source-engine/thirdparty/cryptopp/kalyna.h
2020-10-22 20:43:01 +03:00

219 lines
9.8 KiB
C++

// kalyna.h - written and placed in the public domain by Jeffrey Walton
// Based on public domain code by Keru Kuro.
/// \file kalyna.h
/// \brief Classes for the Kalyna block cipher
/// \details The Crypto++ implementation relied upon three sources. First was Oliynykov, Gorbenko, Kazymyrov,
/// Ruzhentsev, Kuznetsov, Gorbenko, Dyrda, Dolgov, Pushkaryov, Mordvinov and Kaidalov's "A New Encryption
/// Standard of Ukraine: The Kalyna Block Cipher" (http://eprint.iacr.org/2015/650.pdf). Second was Roman
/// Oliynykov and Oleksandr Kazymyrov's GitHub with the reference implementation
/// (http://github.com/Roman-Oliynykov/Kalyna-reference). The third resource was Keru Kuro's implementation
/// of Kalyna in CppCrypto (http://sourceforge.net/projects/cppcrypto/). Kuro has an outstanding
/// implementation that performed better than the reference implementation and our initial attempts.
#ifndef CRYPTOPP_KALYNA_H
#define CRYPTOPP_KALYNA_H
#include "config.h"
#include "seckey.h"
#include "secblock.h"
NAMESPACE_BEGIN(CryptoPP)
/// \brief Kalyna-128 block cipher information
/// \since Crypto++ 6.0
struct CRYPTOPP_NO_VTABLE Kalyna128_Info : public FixedBlockSize<16>, VariableKeyLength<16, 16, 32>
{
static const char* StaticAlgorithmName()
{
// Format is Cipher-Blocksize(Keylength)
return "Kalyna-128";
}
};
/// \brief Kalyna-256 block cipher information
/// \since Crypto++ 6.0
struct CRYPTOPP_NO_VTABLE Kalyna256_Info : public FixedBlockSize<32>, VariableKeyLength<32, 32, 64>
{
static const char* StaticAlgorithmName()
{
// Format is Cipher-Blocksize(Keylength)
return "Kalyna-256";
}
};
/// \brief Kalyna-512 block cipher information
/// \since Crypto++ 6.0
struct CRYPTOPP_NO_VTABLE Kalyna512_Info : public FixedBlockSize<64>, FixedKeyLength<64>
{
static const char* StaticAlgorithmName()
{
// Format is Cipher-Blocksize(Keylength)
return "Kalyna-512";
}
};
/// \brief Kalyna block cipher base class
/// \since Crypto++ 6.0
class CRYPTOPP_NO_VTABLE Kalyna_Base
{
public:
virtual ~Kalyna_Base() {}
protected:
typedef SecBlock<word64, AllocatorWithCleanup<word64, true> > AlignedSecBlock64;
mutable AlignedSecBlock64 m_wspace; // work space
AlignedSecBlock64 m_mkey; // master key
AlignedSecBlock64 m_rkeys; // round keys
unsigned int m_kl, m_nb, m_nk; // number 64-bit blocks and keys
};
/// \brief Kalyna 128-bit block cipher
/// \details Kalyna128 provides 128-bit block size. The valid key sizes are 128-bit and 256-bit.
/// \since Crypto++ 6.0
class Kalyna128 : public Kalyna128_Info, public BlockCipherDocumentation
{
public:
class CRYPTOPP_NO_VTABLE Base : public Kalyna_Base, public BlockCipherImpl<Kalyna128_Info>
{
public:
/// \brief Provides the name of this algorithm
/// \return the standard algorithm name
/// \details If the object is unkeyed, then the generic name "Kalyna" is returned
/// to the caller. If the algorithm is keyed, then a two or three part name is
/// returned to the caller. The name follows DSTU 7624:2014, where block size is
/// provided first and then key length. The library uses a dash to identify block size
/// and parenthesis to identify key length. For example, Kalyna-128(256) is Kalyna
/// with a 128-bit block size and a 256-bit key length. If a mode is associated
/// with the object, then it follows as expected. For example, Kalyna-128(256)/ECB.
/// DSTU is a little more complex with more parameters, dashes, underscores, but the
/// library does not use the delimiters or full convention.
std::string AlgorithmName() const {
return std::string("Kalyna-128") + "(" + IntToString(m_kl*8) + ")";
}
/// \brief Provides input and output data alignment for optimal performance.
/// \return the input data alignment that provides optimal performance
/// \sa GetAlignment() and OptimalBlockSize()
unsigned int OptimalDataAlignment() const {
return GetAlignmentOf<word64>();
}
protected:
void UncheckedSetKey(const byte *key, unsigned int keylen, const NameValuePairs &params);
void ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const;
protected:
void SetKey_22(const word64 key[2]);
void SetKey_24(const word64 key[4]);
void ProcessBlock_22(const byte *inBlock, const byte *xorBlock, byte *outBlock) const;
void ProcessBlock_24(const byte *inBlock, const byte *xorBlock, byte *outBlock) const;
};
typedef BlockCipherFinal<ENCRYPTION, Base> Encryption;
typedef BlockCipherFinal<DECRYPTION, Base> Decryption;
};
/// \brief Kalyna 256-bit block cipher
/// \details Kalyna256 provides 256-bit block size. The valid key sizes are 256-bit and 512-bit.
/// \since Crypto++ 6.0
class Kalyna256 : public Kalyna256_Info, public BlockCipherDocumentation
{
public:
class CRYPTOPP_NO_VTABLE Base : public Kalyna_Base, public BlockCipherImpl<Kalyna256_Info>
{
public:
/// \brief Provides the name of this algorithm
/// \return the standard algorithm name
/// \details If the object is unkeyed, then the generic name "Kalyna" is returned
/// to the caller. If the algorithm is keyed, then a two or three part name is
/// returned to the caller. The name follows DSTU 7624:2014, where block size is
/// provided first and then key length. The library uses a dash to identify block size
/// and parenthesis to identify key length. For example, Kalyna-128(256) is Kalyna
/// with a 128-bit block size and a 256-bit key length. If a mode is associated
/// with the object, then it follows as expected. For example, Kalyna-128(256)/ECB.
/// DSTU is a little more complex with more parameters, dashes, underscores, but the
/// library does not use the delimiters or full convention.
std::string AlgorithmName() const {
return std::string("Kalyna-256") + "(" + IntToString(m_kl*8) + ")";
}
/// \brief Provides input and output data alignment for optimal performance.
/// \return the input data alignment that provides optimal performance
/// \sa GetAlignment() and OptimalBlockSize()
unsigned int OptimalDataAlignment() const {
return GetAlignmentOf<word64>();
}
protected:
void UncheckedSetKey(const byte *key, unsigned int keylen, const NameValuePairs &params);
void ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const;
protected:
void SetKey_44(const word64 key[4]);
void SetKey_48(const word64 key[8]);
void ProcessBlock_44(const byte *inBlock, const byte *xorBlock, byte *outBlock) const;
void ProcessBlock_48(const byte *inBlock, const byte *xorBlock, byte *outBlock) const;
};
typedef BlockCipherFinal<ENCRYPTION, Base> Encryption;
typedef BlockCipherFinal<DECRYPTION, Base> Decryption;
};
/// \brief Kalyna 512-bit block cipher
/// \details Kalyna512 provides 512-bit block size. The valid key size is 512-bit.
/// \since Crypto++ 6.0
class Kalyna512 : public Kalyna512_Info, public BlockCipherDocumentation
{
public:
class CRYPTOPP_NO_VTABLE Base : public Kalyna_Base, public BlockCipherImpl<Kalyna512_Info>
{
public:
/// \brief Provides the name of this algorithm
/// \return the standard algorithm name
/// \details If the object is unkeyed, then the generic name "Kalyna" is returned
/// to the caller. If the algorithm is keyed, then a two or three part name is
/// returned to the caller. The name follows DSTU 7624:2014, where block size is
/// provided first and then key length. The library uses a dash to identify block size
/// and parenthesis to identify key length. For example, Kalyna-128(256) is Kalyna
/// with a 128-bit block size and a 256-bit key length. If a mode is associated
/// with the object, then it follows as expected. For example, Kalyna-128(256)/ECB.
/// DSTU is a little more complex with more parameters, dashes, underscores, but the
/// library does not use the delimiters or full convention.
std::string AlgorithmName() const {
return std::string("Kalyna-512") + "(" + IntToString(m_kl*8) + ")";
}
/// \brief Provides input and output data alignment for optimal performance.
/// \return the input data alignment that provides optimal performance
/// \sa GetAlignment() and OptimalBlockSize()
unsigned int OptimalDataAlignment() const {
return GetAlignmentOf<word64>();
}
protected:
void UncheckedSetKey(const byte *key, unsigned int keylen, const NameValuePairs &params);
void ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const;
protected:
void SetKey_88(const word64 key[8]);
void ProcessBlock_88(const byte *inBlock, const byte *xorBlock, byte *outBlock) const;
};
typedef BlockCipherFinal<ENCRYPTION, Base> Encryption;
typedef BlockCipherFinal<DECRYPTION, Base> Decryption;
};
typedef Kalyna128::Encryption Kalyna128Encryption;
typedef Kalyna128::Decryption Kalyna128Decryption;
typedef Kalyna256::Encryption Kalyna256Encryption;
typedef Kalyna256::Decryption Kalyna256Decryption;
typedef Kalyna512::Encryption Kalyna512Encryption;
typedef Kalyna512::Decryption Kalyna512Decryption;
NAMESPACE_END
#endif // CRYPTOPP_KALYNA_H