source-engine/thirdparty/libjpeg/jdarith.c
2020-10-22 20:43:01 +03:00

797 lines
24 KiB
C

/*
* jdarith.c
*
* Developed 1997-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains portable arithmetic entropy decoding routines for JPEG
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
*
* Both sequential and progressive modes are supported in this single module.
*
* Suspension is not currently supported in this module.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Expanded entropy decoder object for arithmetic decoding. */
typedef struct {
struct jpeg_entropy_decoder pub; /* public fields */
INT32 c; /* C register, base of coding interval + input bit buffer */
INT32 a; /* A register, normalized size of coding interval */
int ct; /* bit shift counter, # of bits left in bit buffer part of C */
/* init: ct = -16 */
/* run: ct = 0..7 */
/* error: ct = -1 */
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
unsigned int restarts_to_go; /* MCUs left in this restart interval */
/* Pointers to statistics areas (these workspaces have image lifespan) */
unsigned char * dc_stats[NUM_ARITH_TBLS];
unsigned char * ac_stats[NUM_ARITH_TBLS];
/* Statistics bin for coding with fixed probability 0.5 */
unsigned char fixed_bin[4];
} arith_entropy_decoder;
typedef arith_entropy_decoder * arith_entropy_ptr;
/* The following two definitions specify the allocation chunk size
* for the statistics area.
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
* 49 statistics bins for DC, and 245 statistics bins for AC coding.
*
* We use a compact representation with 1 byte per statistics bin,
* thus the numbers directly represent byte sizes.
* This 1 byte per statistics bin contains the meaning of the MPS
* (more probable symbol) in the highest bit (mask 0x80), and the
* index into the probability estimation state machine table
* in the lower bits (mask 0x7F).
*/
#define DC_STAT_BINS 64
#define AC_STAT_BINS 256
LOCAL(int)
get_byte (j_decompress_ptr cinfo)
/* Read next input byte; we do not support suspension in this module. */
{
struct jpeg_source_mgr * src = cinfo->src;
if (src->bytes_in_buffer == 0)
if (! (*src->fill_input_buffer) (cinfo))
ERREXIT(cinfo, JERR_CANT_SUSPEND);
src->bytes_in_buffer--;
return GETJOCTET(*src->next_input_byte++);
}
/*
* The core arithmetic decoding routine (common in JPEG and JBIG).
* This needs to go as fast as possible.
* Machine-dependent optimization facilities
* are not utilized in this portable implementation.
* However, this code should be fairly efficient and
* may be a good base for further optimizations anyway.
*
* Return value is 0 or 1 (binary decision).
*
* Note: I've changed the handling of the code base & bit
* buffer register C compared to other implementations
* based on the standards layout & procedures.
* While it also contains both the actual base of the
* coding interval (16 bits) and the next-bits buffer,
* the cut-point between these two parts is floating
* (instead of fixed) with the bit shift counter CT.
* Thus, we also need only one (variable instead of
* fixed size) shift for the LPS/MPS decision, and
* we can get away with any renormalization update
* of C (except for new data insertion, of course).
*
* I've also introduced a new scheme for accessing
* the probability estimation state machine table,
* derived from Markus Kuhn's JBIG implementation.
*/
LOCAL(int)
arith_decode (j_decompress_ptr cinfo, unsigned char *st)
{
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
register unsigned char nl, nm;
register INT32 qe, temp;
register int sv, data;
/* Renormalization & data input per section D.2.6 */
while (e->a < 0x8000L) {
if (--e->ct < 0) {
/* Need to fetch next data byte */
if (cinfo->unread_marker)
data = 0; /* stuff zero data */
else {
data = get_byte(cinfo); /* read next input byte */
if (data == 0xFF) { /* zero stuff or marker code */
do data = get_byte(cinfo);
while (data == 0xFF); /* swallow extra 0xFF bytes */
if (data == 0)
data = 0xFF; /* discard stuffed zero byte */
else {
/* Note: Different from the Huffman decoder, hitting
* a marker while processing the compressed data
* segment is legal in arithmetic coding.
* The convention is to supply zero data
* then until decoding is complete.
*/
cinfo->unread_marker = data;
data = 0;
}
}
}
e->c = (e->c << 8) | data; /* insert data into C register */
if ((e->ct += 8) < 0) /* update bit shift counter */
/* Need more initial bytes */
if (++e->ct == 0)
/* Got 2 initial bytes -> re-init A and exit loop */
e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
}
e->a <<= 1;
}
/* Fetch values from our compact representation of Table D.3(D.2):
* Qe values and probability estimation state machine
*/
sv = *st;
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
/* Decode & estimation procedures per sections D.2.4 & D.2.5 */
temp = e->a - qe;
e->a = temp;
temp <<= e->ct;
if (e->c >= temp) {
e->c -= temp;
/* Conditional LPS (less probable symbol) exchange */
if (e->a < qe) {
e->a = qe;
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
} else {
e->a = qe;
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
sv ^= 0x80; /* Exchange LPS/MPS */
}
} else if (e->a < 0x8000L) {
/* Conditional MPS (more probable symbol) exchange */
if (e->a < qe) {
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
sv ^= 0x80; /* Exchange LPS/MPS */
} else {
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
}
}
return sv >> 7;
}
/*
* Check for a restart marker & resynchronize decoder.
*/
LOCAL(void)
process_restart (j_decompress_ptr cinfo)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
int ci;
jpeg_component_info * compptr;
/* Advance past the RSTn marker */
if (! (*cinfo->marker->read_restart_marker) (cinfo))
ERREXIT(cinfo, JERR_CANT_SUSPEND);
/* Re-initialize statistics areas */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
/* Reset DC predictions to 0 */
entropy->last_dc_val[ci] = 0;
entropy->dc_context[ci] = 0;
}
if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
(cinfo->progressive_mode && cinfo->Ss)) {
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
}
}
/* Reset arithmetic decoding variables */
entropy->c = 0;
entropy->a = 0;
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
/* Reset restart counter */
entropy->restarts_to_go = cinfo->restart_interval;
}
/*
* Arithmetic MCU decoding.
* Each of these routines decodes and returns one MCU's worth of
* arithmetic-compressed coefficients.
* The coefficients are reordered from zigzag order into natural array order,
* but are not dequantized.
*
* The i'th block of the MCU is stored into the block pointed to by
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
*/
/*
* MCU decoding for DC initial scan (either spectral selection,
* or first pass of successive approximation).
*/
METHODDEF(boolean)
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
JBLOCKROW block;
unsigned char *st;
int blkn, ci, tbl, sign;
int v, m;
/* Process restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
process_restart(cinfo);
entropy->restarts_to_go--;
}
if (entropy->ct == -1) return TRUE; /* if error do nothing */
/* Outer loop handles each block in the MCU */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
block = MCU_data[blkn];
ci = cinfo->MCU_membership[blkn];
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
/* Figure F.19: Decode_DC_DIFF */
if (arith_decode(cinfo, st) == 0)
entropy->dc_context[ci] = 0;
else {
/* Figure F.21: Decoding nonzero value v */
/* Figure F.22: Decoding the sign of v */
sign = arith_decode(cinfo, st + 1);
st += 2; st += sign;
/* Figure F.23: Decoding the magnitude category of v */
if ((m = arith_decode(cinfo, st)) != 0) {
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
while (arith_decode(cinfo, st)) {
if ((m <<= 1) == 0x8000) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* magnitude overflow */
return TRUE;
}
st += 1;
}
}
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
entropy->dc_context[ci] = 0; /* zero diff category */
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
else
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
v = m;
/* Figure F.24: Decoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
if (arith_decode(cinfo, st)) v |= m;
v += 1; if (sign) v = -v;
entropy->last_dc_val[ci] += v;
}
/* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
(*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
}
return TRUE;
}
/*
* MCU decoding for AC initial scan (either spectral selection,
* or first pass of successive approximation).
*/
METHODDEF(boolean)
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
JBLOCKROW block;
unsigned char *st;
int tbl, sign, k;
int v, m;
const int * natural_order;
/* Process restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
process_restart(cinfo);
entropy->restarts_to_go--;
}
if (entropy->ct == -1) return TRUE; /* if error do nothing */
natural_order = cinfo->natural_order;
/* There is always only one block per MCU */
block = MCU_data[0];
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
/* Figure F.20: Decode_AC_coefficients */
k = cinfo->Ss - 1;
do {
st = entropy->ac_stats[tbl] + 3 * k;
if (arith_decode(cinfo, st)) break; /* EOB flag */
for (;;) {
k++;
if (arith_decode(cinfo, st + 1)) break;
st += 3;
if (k >= cinfo->Se) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* spectral overflow */
return TRUE;
}
}
/* Figure F.21: Decoding nonzero value v */
/* Figure F.22: Decoding the sign of v */
sign = arith_decode(cinfo, entropy->fixed_bin);
st += 2;
/* Figure F.23: Decoding the magnitude category of v */
if ((m = arith_decode(cinfo, st)) != 0) {
if (arith_decode(cinfo, st)) {
m <<= 1;
st = entropy->ac_stats[tbl] +
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
while (arith_decode(cinfo, st)) {
if ((m <<= 1) == 0x8000) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* magnitude overflow */
return TRUE;
}
st += 1;
}
}
}
v = m;
/* Figure F.24: Decoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
if (arith_decode(cinfo, st)) v |= m;
v += 1; if (sign) v = -v;
/* Scale and output coefficient in natural (dezigzagged) order */
(*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al);
} while (k < cinfo->Se);
return TRUE;
}
/*
* MCU decoding for DC successive approximation refinement scan.
* Note: we assume such scans can be multi-component,
* although the spec is not very clear on the point.
*/
METHODDEF(boolean)
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
unsigned char *st;
int p1, blkn;
/* Process restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
process_restart(cinfo);
entropy->restarts_to_go--;
}
st = entropy->fixed_bin; /* use fixed probability estimation */
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
/* Outer loop handles each block in the MCU */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
/* Encoded data is simply the next bit of the two's-complement DC value */
if (arith_decode(cinfo, st))
MCU_data[blkn][0][0] |= p1;
}
return TRUE;
}
/*
* MCU decoding for AC successive approximation refinement scan.
*/
METHODDEF(boolean)
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
JBLOCKROW block;
JCOEFPTR thiscoef;
unsigned char *st;
int tbl, k, kex;
int p1, m1;
const int * natural_order;
/* Process restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
process_restart(cinfo);
entropy->restarts_to_go--;
}
if (entropy->ct == -1) return TRUE; /* if error do nothing */
natural_order = cinfo->natural_order;
/* There is always only one block per MCU */
block = MCU_data[0];
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
/* Establish EOBx (previous stage end-of-block) index */
kex = cinfo->Se;
do {
if ((*block)[natural_order[kex]]) break;
} while (--kex);
k = cinfo->Ss - 1;
do {
st = entropy->ac_stats[tbl] + 3 * k;
if (k >= kex)
if (arith_decode(cinfo, st)) break; /* EOB flag */
for (;;) {
thiscoef = *block + natural_order[++k];
if (*thiscoef) { /* previously nonzero coef */
if (arith_decode(cinfo, st + 2)) {
if (*thiscoef < 0)
*thiscoef += m1;
else
*thiscoef += p1;
}
break;
}
if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */
if (arith_decode(cinfo, entropy->fixed_bin))
*thiscoef = m1;
else
*thiscoef = p1;
break;
}
st += 3;
if (k >= cinfo->Se) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* spectral overflow */
return TRUE;
}
}
} while (k < cinfo->Se);
return TRUE;
}
/*
* Decode one MCU's worth of arithmetic-compressed coefficients.
*/
METHODDEF(boolean)
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
jpeg_component_info * compptr;
JBLOCKROW block;
unsigned char *st;
int blkn, ci, tbl, sign, k;
int v, m;
const int * natural_order;
/* Process restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
process_restart(cinfo);
entropy->restarts_to_go--;
}
if (entropy->ct == -1) return TRUE; /* if error do nothing */
natural_order = cinfo->natural_order;
/* Outer loop handles each block in the MCU */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
block = MCU_data[blkn];
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
tbl = compptr->dc_tbl_no;
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
/* Figure F.19: Decode_DC_DIFF */
if (arith_decode(cinfo, st) == 0)
entropy->dc_context[ci] = 0;
else {
/* Figure F.21: Decoding nonzero value v */
/* Figure F.22: Decoding the sign of v */
sign = arith_decode(cinfo, st + 1);
st += 2; st += sign;
/* Figure F.23: Decoding the magnitude category of v */
if ((m = arith_decode(cinfo, st)) != 0) {
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
while (arith_decode(cinfo, st)) {
if ((m <<= 1) == 0x8000) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* magnitude overflow */
return TRUE;
}
st += 1;
}
}
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
entropy->dc_context[ci] = 0; /* zero diff category */
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
else
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
v = m;
/* Figure F.24: Decoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
if (arith_decode(cinfo, st)) v |= m;
v += 1; if (sign) v = -v;
entropy->last_dc_val[ci] += v;
}
(*block)[0] = (JCOEF) entropy->last_dc_val[ci];
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
if (cinfo->lim_Se == 0) continue;
tbl = compptr->ac_tbl_no;
k = 0;
/* Figure F.20: Decode_AC_coefficients */
do {
st = entropy->ac_stats[tbl] + 3 * k;
if (arith_decode(cinfo, st)) break; /* EOB flag */
for (;;) {
k++;
if (arith_decode(cinfo, st + 1)) break;
st += 3;
if (k >= cinfo->lim_Se) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* spectral overflow */
return TRUE;
}
}
/* Figure F.21: Decoding nonzero value v */
/* Figure F.22: Decoding the sign of v */
sign = arith_decode(cinfo, entropy->fixed_bin);
st += 2;
/* Figure F.23: Decoding the magnitude category of v */
if ((m = arith_decode(cinfo, st)) != 0) {
if (arith_decode(cinfo, st)) {
m <<= 1;
st = entropy->ac_stats[tbl] +
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
while (arith_decode(cinfo, st)) {
if ((m <<= 1) == 0x8000) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* magnitude overflow */
return TRUE;
}
st += 1;
}
}
}
v = m;
/* Figure F.24: Decoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
if (arith_decode(cinfo, st)) v |= m;
v += 1; if (sign) v = -v;
(*block)[natural_order[k]] = (JCOEF) v;
} while (k < cinfo->lim_Se);
}
return TRUE;
}
/*
* Initialize for an arithmetic-compressed scan.
*/
METHODDEF(void)
start_pass (j_decompress_ptr cinfo)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
int ci, tbl;
jpeg_component_info * compptr;
if (cinfo->progressive_mode) {
/* Validate progressive scan parameters */
if (cinfo->Ss == 0) {
if (cinfo->Se != 0)
goto bad;
} else {
/* need not check Ss/Se < 0 since they came from unsigned bytes */
if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
goto bad;
/* AC scans may have only one component */
if (cinfo->comps_in_scan != 1)
goto bad;
}
if (cinfo->Ah != 0) {
/* Successive approximation refinement scan: must have Al = Ah-1. */
if (cinfo->Ah-1 != cinfo->Al)
goto bad;
}
if (cinfo->Al > 13) { /* need not check for < 0 */
bad:
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
}
/* Update progression status, and verify that scan order is legal.
* Note that inter-scan inconsistencies are treated as warnings
* not fatal errors ... not clear if this is right way to behave.
*/
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
if (cinfo->Ah != expected)
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
coef_bit_ptr[coefi] = cinfo->Al;
}
}
/* Select MCU decoding routine */
if (cinfo->Ah == 0) {
if (cinfo->Ss == 0)
entropy->pub.decode_mcu = decode_mcu_DC_first;
else
entropy->pub.decode_mcu = decode_mcu_AC_first;
} else {
if (cinfo->Ss == 0)
entropy->pub.decode_mcu = decode_mcu_DC_refine;
else
entropy->pub.decode_mcu = decode_mcu_AC_refine;
}
} else {
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
* This ought to be an error condition, but we make it a warning.
*/
if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
(cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se))
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
/* Select MCU decoding routine */
entropy->pub.decode_mcu = decode_mcu;
}
/* Allocate & initialize requested statistics areas */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
tbl = compptr->dc_tbl_no;
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
if (entropy->dc_stats[tbl] == NULL)
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
/* Initialize DC predictions to 0 */
entropy->last_dc_val[ci] = 0;
entropy->dc_context[ci] = 0;
}
if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
(cinfo->progressive_mode && cinfo->Ss)) {
tbl = compptr->ac_tbl_no;
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
if (entropy->ac_stats[tbl] == NULL)
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
}
}
/* Initialize arithmetic decoding variables */
entropy->c = 0;
entropy->a = 0;
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
/* Initialize restart counter */
entropy->restarts_to_go = cinfo->restart_interval;
}
/*
* Finish up at the end of an arithmetic-compressed scan.
*/
METHODDEF(void)
finish_pass (j_decompress_ptr cinfo)
{
/* no work necessary here */
}
/*
* Module initialization routine for arithmetic entropy decoding.
*/
GLOBAL(void)
jinit_arith_decoder (j_decompress_ptr cinfo)
{
arith_entropy_ptr entropy;
int i;
entropy = (arith_entropy_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(arith_entropy_decoder));
cinfo->entropy = &entropy->pub;
entropy->pub.start_pass = start_pass;
entropy->pub.finish_pass = finish_pass;
/* Mark tables unallocated */
for (i = 0; i < NUM_ARITH_TBLS; i++) {
entropy->dc_stats[i] = NULL;
entropy->ac_stats[i] = NULL;
}
/* Initialize index for fixed probability estimation */
entropy->fixed_bin[0] = 113;
if (cinfo->progressive_mode) {
/* Create progression status table */
int *coef_bit_ptr, ci;
cinfo->coef_bits = (int (*)[DCTSIZE2])
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
cinfo->num_components*DCTSIZE2*SIZEOF(int));
coef_bit_ptr = & cinfo->coef_bits[0][0];
for (ci = 0; ci < cinfo->num_components; ci++)
for (i = 0; i < DCTSIZE2; i++)
*coef_bit_ptr++ = -1;
}
}