source-engine/external/crypto++-5.61/modes.cpp
FluorescentCIAAfricanAmerican 3bf9df6b27 1
2020-04-22 12:56:21 -04:00

246 lines
7.3 KiB
C++

// modes.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#ifndef CRYPTOPP_IMPORTS
#include "modes.h"
#ifndef NDEBUG
#include "des.h"
#endif
NAMESPACE_BEGIN(CryptoPP)
#ifndef NDEBUG
void Modes_TestInstantiations()
{
CFB_Mode<DES>::Encryption m0;
CFB_Mode<DES>::Decryption m1;
OFB_Mode<DES>::Encryption m2;
CTR_Mode<DES>::Encryption m3;
ECB_Mode<DES>::Encryption m4;
CBC_Mode<DES>::Encryption m5;
}
#endif
void CFB_ModePolicy::Iterate(byte *output, const byte *input, CipherDir dir, size_t iterationCount)
{
assert(m_cipher->IsForwardTransformation()); // CFB mode needs the "encrypt" direction of the underlying block cipher, even to decrypt
assert(m_feedbackSize == BlockSize());
unsigned int s = BlockSize();
if (dir == ENCRYPTION)
{
m_cipher->ProcessAndXorBlock(m_register, input, output);
m_cipher->AdvancedProcessBlocks(output, input+s, output+s, (iterationCount-1)*s, 0);
memcpy(m_register, output+(iterationCount-1)*s, s);
}
else
{
memcpy(m_temp, input+(iterationCount-1)*s, s); // make copy first in case of in-place decryption
m_cipher->AdvancedProcessBlocks(input, input+s, output+s, (iterationCount-1)*s, BlockTransformation::BT_ReverseDirection);
m_cipher->ProcessAndXorBlock(m_register, input, output);
memcpy(m_register, m_temp, s);
}
}
void CFB_ModePolicy::TransformRegister()
{
assert(m_cipher->IsForwardTransformation()); // CFB mode needs the "encrypt" direction of the underlying block cipher, even to decrypt
m_cipher->ProcessBlock(m_register, m_temp);
unsigned int updateSize = BlockSize()-m_feedbackSize;
memmove_s(m_register, m_register.size(), m_register+m_feedbackSize, updateSize);
memcpy_s(m_register+updateSize, m_register.size()-updateSize, m_temp, m_feedbackSize);
}
void CFB_ModePolicy::CipherResynchronize(const byte *iv, size_t length)
{
assert(length == BlockSize());
CopyOrZero(m_register, iv, length);
TransformRegister();
}
void CFB_ModePolicy::SetFeedbackSize(unsigned int feedbackSize)
{
if (feedbackSize > BlockSize())
throw InvalidArgument("CFB_Mode: invalid feedback size");
m_feedbackSize = feedbackSize ? feedbackSize : BlockSize();
}
void CFB_ModePolicy::ResizeBuffers()
{
CipherModeBase::ResizeBuffers();
m_temp.New(BlockSize());
}
void OFB_ModePolicy::WriteKeystream(byte *keystreamBuffer, size_t iterationCount)
{
assert(m_cipher->IsForwardTransformation()); // OFB mode needs the "encrypt" direction of the underlying block cipher, even to decrypt
unsigned int s = BlockSize();
m_cipher->ProcessBlock(m_register, keystreamBuffer);
if (iterationCount > 1)
m_cipher->AdvancedProcessBlocks(keystreamBuffer, NULL, keystreamBuffer+s, s*(iterationCount-1), 0);
memcpy(m_register, keystreamBuffer+s*(iterationCount-1), s);
}
void OFB_ModePolicy::CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length)
{
assert(length == BlockSize());
CopyOrZero(m_register, iv, length);
}
void CTR_ModePolicy::SeekToIteration(lword iterationCount)
{
int carry=0;
for (int i=BlockSize()-1; i>=0; i--)
{
unsigned int sum = m_register[i] + byte(iterationCount) + carry;
m_counterArray[i] = (byte) sum;
carry = sum >> 8;
iterationCount >>= 8;
}
}
void CTR_ModePolicy::IncrementCounterBy256()
{
IncrementCounterByOne(m_counterArray, BlockSize()-1);
}
void CTR_ModePolicy::OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount)
{
assert(m_cipher->IsForwardTransformation()); // CTR mode needs the "encrypt" direction of the underlying block cipher, even to decrypt
unsigned int s = BlockSize();
unsigned int inputIncrement = input ? s : 0;
while (iterationCount)
{
byte lsb = m_counterArray[s-1];
size_t blocks = UnsignedMin(iterationCount, 256U-lsb);
m_cipher->AdvancedProcessBlocks(m_counterArray, input, output, blocks*s, BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_AllowParallel);
if ((m_counterArray[s-1] = lsb + (byte)blocks) == 0)
IncrementCounterBy256();
output += blocks*s;
input += blocks*inputIncrement;
iterationCount -= blocks;
}
}
void CTR_ModePolicy::CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length)
{
assert(length == BlockSize());
CopyOrZero(m_register, iv, length);
m_counterArray = m_register;
}
void BlockOrientedCipherModeBase::UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs &params)
{
m_cipher->SetKey(key, length, params);
ResizeBuffers();
if (IsResynchronizable())
{
size_t ivLength;
const byte *iv = GetIVAndThrowIfInvalid(params, ivLength);
Resynchronize(iv, (int)ivLength);
}
}
void ECB_OneWay::ProcessData(byte *outString, const byte *inString, size_t length)
{
assert(length%BlockSize()==0);
m_cipher->AdvancedProcessBlocks(inString, NULL, outString, length, BlockTransformation::BT_AllowParallel);
}
void CBC_Encryption::ProcessData(byte *outString, const byte *inString, size_t length)
{
if (!length)
return;
assert(length%BlockSize()==0);
unsigned int blockSize = BlockSize();
m_cipher->AdvancedProcessBlocks(inString, m_register, outString, blockSize, BlockTransformation::BT_XorInput);
if (length > blockSize)
m_cipher->AdvancedProcessBlocks(inString+blockSize, outString, outString+blockSize, length-blockSize, BlockTransformation::BT_XorInput);
memcpy(m_register, outString + length - blockSize, blockSize);
}
void CBC_CTS_Encryption::ProcessLastBlock(byte *outString, const byte *inString, size_t length)
{
if (length <= BlockSize())
{
if (!m_stolenIV)
throw InvalidArgument("CBC_Encryption: message is too short for ciphertext stealing");
// steal from IV
memcpy(outString, m_register, length);
outString = m_stolenIV;
}
else
{
// steal from next to last block
xorbuf(m_register, inString, BlockSize());
m_cipher->ProcessBlock(m_register);
inString += BlockSize();
length -= BlockSize();
memcpy(outString+BlockSize(), m_register, length);
}
// output last full ciphertext block
xorbuf(m_register, inString, length);
m_cipher->ProcessBlock(m_register);
memcpy(outString, m_register, BlockSize());
}
void CBC_Decryption::ProcessData(byte *outString, const byte *inString, size_t length)
{
if (!length)
return;
assert(length%BlockSize()==0);
unsigned int blockSize = BlockSize();
memcpy(m_temp, inString+length-blockSize, blockSize); // save copy now in case of in-place decryption
if (length > blockSize)
m_cipher->AdvancedProcessBlocks(inString+blockSize, inString, outString+blockSize, length-blockSize, BlockTransformation::BT_ReverseDirection|BlockTransformation::BT_AllowParallel);
m_cipher->ProcessAndXorBlock(inString, m_register, outString);
m_register.swap(m_temp);
}
void CBC_CTS_Decryption::ProcessLastBlock(byte *outString, const byte *inString, size_t length)
{
const byte *pn, *pn1;
bool stealIV = length <= BlockSize();
if (stealIV)
{
pn = inString;
pn1 = m_register;
}
else
{
pn = inString + BlockSize();
pn1 = inString;
length -= BlockSize();
}
// decrypt last partial plaintext block
memcpy(m_temp, pn1, BlockSize());
m_cipher->ProcessBlock(m_temp);
xorbuf(m_temp, pn, length);
if (stealIV)
memcpy(outString, m_temp, length);
else
{
memcpy(outString+BlockSize(), m_temp, length);
// decrypt next to last plaintext block
memcpy(m_temp, pn, length);
m_cipher->ProcessBlock(m_temp);
xorbuf(outString, m_temp, m_register, BlockSize());
}
}
NAMESPACE_END
#endif