source-engine/external/crypto++-5.61/cryptlib.cpp
FluorescentCIAAfricanAmerican 3bf9df6b27 1
2020-04-22 12:56:21 -04:00

835 lines
24 KiB
C++

// cryptlib.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#ifndef CRYPTOPP_IMPORTS
#include "cryptlib.h"
#include "misc.h"
#include "filters.h"
#include "algparam.h"
#include "fips140.h"
#include "argnames.h"
#include "fltrimpl.h"
#include "trdlocal.h"
#include "osrng.h"
#include <memory>
NAMESPACE_BEGIN(CryptoPP)
CRYPTOPP_COMPILE_ASSERT(sizeof(byte) == 1);
CRYPTOPP_COMPILE_ASSERT(sizeof(word16) == 2);
CRYPTOPP_COMPILE_ASSERT(sizeof(word32) == 4);
CRYPTOPP_COMPILE_ASSERT(sizeof(word64) == 8);
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
CRYPTOPP_COMPILE_ASSERT(sizeof(dword) == 2*sizeof(word));
#endif
// VALVE, changed DEFAULT_CHANNEL to a basic type from std::string
const char * DEFAULT_CHANNEL = "";
const std::string AAD_CHANNEL = "AAD";
const std::string &BufferedTransformation::NULL_CHANNEL = DEFAULT_CHANNEL;
class NullNameValuePairs : public NameValuePairs
{
public:
NullNameValuePairs() {}
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const {return false;}
};
// VALVE: Our debug allocator doesn't much care for global objects like this, it registers them
// as a memory leak during validation. So make them const.
//simple_ptr<NullNameValuePairs> s_pNullNameValuePairs(new NullNameValuePairs);
//const NameValuePairs &g_nullNameValuePairs = *s_pNullNameValuePairs.m_p;
const NullNameValuePairs s_NullNameValuePairs;
const NameValuePairs &g_nullNameValuePairs = s_NullNameValuePairs;
BufferedTransformation & TheBitBucket()
{
static BitBucket bitBucket;
return bitBucket;
}
Algorithm::Algorithm(bool checkSelfTestStatus)
{
if (checkSelfTestStatus && FIPS_140_2_ComplianceEnabled())
{
if (GetPowerUpSelfTestStatus() == POWER_UP_SELF_TEST_NOT_DONE && !PowerUpSelfTestInProgressOnThisThread())
throw SelfTestFailure("Cryptographic algorithms are disabled before the power-up self tests are performed.");
if (GetPowerUpSelfTestStatus() == POWER_UP_SELF_TEST_FAILED)
throw SelfTestFailure("Cryptographic algorithms are disabled after a power-up self test failed.");
}
}
void SimpleKeyingInterface::SetKey(const byte *key, size_t length, const NameValuePairs &params)
{
this->ThrowIfInvalidKeyLength(length);
this->UncheckedSetKey(key, (unsigned int)length, params);
}
void SimpleKeyingInterface::SetKeyWithRounds(const byte *key, size_t length, int rounds)
{
SetKey(key, length, MakeParameters(Name::Rounds(), rounds));
}
void SimpleKeyingInterface::SetKeyWithIV(const byte *key, size_t length, const byte *iv, size_t ivLength)
{
SetKey(key, length, MakeParameters(Name::IV(), ConstByteArrayParameter(iv, ivLength)));
}
void SimpleKeyingInterface::ThrowIfInvalidKeyLength(size_t length)
{
if (!IsValidKeyLength(length))
throw InvalidKeyLength(GetAlgorithm().AlgorithmName(), length);
}
void SimpleKeyingInterface::ThrowIfResynchronizable()
{
if (IsResynchronizable())
throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": this object requires an IV");
}
void SimpleKeyingInterface::ThrowIfInvalidIV(const byte *iv)
{
if (!iv && IVRequirement() == UNPREDICTABLE_RANDOM_IV)
throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": this object cannot use a null IV");
}
size_t SimpleKeyingInterface::ThrowIfInvalidIVLength(int size)
{
if (size < 0)
return IVSize();
else if ((size_t)size < MinIVLength())
throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": IV length " + IntToString(size) + " is less than the minimum of " + IntToString(MinIVLength()));
else if ((size_t)size > MaxIVLength())
throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": IV length " + IntToString(size) + " exceeds the maximum of " + IntToString(MaxIVLength()));
else
return size;
}
const byte * SimpleKeyingInterface::GetIVAndThrowIfInvalid(const NameValuePairs &params, size_t &size)
{
ConstByteArrayParameter ivWithLength;
const byte *iv;
bool found = false;
try {found = params.GetValue(Name::IV(), ivWithLength);}
catch (const NameValuePairs::ValueTypeMismatch &) {}
if (found)
{
iv = ivWithLength.begin();
ThrowIfInvalidIV(iv);
size = ThrowIfInvalidIVLength((int)ivWithLength.size());
return iv;
}
else if (params.GetValue(Name::IV(), iv))
{
ThrowIfInvalidIV(iv);
size = IVSize();
return iv;
}
else
{
ThrowIfResynchronizable();
size = 0;
return NULL;
}
}
void SimpleKeyingInterface::GetNextIV(RandomNumberGenerator &rng, byte *IV)
{
rng.GenerateBlock(IV, IVSize());
}
size_t BlockTransformation::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const
{
size_t blockSize = BlockSize();
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = xorBlocks ? blockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
if (flags & BT_ReverseDirection)
{
assert(length % blockSize == 0);
inBlocks += length - blockSize;
xorBlocks += length - blockSize;
outBlocks += length - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
while (length >= blockSize)
{
if (flags & BT_XorInput)
{
xorbuf(outBlocks, xorBlocks, inBlocks, blockSize);
ProcessBlock(outBlocks);
}
else
ProcessAndXorBlock(inBlocks, xorBlocks, outBlocks);
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[blockSize-1]++;
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
unsigned int BlockTransformation::OptimalDataAlignment() const
{
return GetAlignmentOf<word32>();
}
unsigned int StreamTransformation::OptimalDataAlignment() const
{
return GetAlignmentOf<word32>();
}
unsigned int HashTransformation::OptimalDataAlignment() const
{
return GetAlignmentOf<word32>();
}
void StreamTransformation::ProcessLastBlock(byte *outString, const byte *inString, size_t length)
{
assert(MinLastBlockSize() == 0); // this function should be overriden otherwise
if (length == MandatoryBlockSize())
ProcessData(outString, inString, length);
else if (length != 0)
throw NotImplemented(AlgorithmName() + ": this object does't support a special last block");
}
void AuthenticatedSymmetricCipher::SpecifyDataLengths(lword headerLength, lword messageLength, lword footerLength)
{
if (headerLength > MaxHeaderLength())
throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": header length " + IntToString(headerLength) + " exceeds the maximum of " + IntToString(MaxHeaderLength()));
if (messageLength > MaxMessageLength())
throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": message length " + IntToString(messageLength) + " exceeds the maximum of " + IntToString(MaxMessageLength()));
if (footerLength > MaxFooterLength())
throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": footer length " + IntToString(footerLength) + " exceeds the maximum of " + IntToString(MaxFooterLength()));
UncheckedSpecifyDataLengths(headerLength, messageLength, footerLength);
}
void AuthenticatedSymmetricCipher::EncryptAndAuthenticate(byte *ciphertext, byte *mac, size_t macSize, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *message, size_t messageLength)
{
Resynchronize(iv, ivLength);
SpecifyDataLengths(headerLength, messageLength);
Update(header, headerLength);
ProcessString(ciphertext, message, messageLength);
TruncatedFinal(mac, macSize);
}
bool AuthenticatedSymmetricCipher::DecryptAndVerify(byte *message, const byte *mac, size_t macLength, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *ciphertext, size_t ciphertextLength)
{
Resynchronize(iv, ivLength);
SpecifyDataLengths(headerLength, ciphertextLength);
Update(header, headerLength);
ProcessString(message, ciphertext, ciphertextLength);
return TruncatedVerify(mac, macLength);
}
unsigned int RandomNumberGenerator::GenerateBit()
{
return GenerateByte() & 1;
}
byte RandomNumberGenerator::GenerateByte()
{
byte b;
GenerateBlock(&b, 1);
return b;
}
word32 RandomNumberGenerator::GenerateWord32(word32 min, word32 max)
{
word32 range = max-min;
const int maxBits = BitPrecision(range);
word32 value;
do
{
GenerateBlock((byte *)&value, sizeof(value));
value = Crop(value, maxBits);
} while (value > range);
return value+min;
}
void RandomNumberGenerator::GenerateBlock(byte *output, size_t size)
{
ArraySink s(output, size);
GenerateIntoBufferedTransformation(s, DEFAULT_CHANNEL, size);
}
void RandomNumberGenerator::DiscardBytes(size_t n)
{
GenerateIntoBufferedTransformation(TheBitBucket(), DEFAULT_CHANNEL, n);
}
void RandomNumberGenerator::GenerateIntoBufferedTransformation(BufferedTransformation &target, const std::string &channel, lword length)
{
FixedSizeSecBlock<byte, 256> buffer;
while (length)
{
size_t len = UnsignedMin(buffer.size(), length);
GenerateBlock(buffer, len);
target.ChannelPut(channel, buffer, len);
length -= len;
}
}
//! see NullRNG()
class ClassNullRNG : public RandomNumberGenerator
{
public:
std::string AlgorithmName() const {return "NullRNG";}
void GenerateBlock(byte *output, size_t size) {throw NotImplemented("NullRNG: NullRNG should only be passed to functions that don't need to generate random bytes");}
};
RandomNumberGenerator & NullRNG()
{
static ClassNullRNG s_nullRNG;
return s_nullRNG;
}
bool HashTransformation::TruncatedVerify(const byte *digestIn, size_t digestLength)
{
ThrowIfInvalidTruncatedSize(digestLength);
SecByteBlock digest(digestLength);
TruncatedFinal(digest, digestLength);
return VerifyBufsEqual(digest, digestIn, digestLength);
}
void HashTransformation::ThrowIfInvalidTruncatedSize(size_t size) const
{
if (size > DigestSize())
throw InvalidArgument("HashTransformation: can't truncate a " + IntToString(DigestSize()) + " byte digest to " + IntToString(size) + " bytes");
}
unsigned int BufferedTransformation::GetMaxWaitObjectCount() const
{
const BufferedTransformation *t = AttachedTransformation();
return t ? t->GetMaxWaitObjectCount() : 0;
}
void BufferedTransformation::GetWaitObjects(WaitObjectContainer &container, CallStack const& callStack)
{
BufferedTransformation *t = AttachedTransformation();
if (t)
t->GetWaitObjects(container, callStack); // reduce clutter by not adding to stack here
}
void BufferedTransformation::Initialize(const NameValuePairs &parameters, int propagation)
{
assert(!AttachedTransformation());
IsolatedInitialize(parameters);
}
bool BufferedTransformation::Flush(bool hardFlush, int propagation, bool blocking)
{
assert(!AttachedTransformation());
return IsolatedFlush(hardFlush, blocking);
}
bool BufferedTransformation::MessageSeriesEnd(int propagation, bool blocking)
{
assert(!AttachedTransformation());
return IsolatedMessageSeriesEnd(blocking);
}
byte * BufferedTransformation::ChannelCreatePutSpace(const std::string &channel, size_t &size)
{
if (channel.empty())
return CreatePutSpace(size);
else
throw NoChannelSupport(AlgorithmName());
}
size_t BufferedTransformation::ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking)
{
if (channel.empty())
return Put2(begin, length, messageEnd, blocking);
else
throw NoChannelSupport(AlgorithmName());
}
size_t BufferedTransformation::ChannelPutModifiable2(const std::string &channel, byte *begin, size_t length, int messageEnd, bool blocking)
{
if (channel.empty())
return PutModifiable2(begin, length, messageEnd, blocking);
else
return ChannelPut2(channel, begin, length, messageEnd, blocking);
}
bool BufferedTransformation::ChannelFlush(const std::string &channel, bool completeFlush, int propagation, bool blocking)
{
if (channel.empty())
return Flush(completeFlush, propagation, blocking);
else
throw NoChannelSupport(AlgorithmName());
}
bool BufferedTransformation::ChannelMessageSeriesEnd(const std::string &channel, int propagation, bool blocking)
{
if (channel.empty())
return MessageSeriesEnd(propagation, blocking);
else
throw NoChannelSupport(AlgorithmName());
}
lword BufferedTransformation::MaxRetrievable() const
{
if (AttachedTransformation())
return AttachedTransformation()->MaxRetrievable();
else
return CopyTo(TheBitBucket());
}
bool BufferedTransformation::AnyRetrievable() const
{
if (AttachedTransformation())
return AttachedTransformation()->AnyRetrievable();
else
{
byte b;
return Peek(b) != 0;
}
}
size_t BufferedTransformation::Get(byte &outByte)
{
if (AttachedTransformation())
return AttachedTransformation()->Get(outByte);
else
return Get(&outByte, 1);
}
size_t BufferedTransformation::Get(byte *outString, size_t getMax)
{
if (AttachedTransformation())
return AttachedTransformation()->Get(outString, getMax);
else
{
ArraySink arraySink(outString, getMax);
return (size_t)TransferTo(arraySink, getMax);
}
}
size_t BufferedTransformation::Peek(byte &outByte) const
{
if (AttachedTransformation())
return AttachedTransformation()->Peek(outByte);
else
return Peek(&outByte, 1);
}
size_t BufferedTransformation::Peek(byte *outString, size_t peekMax) const
{
if (AttachedTransformation())
return AttachedTransformation()->Peek(outString, peekMax);
else
{
ArraySink arraySink(outString, peekMax);
return (size_t)CopyTo(arraySink, peekMax);
}
}
lword BufferedTransformation::Skip(lword skipMax)
{
if (AttachedTransformation())
return AttachedTransformation()->Skip(skipMax);
else
return TransferTo(TheBitBucket(), skipMax);
}
lword BufferedTransformation::TotalBytesRetrievable() const
{
if (AttachedTransformation())
return AttachedTransformation()->TotalBytesRetrievable();
else
return MaxRetrievable();
}
unsigned int BufferedTransformation::NumberOfMessages() const
{
if (AttachedTransformation())
return AttachedTransformation()->NumberOfMessages();
else
return CopyMessagesTo(TheBitBucket());
}
bool BufferedTransformation::AnyMessages() const
{
if (AttachedTransformation())
return AttachedTransformation()->AnyMessages();
else
return NumberOfMessages() != 0;
}
bool BufferedTransformation::GetNextMessage()
{
if (AttachedTransformation())
return AttachedTransformation()->GetNextMessage();
else
{
assert(!AnyMessages());
return false;
}
}
unsigned int BufferedTransformation::SkipMessages(unsigned int count)
{
if (AttachedTransformation())
return AttachedTransformation()->SkipMessages(count);
else
return TransferMessagesTo(TheBitBucket(), count);
}
size_t BufferedTransformation::TransferMessagesTo2(BufferedTransformation &target, unsigned int &messageCount, const std::string &channel, bool blocking)
{
if (AttachedTransformation())
return AttachedTransformation()->TransferMessagesTo2(target, messageCount, channel, blocking);
else
{
unsigned int maxMessages = messageCount;
for (messageCount=0; messageCount < maxMessages && AnyMessages(); messageCount++)
{
size_t blockedBytes;
lword transferredBytes;
while (AnyRetrievable())
{
transferredBytes = LWORD_MAX;
blockedBytes = TransferTo2(target, transferredBytes, channel, blocking);
if (blockedBytes > 0)
return blockedBytes;
}
if (target.ChannelMessageEnd(channel, GetAutoSignalPropagation(), blocking))
return 1;
bool result = GetNextMessage();
assert(result);
}
return 0;
}
}
unsigned int BufferedTransformation::CopyMessagesTo(BufferedTransformation &target, unsigned int count, const std::string &channel) const
{
if (AttachedTransformation())
return AttachedTransformation()->CopyMessagesTo(target, count, channel);
else
return 0;
}
void BufferedTransformation::SkipAll()
{
if (AttachedTransformation())
AttachedTransformation()->SkipAll();
else
{
while (SkipMessages()) {}
while (Skip()) {}
}
}
size_t BufferedTransformation::TransferAllTo2(BufferedTransformation &target, const std::string &channel, bool blocking)
{
if (AttachedTransformation())
return AttachedTransformation()->TransferAllTo2(target, channel, blocking);
else
{
assert(!NumberOfMessageSeries());
unsigned int messageCount;
do
{
messageCount = UINT_MAX;
size_t blockedBytes = TransferMessagesTo2(target, messageCount, channel, blocking);
if (blockedBytes)
return blockedBytes;
}
while (messageCount != 0);
lword byteCount;
do
{
byteCount = ULONG_MAX;
size_t blockedBytes = TransferTo2(target, byteCount, channel, blocking);
if (blockedBytes)
return blockedBytes;
}
while (byteCount != 0);
return 0;
}
}
void BufferedTransformation::CopyAllTo(BufferedTransformation &target, const std::string &channel) const
{
if (AttachedTransformation())
AttachedTransformation()->CopyAllTo(target, channel);
else
{
assert(!NumberOfMessageSeries());
while (CopyMessagesTo(target, UINT_MAX, channel)) {}
}
}
void BufferedTransformation::SetRetrievalChannel(const std::string &channel)
{
if (AttachedTransformation())
AttachedTransformation()->SetRetrievalChannel(channel);
}
size_t BufferedTransformation::ChannelPutWord16(const std::string &channel, word16 value, ByteOrder order, bool blocking)
{
PutWord(false, order, m_buf, value);
return ChannelPut(channel, m_buf, 2, blocking);
}
size_t BufferedTransformation::ChannelPutWord32(const std::string &channel, word32 value, ByteOrder order, bool blocking)
{
PutWord(false, order, m_buf, value);
return ChannelPut(channel, m_buf, 4, blocking);
}
size_t BufferedTransformation::PutWord16(word16 value, ByteOrder order, bool blocking)
{
return ChannelPutWord16(DEFAULT_CHANNEL, value, order, blocking);
}
size_t BufferedTransformation::PutWord32(word32 value, ByteOrder order, bool blocking)
{
return ChannelPutWord32(DEFAULT_CHANNEL, value, order, blocking);
}
size_t BufferedTransformation::PeekWord16(word16 &value, ByteOrder order) const
{
byte buf[2] = {0, 0};
size_t len = Peek(buf, 2);
if (order)
value = (buf[0] << 8) | buf[1];
else
value = (buf[1] << 8) | buf[0];
return len;
}
size_t BufferedTransformation::PeekWord32(word32 &value, ByteOrder order) const
{
byte buf[4] = {0, 0, 0, 0};
size_t len = Peek(buf, 4);
if (order)
value = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf [3];
else
value = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf [0];
return len;
}
size_t BufferedTransformation::GetWord16(word16 &value, ByteOrder order)
{
return (size_t)Skip(PeekWord16(value, order));
}
size_t BufferedTransformation::GetWord32(word32 &value, ByteOrder order)
{
return (size_t)Skip(PeekWord32(value, order));
}
void BufferedTransformation::Attach(BufferedTransformation *newOut)
{
if (AttachedTransformation() && AttachedTransformation()->Attachable())
AttachedTransformation()->Attach(newOut);
else
Detach(newOut);
}
void GeneratableCryptoMaterial::GenerateRandomWithKeySize(RandomNumberGenerator &rng, unsigned int keySize)
{
GenerateRandom(rng, MakeParameters("KeySize", (int)keySize));
}
class PK_DefaultEncryptionFilter : public Unflushable<Filter>
{
public:
PK_DefaultEncryptionFilter(RandomNumberGenerator &rng, const PK_Encryptor &encryptor, BufferedTransformation *attachment, const NameValuePairs &parameters)
: m_rng(rng), m_encryptor(encryptor), m_parameters(parameters)
{
Detach(attachment);
}
size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
{
FILTER_BEGIN;
m_plaintextQueue.Put(inString, length);
if (messageEnd)
{
{
size_t plaintextLength;
if (!SafeConvert(m_plaintextQueue.CurrentSize(), plaintextLength))
throw InvalidArgument("PK_DefaultEncryptionFilter: plaintext too long");
size_t ciphertextLength = m_encryptor.CiphertextLength(plaintextLength);
SecByteBlock plaintext(plaintextLength);
m_plaintextQueue.Get(plaintext, plaintextLength);
m_ciphertext.resize(ciphertextLength);
m_encryptor.Encrypt(m_rng, plaintext, plaintextLength, m_ciphertext, m_parameters);
}
FILTER_OUTPUT(1, m_ciphertext, m_ciphertext.size(), messageEnd);
}
FILTER_END_NO_MESSAGE_END;
}
RandomNumberGenerator &m_rng;
const PK_Encryptor &m_encryptor;
const NameValuePairs &m_parameters;
ByteQueue m_plaintextQueue;
SecByteBlock m_ciphertext;
};
BufferedTransformation * PK_Encryptor::CreateEncryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment, const NameValuePairs &parameters) const
{
return new PK_DefaultEncryptionFilter(rng, *this, attachment, parameters);
}
class PK_DefaultDecryptionFilter : public Unflushable<Filter>
{
public:
PK_DefaultDecryptionFilter(RandomNumberGenerator &rng, const PK_Decryptor &decryptor, BufferedTransformation *attachment, const NameValuePairs &parameters)
: m_rng(rng), m_decryptor(decryptor), m_parameters(parameters)
{
Detach(attachment);
}
size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
{
FILTER_BEGIN;
m_ciphertextQueue.Put(inString, length);
if (messageEnd)
{
{
size_t ciphertextLength;
if (!SafeConvert(m_ciphertextQueue.CurrentSize(), ciphertextLength))
throw InvalidArgument("PK_DefaultDecryptionFilter: ciphertext too long");
size_t maxPlaintextLength = m_decryptor.MaxPlaintextLength(ciphertextLength);
SecByteBlock ciphertext(ciphertextLength);
m_ciphertextQueue.Get(ciphertext, ciphertextLength);
m_plaintext.resize(maxPlaintextLength);
m_result = m_decryptor.Decrypt(m_rng, ciphertext, ciphertextLength, m_plaintext, m_parameters);
if (!m_result.isValidCoding)
throw InvalidCiphertext(m_decryptor.AlgorithmName() + ": invalid ciphertext");
}
FILTER_OUTPUT(1, m_plaintext, m_result.messageLength, messageEnd);
}
FILTER_END_NO_MESSAGE_END;
}
RandomNumberGenerator &m_rng;
const PK_Decryptor &m_decryptor;
const NameValuePairs &m_parameters;
ByteQueue m_ciphertextQueue;
SecByteBlock m_plaintext;
DecodingResult m_result;
};
BufferedTransformation * PK_Decryptor::CreateDecryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment, const NameValuePairs &parameters) const
{
return new PK_DefaultDecryptionFilter(rng, *this, attachment, parameters);
}
size_t PK_Signer::Sign(RandomNumberGenerator &rng, PK_MessageAccumulator *messageAccumulator, byte *signature) const
{
std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
return SignAndRestart(rng, *m, signature, false);
}
size_t PK_Signer::SignMessage(RandomNumberGenerator &rng, const byte *message, size_t messageLen, byte *signature) const
{
std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
m->Update(message, messageLen);
return SignAndRestart(rng, *m, signature, false);
}
size_t PK_Signer::SignMessageWithRecovery(RandomNumberGenerator &rng, const byte *recoverableMessage, size_t recoverableMessageLength,
const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, byte *signature) const
{
std::auto_ptr<PK_MessageAccumulator> m(NewSignatureAccumulator(rng));
InputRecoverableMessage(*m, recoverableMessage, recoverableMessageLength);
m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
return SignAndRestart(rng, *m, signature, false);
}
bool PK_Verifier::Verify(PK_MessageAccumulator *messageAccumulator) const
{
std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
return VerifyAndRestart(*m);
}
bool PK_Verifier::VerifyMessage(const byte *message, size_t messageLen, const byte *signature, size_t signatureLength) const
{
std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
InputSignature(*m, signature, signatureLength);
m->Update(message, messageLen);
return VerifyAndRestart(*m);
}
DecodingResult PK_Verifier::Recover(byte *recoveredMessage, PK_MessageAccumulator *messageAccumulator) const
{
std::auto_ptr<PK_MessageAccumulator> m(messageAccumulator);
return RecoverAndRestart(recoveredMessage, *m);
}
DecodingResult PK_Verifier::RecoverMessage(byte *recoveredMessage,
const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength,
const byte *signature, size_t signatureLength) const
{
std::auto_ptr<PK_MessageAccumulator> m(NewVerificationAccumulator());
InputSignature(*m, signature, signatureLength);
m->Update(nonrecoverableMessage, nonrecoverableMessageLength);
return RecoverAndRestart(recoveredMessage, *m);
}
void SimpleKeyAgreementDomain::GenerateKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
{
GeneratePrivateKey(rng, privateKey);
GeneratePublicKey(rng, privateKey, publicKey);
}
void AuthenticatedKeyAgreementDomain::GenerateStaticKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
{
GenerateStaticPrivateKey(rng, privateKey);
GenerateStaticPublicKey(rng, privateKey, publicKey);
}
void AuthenticatedKeyAgreementDomain::GenerateEphemeralKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const
{
GenerateEphemeralPrivateKey(rng, privateKey);
GenerateEphemeralPublicKey(rng, privateKey, publicKey);
}
NAMESPACE_END
#endif