CACHED_MESH_NUM_X-1);
|
|
int slot_y = (cy >> 1) & (CACHED_MESH_NUM_Y-1);
|
|
chunk_mesh *cm;
|
|
|
|
free_chunk(slot_x, slot_y);
|
|
|
|
cm = &cached_chunk_mesh[slot_y][slot_x];
|
|
cm->num_quads = rm->num_quads;
|
|
|
|
upload_mesh(cm, rm->build_buffer, rm->face_buffer);
|
|
cm->vbuf_size = rm->num_quads*4*sizeof(uint32);
|
|
cm->fbuf_size = rm->num_quads*sizeof(uint32);
|
|
cm->priority = 100000;
|
|
cm->chunk_x = cx;
|
|
cm->chunk_y = cy;
|
|
|
|
memcpy(cm->bounds, rm->bounds, sizeof(cm->bounds));
|
|
memcpy(cm->transform, rm->transform, sizeof(cm->transform));
|
|
|
|
// write barrier here
|
|
cm->state = STATE_valid;
|
|
}
|
|
|
|
GLint uniform_loc[16];
|
|
float table3[128][3];
|
|
float table4[64][4];
|
|
GLint tablei[2];
|
|
|
|
float step=0;
|
|
|
|
#ifdef SHORTVIEW
|
|
int view_dist_in_chunks = 50;
|
|
#else
|
|
int view_dist_in_chunks = 80;
|
|
#endif
|
|
|
|
void setup_uniforms(float pos[3])
|
|
{
|
|
int i,j;
|
|
step += 1.0f/60.0f;
|
|
for (i=0; i < STBVOX_UNIFORM_count; ++i) {
|
|
stbvox_uniform_info raw, *ui=&raw;
|
|
stbvox_get_uniform_info(&raw, i);
|
|
uniform_loc[i] = -1;
|
|
|
|
if (i == STBVOX_UNIFORM_texscale || i == STBVOX_UNIFORM_texgen || i == STBVOX_UNIFORM_color_table)
|
|
continue;
|
|
|
|
if (ui) {
|
|
void *data = ui->default_value;
|
|
uniform_loc[i] = stbgl_find_uniform(main_prog, ui->name);
|
|
switch (i) {
|
|
case STBVOX_UNIFORM_face_data:
|
|
tablei[0] = 2;
|
|
data = tablei;
|
|
break;
|
|
|
|
case STBVOX_UNIFORM_tex_array:
|
|
glActiveTextureARB(GL_TEXTURE0_ARB);
|
|
glBindTexture(GL_TEXTURE_2D_ARRAY_EXT, voxel_tex[0]);
|
|
glActiveTextureARB(GL_TEXTURE1_ARB);
|
|
glBindTexture(GL_TEXTURE_2D_ARRAY_EXT, voxel_tex[1]);
|
|
glActiveTextureARB(GL_TEXTURE0_ARB);
|
|
tablei[0] = 0;
|
|
tablei[1] = 1;
|
|
data = tablei;
|
|
break;
|
|
|
|
case STBVOX_UNIFORM_color_table:
|
|
data = ui->default_value;
|
|
((float *)data)[63*4+3] = 2.0f; // emissive
|
|
break;
|
|
|
|
case STBVOX_UNIFORM_camera_pos:
|
|
data = table3[0];
|
|
table3[0][0] = pos[0];
|
|
table3[0][1] = pos[1];
|
|
table3[0][2] = pos[2];
|
|
table3[0][3] = stb_max(0,(float)sin(step*2)*0.125f);
|
|
break;
|
|
|
|
case STBVOX_UNIFORM_ambient: {
|
|
float bright = 1.0;
|
|
//float bright = 0.75;
|
|
float amb[3][3];
|
|
|
|
// ambient direction is sky-colored upwards
|
|
// "ambient" lighting is from above
|
|
table4[0][0] = 0.3f;
|
|
table4[0][1] = -0.5f;
|
|
table4[0][2] = 0.9f;
|
|
|
|
amb[1][0] = 0.3f; amb[1][1] = 0.3f; amb[1][2] = 0.3f; // dark-grey
|
|
amb[2][0] = 1.0; amb[2][1] = 1.0; amb[2][2] = 1.0; // white
|
|
|
|
// convert so (table[1]*dot+table[2]) gives
|
|
// above interpolation
|
|
// lerp((dot+1)/2, amb[1], amb[2])
|
|
// amb[1] + (amb[2] - amb[1]) * (dot+1)/2
|
|
// amb[1] + (amb[2] - amb[1]) * dot/2 + (amb[2]-amb[1])/2
|
|
|
|
for (j=0; j < 3; ++j) {
|
|
table4[1][j] = (amb[2][j] - amb[1][j])/2 * bright;
|
|
table4[2][j] = (amb[1][j] + amb[2][j])/2 * bright;
|
|
}
|
|
|
|
// fog color
|
|
table4[3][0] = 0.6f, table4[3][1] = 0.7f, table4[3][2] = 0.9f;
|
|
table4[3][3] = 1.0f / (view_dist_in_chunks * 16);
|
|
table4[3][3] *= table4[3][3];
|
|
|
|
data = table4;
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (ui->type) {
|
|
case STBVOX_UNIFORM_TYPE_sampler: stbglUniform1iv(uniform_loc[i], ui->array_length, data); break;
|
|
case STBVOX_UNIFORM_TYPE_vec2: stbglUniform2fv(uniform_loc[i], ui->array_length, data); break;
|
|
case STBVOX_UNIFORM_TYPE_vec3: stbglUniform3fv(uniform_loc[i], ui->array_length, data); break;
|
|
case STBVOX_UNIFORM_TYPE_vec4: stbglUniform4fv(uniform_loc[i], ui->array_length, data); break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
GLuint unitex[64], unibuf[64];
|
|
void make_texture_buffer_for_uniform(int uniform, int slot)
|
|
{
|
|
GLenum type;
|
|
stbvox_uniform_info raw, *ui=&raw;
|
|
GLint uloc;
|
|
|
|
stbvox_get_uniform_info(ui, uniform);
|
|
uloc = stbgl_find_uniform(main_prog, ui->name);
|
|
|
|
if (uniform == STBVOX_UNIFORM_color_table)
|
|
((float *)ui->default_value)[63*4+3] = 2.0f; // emissive
|
|
|
|
glGenBuffersARB(1, &unibuf[uniform]);
|
|
glBindBufferARB(GL_ARRAY_BUFFER_ARB, unibuf[uniform]);
|
|
glBufferDataARB(GL_ARRAY_BUFFER_ARB, ui->array_length * ui->bytes_per_element, ui->default_value, GL_STATIC_DRAW_ARB);
|
|
glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
|
|
|
|
glGenTextures(1, &unitex[uniform]);
|
|
glBindTexture(GL_TEXTURE_BUFFER_ARB, unitex[uniform]);
|
|
switch (ui->type) {
|
|
case STBVOX_UNIFORM_TYPE_vec2: type = GL_RG32F; break;
|
|
case STBVOX_UNIFORM_TYPE_vec3: type = GL_RGB32F; break;
|
|
case STBVOX_UNIFORM_TYPE_vec4: type = GL_RGBA32F; break;
|
|
default: assert(0);
|
|
}
|
|
glTexBufferARB(GL_TEXTURE_BUFFER_ARB, type, unibuf[uniform]);
|
|
glBindTexture(GL_TEXTURE_BUFFER_ARB, 0);
|
|
|
|
glActiveTextureARB(GL_TEXTURE0 + slot);
|
|
glBindTexture(GL_TEXTURE_BUFFER_ARB, unitex[uniform]);
|
|
glActiveTextureARB(GL_TEXTURE0);
|
|
|
|
stbglUseProgram(main_prog);
|
|
stbglUniform1i(uloc, slot);
|
|
}
|
|
|
|
#define MAX_MESH_WORKERS 8
|
|
#define MAX_CHUNK_LOAD_WORKERS 2
|
|
|
|
int num_mesh_workers;
|
|
int num_chunk_load_workers;
|
|
|
|
typedef struct
|
|
{
|
|
int state;
|
|
int request_cx;
|
|
int request_cy;
|
|
int padding[13];
|
|
|
|
SDL_sem * request_received;
|
|
|
|
SDL_sem * chunk_server_done_processing;
|
|
int chunk_action;
|
|
int chunk_request_x;
|
|
int chunk_request_y;
|
|
fast_chunk *chunks[4][4];
|
|
|
|
int padding2[16];
|
|
raw_mesh rm;
|
|
int padding3[16];
|
|
|
|
uint8 *build_buffer;
|
|
uint8 *face_buffer ;
|
|
} mesh_worker;
|
|
|
|
enum
|
|
{
|
|
WSTATE_idle,
|
|
WSTATE_requested,
|
|
WSTATE_running,
|
|
WSTATE_mesh_ready,
|
|
};
|
|
|
|
mesh_worker mesh_data[MAX_MESH_WORKERS];
|
|
int num_meshes_started; // stats
|
|
|
|
int request_chunk(int chunk_x, int chunk_y);
|
|
void update_meshes_from_render_thread(void);
|
|
|
|
unsigned char tex2_data[64][4];
|
|
|
|
void init_tex2_gradient(void)
|
|
{
|
|
int i;
|
|
for (i=0; i < 16; ++i) {
|
|
tex2_data[i+ 0][0] = 64 + 12*i;
|
|
tex2_data[i+ 0][1] = 32;
|
|
tex2_data[i+ 0][2] = 64;
|
|
|
|
tex2_data[i+16][0] = 255;
|
|
tex2_data[i+16][1] = 32 + 8*i;
|
|
tex2_data[i+16][2] = 64;
|
|
|
|
tex2_data[i+32][0] = 255;
|
|
tex2_data[i+32][1] = 160;
|
|
tex2_data[i+32][2] = 64 + 12*i;
|
|
|
|
tex2_data[i+48][0] = 255;
|
|
tex2_data[i+48][1] = 160 + 6*i;
|
|
tex2_data[i+48][2] = 255;
|
|
}
|
|
}
|
|
|
|
void set_tex2_alpha(float fa)
|
|
{
|
|
int i;
|
|
int a = (int) stb_lerp(fa, 0, 255);
|
|
if (a < 0) a = 0; else if (a > 255) a = 255;
|
|
glBindTexture(GL_TEXTURE_2D_ARRAY_EXT, voxel_tex[1]);
|
|
for (i=0; i < 64; ++i) {
|
|
tex2_data[i][3] = a;
|
|
glTexSubImage3DEXT(GL_TEXTURE_2D_ARRAY_EXT, 0, 0,0,i, 1,1,1, GL_RGBA, GL_UNSIGNED_BYTE, tex2_data[i]);
|
|
}
|
|
}
|
|
|
|
void render_init(void)
|
|
{
|
|
int i;
|
|
char *binds[] = { "attr_vertex", "attr_face", NULL };
|
|
char *vertex;
|
|
char *fragment;
|
|
int w=0,h=0;
|
|
|
|
unsigned char *texdata = stbi_load("terrain.png", &w, &h, NULL, 4);
|
|
|
|
stbvox_init_mesh_maker(&g_mesh_maker);
|
|
for (i=0; i < num_mesh_workers; ++i) {
|
|
stbvox_init_mesh_maker(&mesh_data[i].rm.mm);
|
|
}
|
|
|
|
vertex = stbvox_get_vertex_shader();
|
|
fragment = stbvox_get_fragment_shader();
|
|
|
|
{
|
|
char error_buffer[1024];
|
|
char *main_vertex[] = { vertex, NULL };
|
|
char *main_fragment[] = { fragment, NULL };
|
|
main_prog = stbgl_create_program(main_vertex, main_fragment, binds, error_buffer, sizeof(error_buffer));
|
|
if (main_prog == 0) {
|
|
ods("Compile error for main shader: %s\n", error_buffer);
|
|
assert(0);
|
|
exit(1);
|
|
}
|
|
}
|
|
//init_index_buffer();
|
|
|
|
make_texture_buffer_for_uniform(STBVOX_UNIFORM_texscale , 3);
|
|
make_texture_buffer_for_uniform(STBVOX_UNIFORM_texgen , 4);
|
|
make_texture_buffer_for_uniform(STBVOX_UNIFORM_color_table , 5);
|
|
|
|
glGenTextures(2, voxel_tex);
|
|
|
|
glBindTexture(GL_TEXTURE_2D_ARRAY_EXT, voxel_tex[0]);
|
|
glTexImage3DEXT(GL_TEXTURE_2D_ARRAY_EXT, 0, GL_RGBA,
|
|
TEX_SIZE,TEX_SIZE,256,
|
|
0,GL_RGBA,GL_UNSIGNED_BYTE,NULL);
|
|
for (i=0; i < 256; ++i) {
|
|
if (texdata)
|
|
scale_texture(texdata, (i&15)*w/16, (h/16)*(i>>4), w,h);
|
|
else
|
|
build_base_texture(i);
|
|
glTexSubImage3DEXT(GL_TEXTURE_2D_ARRAY_EXT, 0, 0,0,i, TEX_SIZE,TEX_SIZE,1, GL_RGBA, GL_UNSIGNED_BYTE, texture[0]);
|
|
}
|
|
glTexParameteri(GL_TEXTURE_2D_ARRAY_EXT, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D_ARRAY_EXT, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D_ARRAY_EXT, GL_TEXTURE_MAX_ANISOTROPY_EXT, 16);
|
|
#ifdef STBVOX_CONFIG_TEX1_EDGE_CLAMP
|
|
glTexParameteri(GL_TEXTURE_2D_ARRAY_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_2D_ARRAY_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
#endif
|
|
|
|
glGenerateMipmapEXT(GL_TEXTURE_2D_ARRAY_EXT);
|
|
|
|
glBindTexture(GL_TEXTURE_2D_ARRAY_EXT, voxel_tex[1]);
|
|
glTexImage3DEXT(GL_TEXTURE_2D_ARRAY_EXT, 0, GL_RGBA,
|
|
1,1,64,
|
|
0,GL_RGBA,GL_UNSIGNED_BYTE,NULL);
|
|
init_tex2_gradient();
|
|
set_tex2_alpha(0.0);
|
|
#if 0
|
|
for (i=0; i < 128; ++i) {
|
|
//build_overlay_texture(i);
|
|
glTexSubImage3DEXT(GL_TEXTURE_2D_ARRAY_EXT, 0, 0,0,i, TEX_SIZE,TEX_SIZE,1, GL_RGBA, GL_UNSIGNED_BYTE, texture[0]);
|
|
}
|
|
#endif
|
|
glTexParameteri(GL_TEXTURE_2D_ARRAY_EXT, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D_ARRAY_EXT, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
glGenerateMipmapEXT(GL_TEXTURE_2D_ARRAY_EXT);
|
|
}
|
|
|
|
void world_init(void)
|
|
{
|
|
int a,b,x,y;
|
|
|
|
Uint64 start_time, end_time;
|
|
#ifdef NDEBUG
|
|
int range = 32;
|
|
#else
|
|
int range = 12;
|
|
#endif
|
|
|
|
start_time = SDL_GetPerformanceCounter();
|
|
|
|
// iterate in 8x8 clusters of qchunks at a time to get better converted-chunk-cache reuse
|
|
// than a purely row-by-row ordering is (single-threaded this is a bigger win than
|
|
// any of the above optimizations were, since it halves zlib/mc-conversion costs)
|
|
for (x=-range; x <= range; x += 16)
|
|
for (y=-range; y <= range; y += 16)
|
|
for (b=y; b < y+16 && b <= range; b += 2)
|
|
for (a=x; a < x+16 && a <= range; a += 2)
|
|
while (!request_chunk(a, b)) { // if request fails, all threads are busy
|
|
update_meshes_from_render_thread();
|
|
SDL_Delay(1);
|
|
}
|
|
|
|
// wait until all the workers are done,
|
|
// (this is only needed if we want to time
|
|
// when the build finishes, or when we want to reset the
|
|
// cache size; otherwise we could just go ahead and
|
|
// start rendering whatever we've got)
|
|
for(;;) {
|
|
int i;
|
|
update_meshes_from_render_thread();
|
|
for (i=0; i < num_mesh_workers; ++i)
|
|
if (mesh_data[i].state != WSTATE_idle)
|
|
break;
|
|
if (i == num_mesh_workers)
|
|
break;
|
|
SDL_Delay(3);
|
|
}
|
|
|
|
end_time = SDL_GetPerformanceCounter();
|
|
ods("Build time: %7.2fs\n", (end_time - start_time) / (float) SDL_GetPerformanceFrequency());
|
|
|
|
// don't waste lots of storage on chunk caches once it's finished starting-up;
|
|
// this was only needed to be this large because we worked in large blocks
|
|
// to maximize sharing
|
|
reset_cache_size(32);
|
|
}
|
|
|
|
extern SDL_mutex * chunk_cache_mutex;
|
|
|
|
int mesh_worker_handler(void *data)
|
|
{
|
|
mesh_worker *mw = data;
|
|
mw->face_buffer = malloc(FACE_BUFFER_SIZE);
|
|
mw->build_buffer = malloc(BUILD_BUFFER_SIZE);
|
|
|
|
// this loop only works because the compiler can't
|
|
// tell that the SDL_calls don't access mw->state;
|
|
// really we should barrier that stuff
|
|
for(;;) {
|
|
int i,j;
|
|
int cx,cy;
|
|
|
|
// wait for a chunk request
|
|
SDL_SemWait(mw->request_received);
|
|
|
|
// analyze the chunk request
|
|
assert(mw->state == WSTATE_requested);
|
|
cx = mw->request_cx;
|
|
cy = mw->request_cy;
|
|
|
|
// this is inaccurate as it can block while another thread has the cache locked
|
|
mw->state = WSTATE_running;
|
|
|
|
// get the chunks we need (this takes a lock and caches them)
|
|
for (j=0; j < 4; ++j)
|
|
for (i=0; i < 4; ++i)
|
|
mw->chunks[j][i] = get_converted_fastchunk(cx-1 + i, cy-1 + j);
|
|
|
|
// build the mesh based on the chunks
|
|
mw->rm.build_buffer = mw->build_buffer;
|
|
mw->rm.face_buffer = mw->face_buffer;
|
|
build_chunk(cx, cy, mw->chunks, &mw->rm);
|
|
mw->state = WSTATE_mesh_ready;
|
|
// don't need to notify of this, because it gets polled
|
|
|
|
// when done, free the chunks
|
|
|
|
// for efficiency we just take the mutex once around the whole thing,
|
|
// though this spreads the mutex logic over two files
|
|
SDL_LockMutex(chunk_cache_mutex);
|
|
for (j=0; j < 4; ++j)
|
|
for (i=0; i < 4; ++i) {
|
|
deref_fastchunk(mw->chunks[j][i]);
|
|
mw->chunks[j][i] = NULL;
|
|
}
|
|
SDL_UnlockMutex(chunk_cache_mutex);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int request_chunk(int chunk_x, int chunk_y)
|
|
{
|
|
int i;
|
|
for (i=0; i < num_mesh_workers; ++i) {
|
|
mesh_worker *mw = &mesh_data[i];
|
|
if (mw->state == WSTATE_idle) {
|
|
mw->request_cx = chunk_x;
|
|
mw->request_cy = chunk_y;
|
|
mw->state = WSTATE_requested;
|
|
SDL_SemPost(mw->request_received);
|
|
++num_meshes_started;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void prepare_threads(void)
|
|
{
|
|
int i;
|
|
int num_proc = SDL_GetCPUCount();
|
|
|
|
if (num_proc > 6)
|
|
num_mesh_workers = num_proc/2;
|
|
else if (num_proc > 4)
|
|
num_mesh_workers = 4;
|
|
else
|
|
num_mesh_workers = num_proc-1;
|
|
|
|
// @TODO
|
|
// Thread usage is probably pretty terrible; need to make a
|
|
// separate queue of needed chunks, instead of just generating
|
|
// one request per thread per frame, and a separate queue of
|
|
// results. (E.g. If it takes 1.5 frames to build mesh, thread
|
|
// is idle for 0.5 frames.) To fake this for now, I've just
|
|
// doubled the number of threads to let those serve as a 'queue',
|
|
// but that's dumb.
|
|
|
|
num_mesh_workers *= 2; // try to get better thread usage
|
|
|
|
if (num_mesh_workers > MAX_MESH_WORKERS)
|
|
num_mesh_workers = MAX_MESH_WORKERS;
|
|
|
|
for (i=0; i < num_mesh_workers; ++i) {
|
|
mesh_worker *data = &mesh_data[i];
|
|
data->request_received = SDL_CreateSemaphore(0);
|
|
data->chunk_server_done_processing = SDL_CreateSemaphore(0);
|
|
SDL_CreateThread(mesh_worker_handler, "mesh worker", data);
|
|
}
|
|
}
|
|
|
|
|
|
// "better" buffer uploading
|
|
#if 0
|
|
if (glBufferStorage) {
|
|
glDeleteBuffersARB(1, &vb->vbuf);
|
|
glGenBuffersARB(1, &vb->vbuf);
|
|
|
|
glBindBufferARB(GL_ARRAY_BUFFER_ARB, vb->vbuf);
|
|
glBufferStorage(GL_ARRAY_BUFFER_ARB, sizeof(build_buffer), build_buffer, 0);
|
|
glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
|
|
} else {
|
|
glBindBufferARB(GL_ARRAY_BUFFER_ARB, vb->vbuf);
|
|
glBufferDataARB(GL_ARRAY_BUFFER_ARB, sizeof(build_buffer), build_buffer, GL_STATIC_DRAW_ARB);
|
|
glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
|
|
}
|
|
#endif
|
|
|
|
|
|
typedef struct
|
|
{
|
|
float x,y,z,w;
|
|
} plane;
|
|
|
|
static plane frustum[6];
|
|
|
|
static void matd_mul(double out[4][4], double src1[4][4], double src2[4][4])
|
|
{
|
|
int i,j,k;
|
|
for (j=0; j < 4; ++j) {
|
|
for (i=0; i < 4; ++i) {
|
|
double t=0;
|
|
for (k=0; k < 4; ++k)
|
|
t += src1[k][i] * src2[j][k];
|
|
out[i][j] = t;
|
|
}
|
|
}
|
|
}
|
|
|
|
// https://fgiesen.wordpress.com/2012/08/31/frustum-planes-from-the-projection-matrix/
|
|
static void compute_frustum(void)
|
|
{
|
|
int i;
|
|
GLdouble mv[4][4],proj[4][4], mvproj[4][4];
|
|
glGetDoublev(GL_MODELVIEW_MATRIX , mv[0]);
|
|
glGetDoublev(GL_PROJECTION_MATRIX, proj[0]);
|
|
matd_mul(mvproj, proj, mv);
|
|
for (i=0; i < 4; ++i) {
|
|
(&frustum[0].x)[i] = (float) (mvproj[3][i] + mvproj[0][i]);
|
|
(&frustum[1].x)[i] = (float) (mvproj[3][i] - mvproj[0][i]);
|
|
(&frustum[2].x)[i] = (float) (mvproj[3][i] + mvproj[1][i]);
|
|
(&frustum[3].x)[i] = (float) (mvproj[3][i] - mvproj[1][i]);
|
|
(&frustum[4].x)[i] = (float) (mvproj[3][i] + mvproj[2][i]);
|
|
(&frustum[5].x)[i] = (float) (mvproj[3][i] - mvproj[2][i]);
|
|
}
|
|
}
|
|
|
|
static int test_plane(plane *p, float x0, float y0, float z0, float x1, float y1, float z1)
|
|
{
|
|
// return false if the box is entirely behind the plane
|
|
float d=0;
|
|
assert(x0 <= x1 && y0 <= y1 && z0 <= z1);
|
|
if (p->x > 0) d += x1*p->x; else d += x0*p->x;
|
|
if (p->y > 0) d += y1*p->y; else d += y0*p->y;
|
|
if (p->z > 0) d += z1*p->z; else d += z0*p->z;
|
|
return d + p->w >= 0;
|
|
}
|
|
|
|
static int is_box_in_frustum(float *bmin, float *bmax)
|
|
{
|
|
int i;
|
|
for (i=0; i < 6; ++i)
|
|
if (!test_plane(&frustum[i], bmin[0], bmin[1], bmin[2], bmax[0], bmax[1], bmax[2]))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
float compute_priority(int cx, int cy, float x, float y)
|
|
{
|
|
float distx, disty, dist2;
|
|
distx = (cx*16+8) - x;
|
|
disty = (cy*16+8) - y;
|
|
dist2 = distx*distx + disty*disty;
|
|
return view_dist_in_chunks*view_dist_in_chunks * 16 * 16 - dist2;
|
|
}
|
|
|
|
int chunk_locations, chunks_considered, chunks_in_frustum;
|
|
int quads_considered, quads_rendered;
|
|
int chunk_storage_rendered, chunk_storage_considered, chunk_storage_total;
|
|
int update_frustum = 1;
|
|
|
|
#ifdef SHORTVIEW
|
|
int max_chunk_storage = 450 << 20;
|
|
int min_chunk_storage = 350 << 20;
|
|
#else
|
|
int max_chunk_storage = 900 << 20;
|
|
int min_chunk_storage = 800 << 20;
|
|
#endif
|
|
|
|
float min_priority = -500; // this really wants to be in unit space, not squared space
|
|
|
|
int num_meshes_uploaded;
|
|
|
|
void update_meshes_from_render_thread(void)
|
|
{
|
|
int i;
|
|
for (i=0; i < num_mesh_workers; ++i) {
|
|
mesh_worker *mw = &mesh_data[i];
|
|
if (mw->state == WSTATE_mesh_ready) {
|
|
upload_mesh_data(&mw->rm);
|
|
++num_meshes_uploaded;
|
|
mw->state = WSTATE_idle;
|
|
}
|
|
}
|
|
}
|
|
|
|
extern float tex2_alpha;
|
|
extern int global_hack;
|
|
int num_threads_active;
|
|
float chunk_server_activity;
|
|
|
|
void render_caves(float campos[3])
|
|
{
|
|
float x = campos[0], y = campos[1];
|
|
int qchunk_x, qchunk_y;
|
|
int cam_x, cam_y;
|
|
int i,j, rad;
|
|
|
|
compute_frustum();
|
|
|
|
chunk_locations = chunks_considered = chunks_in_frustum = 0;
|
|
quads_considered = quads_rendered = 0;
|
|
chunk_storage_total = chunk_storage_considered = chunk_storage_rendered = 0;
|
|
|
|
cam_x = (int) floor(x+0.5);
|
|
cam_y = (int) floor(y+0.5);
|
|
|
|
qchunk_x = (((int) floor(x)+16) >> 5) << 1;
|
|
qchunk_y = (((int) floor(y)+16) >> 5) << 1;
|
|
|
|
glEnable(GL_ALPHA_TEST);
|
|
glAlphaFunc(GL_GREATER, 0.5);
|
|
|
|
stbglUseProgram(main_prog);
|
|
setup_uniforms(campos); // set uniforms to default values inefficiently
|
|
glActiveTextureARB(GL_TEXTURE2_ARB);
|
|
stbglEnableVertexAttribArray(0);
|
|
|
|
{
|
|
float lighting[2][3] = { { campos[0],campos[1],campos[2] }, { 0.75,0.75,0.65f } };
|
|
float bright = 8;
|
|
lighting[1][0] *= bright;
|
|
lighting[1][1] *= bright;
|
|
lighting[1][2] *= bright;
|
|
stbglUniform3fv(stbgl_find_uniform(main_prog, "light_source"), 2, lighting[0]);
|
|
}
|
|
|
|
if (global_hack)
|
|
set_tex2_alpha(tex2_alpha);
|
|
|
|
num_meshes_uploaded = 0;
|
|
update_meshes_from_render_thread();
|
|
|
|
// traverse all in-range chunks and analyze them
|
|
for (j=-view_dist_in_chunks; j <= view_dist_in_chunks; j += 2) {
|
|
for (i=-view_dist_in_chunks; i <= view_dist_in_chunks; i += 2) {
|
|
float priority;
|
|
int cx = qchunk_x + i;
|
|
int cy = qchunk_y + j;
|
|
|
|
priority = compute_priority(cx, cy, x, y);
|
|
if (priority >= min_priority) {
|
|
int slot_x = (cx>>1) & (CACHED_MESH_NUM_X-1);
|
|
int slot_y = (cy>>1) & (CACHED_MESH_NUM_Y-1);
|
|
chunk_mesh *cm = &cached_chunk_mesh[slot_y][slot_x];
|
|
++chunk_locations;
|
|
if (cm->state == STATE_valid && priority >= 0) {
|
|
// check if chunk pos actually matches
|
|
if (cm->chunk_x != cx || cm->chunk_y != cy) {
|
|
// we have a stale chunk we need to recreate
|
|
free_chunk(slot_x, slot_y); // it probably will have already gotten freed, but just in case
|
|
}
|
|
}
|
|
if (cm->state == STATE_invalid) {
|
|
cm->chunk_x = cx;
|
|
cm->chunk_y = cy;
|
|
cm->state = STATE_needed;
|
|
}
|
|
cm->priority = priority;
|
|
}
|
|
}
|
|
}
|
|
|
|
// draw front-to-back
|
|
for (rad = 0; rad <= view_dist_in_chunks; rad += 2) {
|
|
for (j=-rad; j <= rad; j += 2) {
|
|
// if j is +- rad, then iterate i through all values
|
|
// if j isn't +-rad, then i should be only -rad & rad
|
|
int step = 2;
|
|
if (abs(j) != rad)
|
|
step = 2*rad;
|
|
for (i=-rad; i <= rad; i += step) {
|
|
int cx = qchunk_x + i;
|
|
int cy = qchunk_y + j;
|
|
int slot_x = (cx>>1) & (CACHED_MESH_NUM_X-1);
|
|
int slot_y = (cy>>1) & (CACHED_MESH_NUM_Y-1);
|
|
chunk_mesh *cm = &cached_chunk_mesh[slot_y][slot_x];
|
|
if (cm->state == STATE_valid && cm->priority >= 0) {
|
|
++chunks_considered;
|
|
quads_considered += cm->num_quads;
|
|
if (is_box_in_frustum(cm->bounds[0], cm->bounds[1])) {
|
|
++chunks_in_frustum;
|
|
|
|
// @TODO if in range
|
|
stbglUniform3fv(uniform_loc[STBVOX_UNIFORM_transform], 3, cm->transform[0]);
|
|
glBindBufferARB(GL_ARRAY_BUFFER_ARB, cm->vbuf);
|
|
glVertexAttribIPointer(0, 1, GL_UNSIGNED_INT, 4, (void*) 0);
|
|
glBindTexture(GL_TEXTURE_BUFFER_ARB, cm->fbuf_tex);
|
|
glDrawArrays(GL_QUADS, 0, cm->num_quads*4);
|
|
quads_rendered += cm->num_quads;
|
|
|
|
chunk_storage_rendered += cm->vbuf_size + cm->fbuf_size;
|
|
}
|
|
chunk_storage_considered += cm->vbuf_size + cm->fbuf_size;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
stbglDisableVertexAttribArray(0);
|
|
glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
|
|
glActiveTextureARB(GL_TEXTURE0_ARB);
|
|
|
|
stbglUseProgram(0);
|
|
num_meshes_started = 0;
|
|
|
|
{
|
|
#define MAX_QUEUE 8
|
|
float highest_priority[MAX_QUEUE];
|
|
int highest_i[MAX_QUEUE], highest_j[MAX_QUEUE];
|
|
float lowest_priority = view_dist_in_chunks * view_dist_in_chunks * 16 * 16.0f;
|
|
int lowest_i = -1, lowest_j = -1;
|
|
|
|
for (i=0; i < MAX_QUEUE; ++i) {
|
|
highest_priority[i] = min_priority;
|
|
highest_i[i] = -1;
|
|
highest_j[i] = -1;
|
|
}
|
|
|
|
for (j=0; j < CACHED_MESH_NUM_Y; ++j) {
|
|
for (i=0; i < CACHED_MESH_NUM_X; ++i) {
|
|
chunk_mesh *cm = &cached_chunk_mesh[j][i];
|
|
if (cm->state == STATE_valid) {
|
|
cm->priority = compute_priority(cm->chunk_x, cm->chunk_y, x, y);
|
|
chunk_storage_total += cm->vbuf_size + cm->fbuf_size;
|
|
if (cm->priority < lowest_priority) {
|
|
lowest_priority = cm->priority;
|
|
lowest_i = i;
|
|
lowest_j = j;
|
|
}
|
|
}
|
|
if (cm->state == STATE_needed) {
|
|
cm->priority = compute_priority(cm->chunk_x, cm->chunk_y, x, y);
|
|
if (cm->priority < min_priority)
|
|
cm->state = STATE_invalid;
|
|
else if (cm->priority > highest_priority[0]) {
|
|
int k;
|
|
highest_priority[0] = cm->priority;
|
|
highest_i[0] = i;
|
|
highest_j[0] = j;
|
|
// bubble this up to right place
|
|
for (k=0; k < MAX_QUEUE-1; ++k) {
|
|
if (highest_priority[k] > highest_priority[k+1]) {
|
|
highest_priority[k] = highest_priority[k+1];
|
|
highest_priority[k+1] = cm->priority;
|
|
highest_i[k] = highest_i[k+1];
|
|
highest_i[k+1] = i;
|
|
highest_j[k] = highest_j[k+1];
|
|
highest_j[k+1] = j;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// I couldn't find any straightforward logic that avoids
|
|
// the hysteresis problem of continually creating & freeing
|
|
// a block on the margin, so I just don't free a block until
|
|
// it's out of range, but this doesn't actually correctly
|
|
// handle when the cache is too small for the given range
|
|
if (chunk_storage_total >= min_chunk_storage && lowest_i >= 0) {
|
|
if (cached_chunk_mesh[lowest_j][lowest_i].priority < -1200) // -1000? 0?
|
|
free_chunk(lowest_i, lowest_j);
|
|
}
|
|
|
|
if (chunk_storage_total < max_chunk_storage && highest_i[0] >= 0) {
|
|
for (j=MAX_QUEUE-1; j >= 0; --j) {
|
|
if (highest_j[0] >= 0) {
|
|
chunk_mesh *cm = &cached_chunk_mesh[highest_j[j]][highest_i[j]];
|
|
if (request_chunk(cm->chunk_x, cm->chunk_y)) {
|
|
cm->state = STATE_requested;
|
|
} else {
|
|
// if we couldn't queue this one, skip the remainder
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
update_meshes_from_render_thread();
|
|
|
|
num_threads_active = 0;
|
|
for (i=0; i < num_mesh_workers; ++i) {
|
|
num_threads_active += (mesh_data[i].state == WSTATE_running);
|
|
}
|
|
}
|