mirror of
https://github.com/nillerusr/source-engine.git
synced 2025-01-12 02:16:42 +00:00
1056 lines
35 KiB
C
1056 lines
35 KiB
C
#ifndef RR_SPRINTF_H_INCLUDE
|
|
#define RR_SPRINTF_H_INCLUDE
|
|
|
|
/*
|
|
Single file sprintf replacement.
|
|
|
|
Originally written by Jeff Roberts at RAD Game Tools - 2015/10/20.
|
|
Hereby placed in public domain.
|
|
|
|
This is a full sprintf replacement that supports everything that
|
|
the C runtime sprintfs support, including float/double, 64-bit integers,
|
|
hex floats, field parameters (%*.*d stuff), length reads backs, etc.
|
|
|
|
Why would you need this if sprintf already exists? Well, first off,
|
|
it's *much* faster (see below). It's also much smaller than the CRT
|
|
versions code-space-wise. We've also added some simple improvements
|
|
that are super handy (commas in thousands, callbacks at buffer full,
|
|
for example). Finally, the format strings for MSVC and GCC differ
|
|
for 64-bit integers (among other small things), so this lets you use
|
|
the same format strings in cross platform code.
|
|
|
|
It uses the standard single file trick of being both the header file
|
|
and the source itself. If you just include it normally, you just get
|
|
the header file function definitions. To get the code, you include
|
|
it from a C or C++ file and define RR_SPRINTF_IMPLEMENTATION first.
|
|
|
|
It only uses va_args macros from the C runtime to do it's work. It
|
|
does cast doubles to S64s and shifts and divides U64s, which does
|
|
drag in CRT code on most platforms.
|
|
|
|
It compiles to roughly 8K with float support, and 4K without.
|
|
As a comparison, when using MSVC static libs, calling sprintf drags
|
|
in 16K.
|
|
|
|
API:
|
|
====
|
|
int rrsprintf( char * buf, char const * fmt, ... )
|
|
int rrsnprintf( char * buf, int count, char const * fmt, ... )
|
|
Convert an arg list into a buffer. rrsnprintf always returns
|
|
a zero-terminated string (unlike regular snprintf).
|
|
|
|
int rrvsprintf( char * buf, char const * fmt, va_list va )
|
|
int rrvsnprintf( char * buf, int count, char const * fmt, va_list va )
|
|
Convert a va_list arg list into a buffer. rrvsnprintf always returns
|
|
a zero-terminated string (unlike regular snprintf).
|
|
|
|
int rrvsprintfcb( RRSPRINTFCB * callback, void * user, char * buf, char const * fmt, va_list va )
|
|
typedef char * RRSPRINTFCB( char const * buf, void * user, int len );
|
|
Convert into a buffer, calling back every RR_SPRINTF_MIN chars.
|
|
Your callback can then copy the chars out, print them or whatever.
|
|
This function is actually the workhorse for everything else.
|
|
The buffer you pass in must hold at least RR_SPRINTF_MIN characters.
|
|
// you return the next buffer to use or 0 to stop converting
|
|
|
|
void rrsetseparators( char comma, char period )
|
|
Set the comma and period characters to use.
|
|
|
|
FLOATS/DOUBLES:
|
|
===============
|
|
This code uses a internal float->ascii conversion method that uses
|
|
doubles with error correction (double-doubles, for ~105 bits of
|
|
precision). This conversion is round-trip perfect - that is, an atof
|
|
of the values output here will give you the bit-exact double back.
|
|
|
|
One difference is that our insignificant digits will be different than
|
|
with MSVC or GCC (but they don't match each other either). We also
|
|
don't attempt to find the minimum length matching float (pre-MSVC15
|
|
doesn't either).
|
|
|
|
If you don't need float or doubles at all, define RR_SPRINTF_NOFLOAT
|
|
and you'll save 4K of code space.
|
|
|
|
64-BIT INTS:
|
|
============
|
|
This library also supports 64-bit integers and you can use MSVC style or
|
|
GCC style indicators (%I64d or %lld). It supports the C99 specifiers
|
|
for size_t and ptr_diff_t (%jd %zd) as well.
|
|
|
|
EXTRAS:
|
|
=======
|
|
Like some GCCs, for integers and floats, you can use a ' (single quote)
|
|
specifier and commas will be inserted on the thousands: "%'d" on 12345
|
|
would print 12,345.
|
|
|
|
For integers and floats, you can use a "$" specifier and the number
|
|
will be converted to float and then divided to get kilo, mega, giga or
|
|
tera and then printed, so "%$d" 1024 is "1.0 k", "%$.2d" 2536000 is
|
|
"2.42 m", etc.
|
|
|
|
In addition to octal and hexadecimal conversions, you can print
|
|
integers in binary: "%b" for 256 would print 100.
|
|
|
|
PERFORMANCE vs MSVC 2008 32-/64-bit (GCC is even slower than MSVC):
|
|
===================================================================
|
|
"%d" across all 32-bit ints (4.8x/4.0x faster than 32-/64-bit MSVC)
|
|
"%24d" across all 32-bit ints (4.5x/4.2x faster)
|
|
"%x" across all 32-bit ints (4.5x/3.8x faster)
|
|
"%08x" across all 32-bit ints (4.3x/3.8x faster)
|
|
"%f" across e-10 to e+10 floats (7.3x/6.0x faster)
|
|
"%e" across e-10 to e+10 floats (8.1x/6.0x faster)
|
|
"%g" across e-10 to e+10 floats (10.0x/7.1x faster)
|
|
"%f" for values near e-300 (7.9x/6.5x faster)
|
|
"%f" for values near e+300 (10.0x/9.1x faster)
|
|
"%e" for values near e-300 (10.1x/7.0x faster)
|
|
"%e" for values near e+300 (9.2x/6.0x faster)
|
|
"%.320f" for values near e-300 (12.6x/11.2x faster)
|
|
"%a" for random values (8.6x/4.3x faster)
|
|
"%I64d" for 64-bits with 32-bit values (4.8x/3.4x faster)
|
|
"%I64d" for 64-bits > 32-bit values (4.9x/5.5x faster)
|
|
"%s%s%s" for 64 char strings (7.1x/7.3x faster)
|
|
"...512 char string..." ( 35.0x/32.5x faster!)
|
|
*/
|
|
|
|
#ifdef RR_SPRINTF_STATIC
|
|
#define RRPUBLIC_DEC static
|
|
#define RRPUBLIC_DEF static
|
|
#else
|
|
#ifdef __cplusplus
|
|
#define RRPUBLIC_DEC extern "C"
|
|
#define RRPUBLIC_DEF extern "C"
|
|
#else
|
|
#define RRPUBLIC_DEC extern
|
|
#define RRPUBLIC_DEF
|
|
#endif
|
|
#endif
|
|
|
|
#include <stdarg.h> // for va_list()
|
|
|
|
#ifndef RR_SPRINTF_MIN
|
|
#define RR_SPRINTF_MIN 512 // how many characters per callback
|
|
#endif
|
|
typedef char * RRSPRINTFCB( char * buf, void * user, int len );
|
|
|
|
#ifndef RR_SPRINTF_DECORATE
|
|
#define RR_SPRINTF_DECORATE(name) rr##name // define this before including if you want to change the names
|
|
#endif
|
|
|
|
#ifndef RR_SPRINTF_IMPLEMENTATION
|
|
|
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsprintf )( char * buf, char const * fmt, va_list va );
|
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsnprintf )( char * buf, int count, char const * fmt, va_list va );
|
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( sprintf ) ( char * buf, char const * fmt, ... );
|
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( snprintf )( char * buf, int count, char const * fmt, ... );
|
|
|
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsprintfcb )( RRSPRINTFCB * callback, void * user, char * buf, char const * fmt, va_list va );
|
|
RRPUBLIC_DEF void RR_SPRINTF_DECORATE( setseparators )( char comma, char period );
|
|
|
|
#else
|
|
|
|
#include <stdlib.h> // for va_arg()
|
|
|
|
#define rU32 unsigned int
|
|
#define rS32 signed int
|
|
|
|
#ifdef _MSC_VER
|
|
#define rU64 unsigned __int64
|
|
#define rS64 signed __int64
|
|
#else
|
|
#define rU64 unsigned long long
|
|
#define rS64 signed long long
|
|
#endif
|
|
#define rU16 unsigned short
|
|
|
|
#ifndef rUINTa
|
|
#if defined(__ppc64__) || defined(__aarch64__) || defined(_M_X64) || defined(__x86_64__) || defined(__x86_64)
|
|
#define rUINTa rU64
|
|
#else
|
|
#define rUINTa rU32
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef RR_SPRINTF_MSVC_MODE // used for MSVC2013 and earlier (MSVC2015 matches GCC)
|
|
#if defined(_MSC_VER) && (_MSC_VER<1900)
|
|
#define RR_SPRINTF_MSVC_MODE
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef RR_SPRINTF_NOUNALIGNED // define this before inclusion to force rrsprint to always use aligned accesses
|
|
#define RR_UNALIGNED(code)
|
|
#else
|
|
#define RR_UNALIGNED(code) code
|
|
#endif
|
|
|
|
#ifndef RR_SPRINTF_NOFLOAT
|
|
// internal float utility functions
|
|
static rS32 rrreal_to_str( char const * * start, rU32 * len, char *out, rS32 * decimal_pos, double value, rU32 frac_digits );
|
|
static rS32 rrreal_to_parts( rS64 * bits, rS32 * expo, double value );
|
|
#define RRSPECIAL 0x7000
|
|
#endif
|
|
|
|
static char RRperiod='.';
|
|
static char RRcomma=',';
|
|
static char rrdiglookup[201]="00010203040506070809101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899";
|
|
|
|
RRPUBLIC_DEF void RR_SPRINTF_DECORATE( setseparators )( char pcomma, char pperiod )
|
|
{
|
|
RRperiod=pperiod;
|
|
RRcomma=pcomma;
|
|
}
|
|
|
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsprintfcb )( RRSPRINTFCB * callback, void * user, char * buf, char const * fmt, va_list va )
|
|
{
|
|
static char hex[]="0123456789abcdefxp";
|
|
static char hexu[]="0123456789ABCDEFXP";
|
|
char * bf;
|
|
char const * f;
|
|
int tlen = 0;
|
|
|
|
bf = buf;
|
|
f = fmt;
|
|
for(;;)
|
|
{
|
|
rS32 fw,pr,tz; rU32 fl;
|
|
|
|
#define LJ 1
|
|
#define LP 2
|
|
#define LS 4
|
|
#define LX 8
|
|
#define LZ 16
|
|
#define BI 32
|
|
#define CS 64
|
|
#define NG 128
|
|
#define KI 256
|
|
#define HW 512
|
|
|
|
// macros for the callback buffer stuff
|
|
#define chk_cb_bufL(bytes) { int len = (int)(bf-buf); if ((len+(bytes))>=RR_SPRINTF_MIN) { tlen+=len; if (0==(bf=buf=callback(buf,user,len))) goto done; } }
|
|
#define chk_cb_buf(bytes) { if ( callback ) { chk_cb_bufL(bytes); } }
|
|
#define flush_cb() { chk_cb_bufL(RR_SPRINTF_MIN-1); } //flush if there is even one byte in the buffer
|
|
#define cb_buf_clamp(cl,v) cl = v; if ( callback ) { int lg = RR_SPRINTF_MIN-(int)(bf-buf); if (cl>lg) cl=lg; }
|
|
|
|
// fast copy everything up to the next % (or end of string)
|
|
for(;;)
|
|
{
|
|
while (((rUINTa)f)&3)
|
|
{
|
|
schk1: if (f[0]=='%') goto scandd;
|
|
schk2: if (f[0]==0) goto endfmt;
|
|
chk_cb_buf(1); *bf++=f[0]; ++f;
|
|
}
|
|
for(;;)
|
|
{
|
|
rU32 v,c;
|
|
v=*(rU32*)f; c=(~v)&0x80808080;
|
|
if ((v-0x26262626)&c) goto schk1;
|
|
if ((v-0x01010101)&c) goto schk2;
|
|
if (callback) if ((RR_SPRINTF_MIN-(int)(bf-buf))<4) goto schk1;
|
|
*(rU32*)bf=v; bf+=4; f+=4;
|
|
}
|
|
} scandd:
|
|
|
|
++f;
|
|
|
|
// ok, we have a percent, read the modifiers first
|
|
fw = 0; pr = -1; fl = 0; tz = 0;
|
|
|
|
// flags
|
|
for(;;)
|
|
{
|
|
switch(f[0])
|
|
{
|
|
// if we have left just
|
|
case '-': fl|=LJ; ++f; continue;
|
|
// if we have leading plus
|
|
case '+': fl|=LP; ++f; continue;
|
|
// if we have leading space
|
|
case ' ': fl|=LS; ++f; continue;
|
|
// if we have leading 0x
|
|
case '#': fl|=LX; ++f; continue;
|
|
// if we have thousand commas
|
|
case '\'': fl|=CS; ++f; continue;
|
|
// if we have kilo marker
|
|
case '$': fl|=KI; ++f; continue;
|
|
// if we have leading zero
|
|
case '0': fl|=LZ; ++f; goto flags_done;
|
|
default: goto flags_done;
|
|
}
|
|
}
|
|
flags_done:
|
|
|
|
// get the field width
|
|
if ( f[0] == '*' ) {fw = va_arg(va,rU32); ++f;} else { while (( f[0] >= '0' ) && ( f[0] <= '9' )) { fw = fw * 10 + f[0] - '0'; f++; } }
|
|
// get the precision
|
|
if ( f[0]=='.' ) { ++f; if ( f[0] == '*' ) {pr = va_arg(va,rU32); ++f;} else { pr = 0; while (( f[0] >= '0' ) && ( f[0] <= '9' )) { pr = pr * 10 + f[0] - '0'; f++; } } }
|
|
|
|
// handle integer size overrides
|
|
switch(f[0])
|
|
{
|
|
// are we halfwidth?
|
|
case 'h': fl|=HW; ++f; break;
|
|
// are we 64-bit (unix style)
|
|
case 'l': ++f; if ( f[0]=='l') { fl|=BI; ++f; } break;
|
|
// are we 64-bit on intmax? (c99)
|
|
case 'j': fl|=BI; ++f; break;
|
|
// are we 64-bit on size_t or ptrdiff_t? (c99)
|
|
case 'z': case 't': fl|=((sizeof(char*)==8)?BI:0); ++f; break;
|
|
// are we 64-bit (msft style)
|
|
case 'I': if ( ( f[1]=='6') && ( f[2]=='4') ) { fl|=BI; f+=3; } else if ( ( f[1]=='3') && ( f[2]=='2') ) { f+=3; } else { fl|=((sizeof(void*)==8)?BI:0); ++f; } break;
|
|
default: break;
|
|
}
|
|
|
|
// handle each replacement
|
|
switch( f[0] )
|
|
{
|
|
#define NUMSZ 512 // big enough for e308 (with commas) or e-307
|
|
char num[NUMSZ];
|
|
char lead[8];
|
|
char tail[8];
|
|
char *s;
|
|
char const *h;
|
|
rU32 l,n,cs;
|
|
rU64 n64;
|
|
#ifndef RR_SPRINTF_NOFLOAT
|
|
double fv;
|
|
#endif
|
|
rS32 dp; char const * sn;
|
|
|
|
case 's':
|
|
// get the string
|
|
s = va_arg(va,char*); if (s==0) s = (char*)"null";
|
|
// get the length
|
|
sn = s;
|
|
for(;;)
|
|
{
|
|
if ((((rUINTa)sn)&3)==0) break;
|
|
lchk:
|
|
if (sn[0]==0) goto ld;
|
|
++sn;
|
|
}
|
|
n = 0xffffffff;
|
|
if (pr>=0) { n=(rU32)(sn-s); if (n>=(rU32)pr) goto ld; n=((rU32)(pr-n))>>2; }
|
|
while(n)
|
|
{
|
|
rU32 v=*(rU32*)sn;
|
|
if ((v-0x01010101)&(~v)&0x80808080UL) goto lchk;
|
|
sn+=4;
|
|
--n;
|
|
}
|
|
goto lchk;
|
|
ld:
|
|
|
|
l = (rU32) ( sn - s );
|
|
// clamp to precision
|
|
if ( l > (rU32)pr ) l = pr;
|
|
lead[0]=0; tail[0]=0; pr = 0; dp = 0; cs = 0;
|
|
// copy the string in
|
|
goto scopy;
|
|
|
|
case 'c': // char
|
|
// get the character
|
|
s = num + NUMSZ -1; *s = (char)va_arg(va,int);
|
|
l = 1;
|
|
lead[0]=0; tail[0]=0; pr = 0; dp = 0; cs = 0;
|
|
goto scopy;
|
|
|
|
case 'n': // weird write-bytes specifier
|
|
{ int * d = va_arg(va,int*);
|
|
*d = tlen + (int)( bf - buf ); }
|
|
break;
|
|
|
|
#ifdef RR_SPRINTF_NOFLOAT
|
|
case 'A': // float
|
|
case 'a': // hex float
|
|
case 'G': // float
|
|
case 'g': // float
|
|
case 'E': // float
|
|
case 'e': // float
|
|
case 'f': // float
|
|
va_arg(va,double); // eat it
|
|
s = (char*)"No float";
|
|
l = 8;
|
|
lead[0]=0; tail[0]=0; pr = 0; dp = 0; cs = 0;
|
|
goto scopy;
|
|
#else
|
|
case 'A': // float
|
|
h=hexu;
|
|
goto hexfloat;
|
|
|
|
case 'a': // hex float
|
|
h=hex;
|
|
hexfloat:
|
|
fv = va_arg(va,double);
|
|
if (pr==-1) pr=6; // default is 6
|
|
// read the double into a string
|
|
if ( rrreal_to_parts( (rS64*)&n64, &dp, fv ) )
|
|
fl |= NG;
|
|
|
|
s = num+64;
|
|
|
|
// sign
|
|
lead[0]=0; if (fl&NG) { lead[0]=1; lead[1]='-'; } else if (fl&LS) { lead[0]=1; lead[1]=' '; } else if (fl&LP) { lead[0]=1; lead[1]='+'; };
|
|
|
|
if (dp==-1023) dp=(n64)?-1022:0; else n64|=(((rU64)1)<<52);
|
|
n64<<=(64-56);
|
|
if (pr<15) n64+=((((rU64)8)<<56)>>(pr*4));
|
|
// add leading chars
|
|
|
|
#ifdef RR_SPRINTF_MSVC_MODE
|
|
*s++='0';*s++='x';
|
|
#else
|
|
lead[1+lead[0]]='0'; lead[2+lead[0]]='x'; lead[0]+=2;
|
|
#endif
|
|
*s++=h[(n64>>60)&15]; n64<<=4;
|
|
if ( pr ) *s++=RRperiod;
|
|
sn = s;
|
|
|
|
// print the bits
|
|
n = pr; if (n>13) n = 13; if (pr>(rS32)n) tz=pr-n; pr = 0;
|
|
while(n--) { *s++=h[(n64>>60)&15]; n64<<=4; }
|
|
|
|
// print the expo
|
|
tail[1]=h[17];
|
|
if (dp<0) { tail[2]='-'; dp=-dp;} else tail[2]='+';
|
|
n = (dp>=1000)?6:((dp>=100)?5:((dp>=10)?4:3));
|
|
tail[0]=(char)n;
|
|
for(;;) { tail[n]='0'+dp%10; if (n<=3) break; --n; dp/=10; }
|
|
|
|
dp = (int)(s-sn);
|
|
l = (int)(s-(num+64));
|
|
s = num+64;
|
|
cs = 1 + (3<<24);
|
|
goto scopy;
|
|
|
|
case 'G': // float
|
|
h=hexu;
|
|
goto dosmallfloat;
|
|
|
|
case 'g': // float
|
|
h=hex;
|
|
dosmallfloat:
|
|
fv = va_arg(va,double);
|
|
if (pr==-1) pr=6; else if (pr==0) pr = 1; // default is 6
|
|
// read the double into a string
|
|
if ( rrreal_to_str( &sn, &l, num, &dp, fv, (pr-1)|0x80000000 ) )
|
|
fl |= NG;
|
|
|
|
// clamp the precision and delete extra zeros after clamp
|
|
n = pr;
|
|
if ( l > (rU32)pr ) l = pr; while ((l>1)&&(pr)&&(sn[l-1]=='0')) { --pr; --l; }
|
|
|
|
// should we use %e
|
|
if ((dp<=-4)||(dp>(rS32)n))
|
|
{
|
|
if ( pr > (rS32)l ) pr = l-1; else if ( pr ) --pr; // when using %e, there is one digit before the decimal
|
|
goto doexpfromg;
|
|
}
|
|
// this is the insane action to get the pr to match %g sematics for %f
|
|
if(dp>0) { pr=(dp<(rS32)l)?l-dp:0; } else { pr = -dp+((pr>(rS32)l)?l:pr); }
|
|
goto dofloatfromg;
|
|
|
|
case 'E': // float
|
|
h=hexu;
|
|
goto doexp;
|
|
|
|
case 'e': // float
|
|
h=hex;
|
|
doexp:
|
|
fv = va_arg(va,double);
|
|
if (pr==-1) pr=6; // default is 6
|
|
// read the double into a string
|
|
if ( rrreal_to_str( &sn, &l, num, &dp, fv, pr|0x80000000 ) )
|
|
fl |= NG;
|
|
doexpfromg:
|
|
tail[0]=0;
|
|
lead[0]=0; if (fl&NG) { lead[0]=1; lead[1]='-'; } else if (fl&LS) { lead[0]=1; lead[1]=' '; } else if (fl&LP) { lead[0]=1; lead[1]='+'; };
|
|
if ( dp == RRSPECIAL ) { s=(char*)sn; cs=0; pr=0; goto scopy; }
|
|
s=num+64;
|
|
// handle leading chars
|
|
*s++=sn[0];
|
|
|
|
if (pr) *s++=RRperiod;
|
|
|
|
// handle after decimal
|
|
if ((l-1)>(rU32)pr) l=pr+1;
|
|
for(n=1;n<l;n++) *s++=sn[n];
|
|
// trailing zeros
|
|
tz = pr-(l-1); pr=0;
|
|
// dump expo
|
|
tail[1]=h[0xe];
|
|
dp -= 1;
|
|
if (dp<0) { tail[2]='-'; dp=-dp;} else tail[2]='+';
|
|
#ifdef RR_SPRINTF_MSVC_MODE
|
|
n = 5;
|
|
#else
|
|
n = (dp>=100)?5:4;
|
|
#endif
|
|
tail[0]=(char)n;
|
|
for(;;) { tail[n]='0'+dp%10; if (n<=3) break; --n; dp/=10; }
|
|
cs = 1 + (3<<24); // how many tens
|
|
goto flt_lead;
|
|
|
|
case 'f': // float
|
|
fv = va_arg(va,double);
|
|
doafloat:
|
|
// do kilos
|
|
if (fl&KI) {while(fl<0x4000000) { if ((fv<1024.0) && (fv>-1024.0)) break; fv/=1024.0; fl+=0x1000000; }}
|
|
if (pr==-1) pr=6; // default is 6
|
|
// read the double into a string
|
|
if ( rrreal_to_str( &sn, &l, num, &dp, fv, pr ) )
|
|
fl |= NG;
|
|
dofloatfromg:
|
|
tail[0]=0;
|
|
// sign
|
|
lead[0]=0; if (fl&NG) { lead[0]=1; lead[1]='-'; } else if (fl&LS) { lead[0]=1; lead[1]=' '; } else if (fl&LP) { lead[0]=1; lead[1]='+'; };
|
|
if ( dp == RRSPECIAL ) { s=(char*)sn; cs=0; pr=0; goto scopy; }
|
|
s=num+64;
|
|
|
|
// handle the three decimal varieties
|
|
if (dp<=0)
|
|
{
|
|
rS32 i;
|
|
// handle 0.000*000xxxx
|
|
*s++='0'; if (pr) *s++=RRperiod;
|
|
n=-dp; if((rS32)n>pr) n=pr; i=n; while(i) { if ((((rUINTa)s)&3)==0) break; *s++='0'; --i; } while(i>=4) { *(rU32*)s=0x30303030; s+=4; i-=4; } while(i) { *s++='0'; --i; }
|
|
if ((rS32)(l+n)>pr) l=pr-n; i=l; while(i) { *s++=*sn++; --i; }
|
|
tz = pr-(n+l);
|
|
cs = 1 + (3<<24); // how many tens did we write (for commas below)
|
|
}
|
|
else
|
|
{
|
|
cs = (fl&CS)?((600-(rU32)dp)%3):0;
|
|
if ((rU32)dp>=l)
|
|
{
|
|
// handle xxxx000*000.0
|
|
n=0; for(;;) { if ((fl&CS) && (++cs==4)) { cs = 0; *s++=RRcomma; } else { *s++=sn[n]; ++n; if (n>=l) break; } }
|
|
if (n<(rU32)dp)
|
|
{
|
|
n = dp - n;
|
|
if ((fl&CS)==0) { while(n) { if ((((rUINTa)s)&3)==0) break; *s++='0'; --n; } while(n>=4) { *(rU32*)s=0x30303030; s+=4; n-=4; } }
|
|
while(n) { if ((fl&CS) && (++cs==4)) { cs = 0; *s++=RRcomma; } else { *s++='0'; --n; } }
|
|
}
|
|
cs = (int)(s-(num+64)) + (3<<24); // cs is how many tens
|
|
if (pr) { *s++=RRperiod; tz=pr;}
|
|
}
|
|
else
|
|
{
|
|
// handle xxxxx.xxxx000*000
|
|
n=0; for(;;) { if ((fl&CS) && (++cs==4)) { cs = 0; *s++=RRcomma; } else { *s++=sn[n]; ++n; if (n>=(rU32)dp) break; } }
|
|
cs = (int)(s-(num+64)) + (3<<24); // cs is how many tens
|
|
if (pr) *s++=RRperiod;
|
|
if ((l-dp)>(rU32)pr) l=pr+dp;
|
|
while(n<l) { *s++=sn[n]; ++n; }
|
|
tz = pr-(l-dp);
|
|
}
|
|
}
|
|
pr = 0;
|
|
|
|
// handle k,m,g,t
|
|
if (fl&KI) { tail[0]=1; tail[1]=' '; { if (fl>>24) { tail[2]="_kmgt"[fl>>24]; tail[0]=2; } } };
|
|
|
|
flt_lead:
|
|
// get the length that we copied
|
|
l = (rU32) ( s-(num+64) );
|
|
s=num+64;
|
|
goto scopy;
|
|
#endif
|
|
|
|
case 'B': // upper binary
|
|
h = hexu;
|
|
goto binary;
|
|
|
|
case 'b': // lower binary
|
|
h = hex;
|
|
binary:
|
|
lead[0]=0;
|
|
if (fl&LX) { lead[0]=2;lead[1]='0';lead[2]=h[0xb]; }
|
|
l=(8<<4)|(1<<8);
|
|
goto radixnum;
|
|
|
|
case 'o': // octal
|
|
h = hexu;
|
|
lead[0]=0;
|
|
if (fl&LX) { lead[0]=1;lead[1]='0'; }
|
|
l=(3<<4)|(3<<8);
|
|
goto radixnum;
|
|
|
|
case 'p': // pointer
|
|
fl |= (sizeof(void*)==8)?BI:0;
|
|
pr = sizeof(void*)*2;
|
|
fl &= ~LZ; // 'p' only prints the pointer with zeros
|
|
// drop through to X
|
|
|
|
case 'X': // upper binary
|
|
h = hexu;
|
|
goto dohexb;
|
|
|
|
case 'x': // lower binary
|
|
h = hex; dohexb:
|
|
l=(4<<4)|(4<<8);
|
|
lead[0]=0;
|
|
if (fl&LX) { lead[0]=2;lead[1]='0';lead[2]=h[16]; }
|
|
radixnum:
|
|
// get the number
|
|
if ( fl&BI )
|
|
n64 = va_arg(va,rU64);
|
|
else
|
|
n64 = va_arg(va,rU32);
|
|
|
|
s = num + NUMSZ; dp = 0;
|
|
// clear tail, and clear leading if value is zero
|
|
tail[0]=0; if (n64==0) { lead[0]=0; if (pr==0) { l=0; cs = ( ((l>>4)&15)) << 24; goto scopy; } }
|
|
// convert to string
|
|
for(;;) { *--s = h[n64&((1<<(l>>8))-1)]; n64>>=(l>>8); if ( ! ( (n64) || ((rS32) ( (num+NUMSZ) - s ) < pr ) ) ) break; if ( fl&CS) { ++l; if ((l&15)==((l>>4)&15)) { l&=~15; *--s=RRcomma; } } };
|
|
// get the tens and the comma pos
|
|
cs = (rU32) ( (num+NUMSZ) - s ) + ( ( ((l>>4)&15)) << 24 );
|
|
// get the length that we copied
|
|
l = (rU32) ( (num+NUMSZ) - s );
|
|
// copy it
|
|
goto scopy;
|
|
|
|
case 'u': // unsigned
|
|
case 'i':
|
|
case 'd': // integer
|
|
// get the integer and abs it
|
|
if ( fl&BI )
|
|
{
|
|
rS64 i64 = va_arg(va,rS64); n64 = (rU64)i64; if ((f[0]!='u') && (i64<0)) { n64=(rU64)-i64; fl|=NG; }
|
|
}
|
|
else
|
|
{
|
|
rS32 i = va_arg(va,rS32); n64 = (rU32)i; if ((f[0]!='u') && (i<0)) { n64=(rU32)-i; fl|=NG; }
|
|
}
|
|
|
|
#ifndef RR_SPRINTF_NOFLOAT
|
|
if (fl&KI) { if (n64<1024) pr=0; else if (pr==-1) pr=1; fv=(double)(rS64)n64; goto doafloat; }
|
|
#endif
|
|
|
|
// convert to string
|
|
s = num+NUMSZ; l=0;
|
|
|
|
for(;;)
|
|
{
|
|
// do in 32-bit chunks (avoid lots of 64-bit divides even with constant denominators)
|
|
char * o=s-8;
|
|
if (n64>=100000000) { n = (rU32)( n64 % 100000000); n64 /= 100000000; } else {n = (rU32)n64; n64 = 0; }
|
|
if((fl&CS)==0) { while(n) { s-=2; *(rU16*)s=*(rU16*)&rrdiglookup[(n%100)*2]; n/=100; } }
|
|
while (n) { if ( ( fl&CS) && (l++==3) ) { l=0; *--s=RRcomma; --o; } else { *--s=(char)(n%10)+'0'; n/=10; } }
|
|
if (n64==0) { if ((s[0]=='0') && (s!=(num+NUMSZ))) ++s; break; }
|
|
while (s!=o) if ( ( fl&CS) && (l++==3) ) { l=0; *--s=RRcomma; --o; } else { *--s='0'; }
|
|
}
|
|
|
|
tail[0]=0;
|
|
// sign
|
|
lead[0]=0; if (fl&NG) { lead[0]=1; lead[1]='-'; } else if (fl&LS) { lead[0]=1; lead[1]=' '; } else if (fl&LP) { lead[0]=1; lead[1]='+'; };
|
|
|
|
// get the length that we copied
|
|
l = (rU32) ( (num+NUMSZ) - s ); if ( l == 0 ) { *--s='0'; l = 1; }
|
|
cs = l + (3<<24);
|
|
if (pr<0) pr = 0;
|
|
|
|
scopy:
|
|
// get fw=leading/trailing space, pr=leading zeros
|
|
if (pr<(rS32)l) pr = l;
|
|
n = pr + lead[0] + tail[0] + tz;
|
|
if (fw<(rS32)n) fw = n;
|
|
fw -= n;
|
|
pr -= l;
|
|
|
|
// handle right justify and leading zeros
|
|
if ( (fl&LJ)==0 )
|
|
{
|
|
if (fl&LZ) // if leading zeros, everything is in pr
|
|
{
|
|
pr = (fw>pr)?fw:pr;
|
|
fw = 0;
|
|
}
|
|
else
|
|
{
|
|
fl &= ~CS; // if no leading zeros, then no commas
|
|
}
|
|
}
|
|
|
|
// copy the spaces and/or zeros
|
|
if (fw+pr)
|
|
{
|
|
rS32 i; rU32 c;
|
|
|
|
// copy leading spaces (or when doing %8.4d stuff)
|
|
if ( (fl&LJ)==0 ) while(fw>0) { cb_buf_clamp(i,fw); fw -= i; while(i) { if ((((rUINTa)bf)&3)==0) break; *bf++=' '; --i; } while(i>=4) { *(rU32*)bf=0x20202020; bf+=4; i-=4; } while (i) {*bf++=' '; --i;} chk_cb_buf(1); }
|
|
|
|
// copy leader
|
|
sn=lead+1; while(lead[0]) { cb_buf_clamp(i,lead[0]); lead[0] -= (char)i; while (i) {*bf++=*sn++; --i;} chk_cb_buf(1); }
|
|
|
|
// copy leading zeros
|
|
c = cs >> 24; cs &= 0xffffff;
|
|
cs = (fl&CS)?((rU32)(c-((pr+cs)%(c+1)))):0;
|
|
while(pr>0) { cb_buf_clamp(i,pr); pr -= i; if((fl&CS)==0) { while(i) { if ((((rUINTa)bf)&3)==0) break; *bf++='0'; --i; } while(i>=4) { *(rU32*)bf=0x30303030; bf+=4; i-=4; } } while (i) { if((fl&CS) && (cs++==c)) { cs = 0; *bf++=RRcomma; } else *bf++='0'; --i; } chk_cb_buf(1); }
|
|
}
|
|
|
|
// copy leader if there is still one
|
|
sn=lead+1; while(lead[0]) { rS32 i; cb_buf_clamp(i,lead[0]); lead[0] -= (char)i; while (i) {*bf++=*sn++; --i;} chk_cb_buf(1); }
|
|
|
|
// copy the string
|
|
n = l; while (n) { rS32 i; cb_buf_clamp(i,n); n-=i; RR_UNALIGNED( while(i>=4) { *(rU32*)bf=*(rU32*)s; bf+=4; s+=4; i-=4; } ) while (i) {*bf++=*s++; --i;} chk_cb_buf(1); }
|
|
|
|
// copy trailing zeros
|
|
while(tz) { rS32 i; cb_buf_clamp(i,tz); tz -= i; while(i) { if ((((rUINTa)bf)&3)==0) break; *bf++='0'; --i; } while(i>=4) { *(rU32*)bf=0x30303030; bf+=4; i-=4; } while (i) {*bf++='0'; --i;} chk_cb_buf(1); }
|
|
|
|
// copy tail if there is one
|
|
sn=tail+1; while(tail[0]) { rS32 i; cb_buf_clamp(i,tail[0]); tail[0] -= (char)i; while (i) {*bf++=*sn++; --i;} chk_cb_buf(1); }
|
|
|
|
// handle the left justify
|
|
if (fl&LJ) if (fw>0) { while (fw) { rS32 i; cb_buf_clamp(i,fw); fw-=i; while(i) { if ((((rUINTa)bf)&3)==0) break; *bf++=' '; --i; } while(i>=4) { *(rU32*)bf=0x20202020; bf+=4; i-=4; } while (i--) *bf++=' '; chk_cb_buf(1); } }
|
|
break;
|
|
|
|
default: // unknown, just copy code
|
|
s = num + NUMSZ -1; *s = f[0];
|
|
l = 1;
|
|
fw=pr=fl=0;
|
|
lead[0]=0; tail[0]=0; pr = 0; dp = 0; cs = 0;
|
|
goto scopy;
|
|
}
|
|
++f;
|
|
}
|
|
endfmt:
|
|
|
|
if (!callback)
|
|
*bf = 0;
|
|
else
|
|
flush_cb();
|
|
|
|
done:
|
|
return tlen + (int)(bf-buf);
|
|
}
|
|
|
|
// cleanup
|
|
#undef LJ
|
|
#undef LP
|
|
#undef LS
|
|
#undef LX
|
|
#undef LZ
|
|
#undef BI
|
|
#undef CS
|
|
#undef NG
|
|
#undef KI
|
|
#undef NUMSZ
|
|
#undef chk_cb_bufL
|
|
#undef chk_cb_buf
|
|
#undef flush_cb
|
|
#undef cb_buf_clamp
|
|
|
|
// ============================================================================
|
|
// wrapper functions
|
|
|
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( sprintf )( char * buf, char const * fmt, ... )
|
|
{
|
|
va_list va;
|
|
va_start( va, fmt );
|
|
return RR_SPRINTF_DECORATE( vsprintfcb )( 0, 0, buf, fmt, va );
|
|
}
|
|
|
|
typedef struct RRCCS
|
|
{
|
|
char * buf;
|
|
int count;
|
|
char tmp[ RR_SPRINTF_MIN ];
|
|
} RRCCS;
|
|
|
|
static char * rrclampcallback( char * buf, void * user, int len )
|
|
{
|
|
RRCCS * c = (RRCCS*)user;
|
|
|
|
if ( len > c->count ) len = c->count;
|
|
|
|
if (len)
|
|
{
|
|
if ( buf != c->buf )
|
|
{
|
|
char * s, * d, * se;
|
|
d = c->buf; s = buf; se = buf+len;
|
|
do{ *d++ = *s++; } while (s<se);
|
|
}
|
|
c->buf += len;
|
|
c->count -= len;
|
|
}
|
|
|
|
if ( c->count <= 0 ) return 0;
|
|
return ( c->count >= RR_SPRINTF_MIN ) ? c->buf : c->tmp; // go direct into buffer if you can
|
|
}
|
|
|
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsnprintf )( char * buf, int count, char const * fmt, va_list va )
|
|
{
|
|
RRCCS c;
|
|
int l;
|
|
|
|
if ( count == 0 )
|
|
return 0;
|
|
|
|
c.buf = buf;
|
|
c.count = count;
|
|
|
|
RR_SPRINTF_DECORATE( vsprintfcb )( rrclampcallback, &c, rrclampcallback(0,&c,0), fmt, va );
|
|
|
|
// zero-terminate
|
|
l = (int)( c.buf - buf );
|
|
if ( l >= count ) // should never be greater, only equal (or less) than count
|
|
l = count - 1;
|
|
buf[l] = 0;
|
|
|
|
return l;
|
|
}
|
|
|
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( snprintf )( char * buf, int count, char const * fmt, ... )
|
|
{
|
|
va_list va;
|
|
va_start( va, fmt );
|
|
|
|
return RR_SPRINTF_DECORATE( vsnprintf )( buf, count, fmt, va );
|
|
}
|
|
|
|
RRPUBLIC_DEF int RR_SPRINTF_DECORATE( vsprintf )( char * buf, char const * fmt, va_list va )
|
|
{
|
|
return RR_SPRINTF_DECORATE( vsprintfcb )( 0, 0, buf, fmt, va );
|
|
}
|
|
|
|
// =======================================================================
|
|
// low level float utility functions
|
|
|
|
#ifndef RR_SPRINTF_NOFLOAT
|
|
|
|
// copies d to bits w/ strict aliasing (this compiles to nothing on /Ox)
|
|
#define RRCOPYFP(dest,src) { int cn; for(cn=0;cn<8;cn++) ((char*)&dest)[cn]=((char*)&src)[cn]; }
|
|
|
|
// get float info
|
|
static rS32 rrreal_to_parts( rS64 * bits, rS32 * expo, double value )
|
|
{
|
|
double d;
|
|
rS64 b = 0;
|
|
|
|
// load value and round at the frac_digits
|
|
d = value;
|
|
|
|
RRCOPYFP( b, d );
|
|
|
|
*bits = b & ((((rU64)1)<<52)-1);
|
|
*expo = ((b >> 52) & 2047)-1023;
|
|
|
|
return (rS32)(b >> 63);
|
|
}
|
|
|
|
static double const rrbot[23]={1e+000,1e+001,1e+002,1e+003,1e+004,1e+005,1e+006,1e+007,1e+008,1e+009,1e+010,1e+011,1e+012,1e+013,1e+014,1e+015,1e+016,1e+017,1e+018,1e+019,1e+020,1e+021,1e+022};
|
|
static double const rrnegbot[22]={1e-001,1e-002,1e-003,1e-004,1e-005,1e-006,1e-007,1e-008,1e-009,1e-010,1e-011,1e-012,1e-013,1e-014,1e-015,1e-016,1e-017,1e-018,1e-019,1e-020,1e-021,1e-022};
|
|
static double const rrnegboterr[22]={-5.551115123125783e-018,-2.0816681711721684e-019,-2.0816681711721686e-020,-4.7921736023859299e-021,-8.1803053914031305e-022,4.5251888174113741e-023,4.5251888174113739e-024,-2.0922560830128471e-025,-6.2281591457779853e-026,-3.6432197315497743e-027,6.0503030718060191e-028,2.0113352370744385e-029,-3.0373745563400371e-030,1.1806906454401013e-032,-7.7705399876661076e-032,2.0902213275965398e-033,-7.1542424054621921e-034,-7.1542424054621926e-035,2.4754073164739869e-036,5.4846728545790429e-037,9.2462547772103625e-038,-4.8596774326570872e-039};
|
|
static double const rrtop[13]={1e+023,1e+046,1e+069,1e+092,1e+115,1e+138,1e+161,1e+184,1e+207,1e+230,1e+253,1e+276,1e+299};
|
|
static double const rrnegtop[13]={1e-023,1e-046,1e-069,1e-092,1e-115,1e-138,1e-161,1e-184,1e-207,1e-230,1e-253,1e-276,1e-299};
|
|
static double const rrtoperr[13]={8388608,6.8601809640529717e+028,-7.253143638152921e+052,-4.3377296974619174e+075,-1.5559416129466825e+098,-3.2841562489204913e+121,-3.7745893248228135e+144,-1.7356668416969134e+167,-3.8893577551088374e+190,-9.9566444326005119e+213,6.3641293062232429e+236,-5.2069140800249813e+259,-5.2504760255204387e+282};
|
|
static double const rrnegtoperr[13]={3.9565301985100693e-040,-2.299904345391321e-063,3.6506201437945798e-086,1.1875228833981544e-109,-5.0644902316928607e-132,-6.7156837247865426e-155,-2.812077463003139e-178,-5.7778912386589953e-201,7.4997100559334532e-224,-4.6439668915134491e-247,-6.3691100762962136e-270,-9.436808465446358e-293,8.0970921678014997e-317};
|
|
|
|
#if defined(_MSC_VER) && (_MSC_VER<=1200)
|
|
static rU64 const rrpot[20]={1,10,100,1000, 10000,100000,1000000,10000000, 100000000,1000000000,10000000000,100000000000, 1000000000000,10000000000000,100000000000000,1000000000000000, 10000000000000000,100000000000000000,1000000000000000000,10000000000000000000U };
|
|
#define rrtento19th ((rU64)1000000000000000000)
|
|
#else
|
|
static rU64 const rrpot[20]={1,10,100,1000, 10000,100000,1000000,10000000, 100000000,1000000000,10000000000ULL,100000000000ULL, 1000000000000ULL,10000000000000ULL,100000000000000ULL,1000000000000000ULL, 10000000000000000ULL,100000000000000000ULL,1000000000000000000ULL,10000000000000000000ULL };
|
|
#define rrtento19th (1000000000000000000ULL)
|
|
#endif
|
|
|
|
#define rrddmulthi(oh,ol,xh,yh) \
|
|
{ \
|
|
double ahi=0,alo,bhi=0,blo; \
|
|
rS64 bt; \
|
|
oh = xh * yh; \
|
|
RRCOPYFP(bt,xh); bt&=((~(rU64)0)<<27); RRCOPYFP(ahi,bt); alo = xh-ahi; \
|
|
RRCOPYFP(bt,yh); bt&=((~(rU64)0)<<27); RRCOPYFP(bhi,bt); blo = yh-bhi; \
|
|
ol = ((ahi*bhi-oh)+ahi*blo+alo*bhi)+alo*blo; \
|
|
}
|
|
|
|
#define rrddtoS64(ob,xh,xl) \
|
|
{ \
|
|
double ahi=0,alo,vh,t;\
|
|
ob = (rS64)ph;\
|
|
vh=(double)ob;\
|
|
ahi = ( xh - vh );\
|
|
t = ( ahi - xh );\
|
|
alo = (xh-(ahi-t))-(vh+t);\
|
|
ob += (rS64)(ahi+alo+xl);\
|
|
}
|
|
|
|
|
|
#define rrddrenorm(oh,ol) { double s; s=oh+ol; ol=ol-(s-oh); oh=s; }
|
|
|
|
#define rrddmultlo(oh,ol,xh,xl,yh,yl) \
|
|
ol = ol + ( xh*yl + xl*yh ); \
|
|
|
|
#define rrddmultlos(oh,ol,xh,yl) \
|
|
ol = ol + ( xh*yl ); \
|
|
|
|
static void rrraise_to_power10( double *ohi, double *olo, double d, rS32 power ) // power can be -323 to +350
|
|
{
|
|
double ph, pl;
|
|
if ((power>=0) && (power<=22))
|
|
{
|
|
rrddmulthi(ph,pl,d,rrbot[power]);
|
|
}
|
|
else
|
|
{
|
|
rS32 e,et,eb;
|
|
double p2h,p2l;
|
|
|
|
e=power; if (power<0) e=-e;
|
|
et = (e*0x2c9)>>14;/* %23 */ if (et>13) et=13; eb = e-(et*23);
|
|
|
|
ph = d; pl = 0.0;
|
|
if (power<0)
|
|
{
|
|
if (eb) { --eb; rrddmulthi(ph,pl,d,rrnegbot[eb]); rrddmultlos(ph,pl,d,rrnegboterr[eb]); }
|
|
if (et)
|
|
{
|
|
rrddrenorm(ph,pl);
|
|
--et; rrddmulthi(p2h,p2l,ph,rrnegtop[et]); rrddmultlo(p2h,p2l,ph,pl,rrnegtop[et],rrnegtoperr[et]); ph=p2h;pl=p2l;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (eb)
|
|
{
|
|
e = eb; if (eb>22) eb=22; e -= eb;
|
|
rrddmulthi(ph,pl,d,rrbot[eb]);
|
|
if ( e ) { rrddrenorm(ph,pl); rrddmulthi(p2h,p2l,ph,rrbot[e]); rrddmultlos(p2h,p2l,rrbot[e],pl); ph=p2h;pl=p2l; }
|
|
}
|
|
if (et)
|
|
{
|
|
rrddrenorm(ph,pl);
|
|
--et; rrddmulthi(p2h,p2l,ph,rrtop[et]); rrddmultlo(p2h,p2l,ph,pl,rrtop[et],rrtoperr[et]); ph=p2h;pl=p2l;
|
|
}
|
|
}
|
|
}
|
|
rrddrenorm(ph,pl);
|
|
*ohi = ph; *olo = pl;
|
|
}
|
|
|
|
// given a float value, returns the significant bits in bits, and the position of the
|
|
// decimal point in decimal_pos. +/-INF and NAN are specified by special values
|
|
// returned in the decimal_pos parameter.
|
|
// frac_digits is absolute normally, but if you want from first significant digits (got %g and %e), or in 0x80000000
|
|
static rS32 rrreal_to_str( char const * * start, rU32 * len, char *out, rS32 * decimal_pos, double value, rU32 frac_digits )
|
|
{
|
|
double d;
|
|
rS64 bits = 0;
|
|
rS32 expo, e, ng, tens;
|
|
|
|
d = value;
|
|
RRCOPYFP(bits,d);
|
|
expo = (bits >> 52) & 2047;
|
|
ng = (rS32)(bits >> 63);
|
|
if (ng) d=-d;
|
|
|
|
if ( expo == 2047 ) // is nan or inf?
|
|
{
|
|
*start = (bits&((((rU64)1)<<52)-1)) ? "NaN" : "Inf";
|
|
*decimal_pos = RRSPECIAL;
|
|
*len = 3;
|
|
return ng;
|
|
}
|
|
|
|
if ( expo == 0 ) // is zero or denormal
|
|
{
|
|
if ((bits<<1)==0) // do zero
|
|
{
|
|
*decimal_pos = 1;
|
|
*start = out;
|
|
out[0] = '0'; *len = 1;
|
|
return ng;
|
|
}
|
|
// find the right expo for denormals
|
|
{
|
|
rS64 v = ((rU64)1)<<51;
|
|
while ((bits&v)==0) { --expo; v >>= 1; }
|
|
}
|
|
}
|
|
|
|
// find the decimal exponent as well as the decimal bits of the value
|
|
{
|
|
double ph,pl;
|
|
|
|
// log10 estimate - very specifically tweaked to hit or undershoot by no more than 1 of log10 of all expos 1..2046
|
|
tens=expo-1023; tens = (tens<0)?((tens*617)/2048):(((tens*1233)/4096)+1);
|
|
|
|
// move the significant bits into position and stick them into an int
|
|
rrraise_to_power10( &ph, &pl, d, 18-tens );
|
|
|
|
// get full as much precision from double-double as possible
|
|
rrddtoS64( bits, ph,pl );
|
|
|
|
// check if we undershot
|
|
if ( ((rU64)bits) >= rrtento19th ) ++tens;
|
|
}
|
|
|
|
// now do the rounding in integer land
|
|
frac_digits = ( frac_digits & 0x80000000 ) ? ( (frac_digits&0x7ffffff) + 1 ) : ( tens + frac_digits );
|
|
if ( ( frac_digits < 24 ) )
|
|
{
|
|
rU32 dg = 1; if ((rU64)bits >= rrpot[9] ) dg=10; while( (rU64)bits >= rrpot[dg] ) { ++dg; if (dg==20) goto noround; }
|
|
if ( frac_digits < dg )
|
|
{
|
|
rU64 r;
|
|
// add 0.5 at the right position and round
|
|
e = dg - frac_digits;
|
|
if ( (rU32)e >= 24 ) goto noround;
|
|
r = rrpot[e];
|
|
bits = bits + (r/2);
|
|
if ( (rU64)bits >= rrpot[dg] ) ++tens;
|
|
bits /= r;
|
|
}
|
|
noround:;
|
|
}
|
|
|
|
// kill long trailing runs of zeros
|
|
if ( bits )
|
|
{
|
|
rU32 n; for(;;) { if ( bits<=0xffffffff ) break; if (bits%1000) goto donez; bits/=1000; } n = (rU32)bits; while ((n%1000)==0) n/=1000; bits=n; donez:;
|
|
}
|
|
|
|
// convert to string
|
|
out += 64;
|
|
e = 0;
|
|
for(;;)
|
|
{
|
|
rU32 n;
|
|
char * o = out-8;
|
|
// do the conversion in chunks of U32s (avoid most 64-bit divides, worth it, constant denomiators be damned)
|
|
if (bits>=100000000) { n = (rU32)( bits % 100000000); bits /= 100000000; } else {n = (rU32)bits; bits = 0; }
|
|
while(n) { out-=2; *(rU16*)out=*(rU16*)&rrdiglookup[(n%100)*2]; n/=100; e+=2; }
|
|
if (bits==0) { if ((e) && (out[0]=='0')) { ++out; --e; } break; }
|
|
while( out!=o ) { *--out ='0'; ++e; }
|
|
}
|
|
|
|
*decimal_pos = tens;
|
|
*start = out;
|
|
*len = e;
|
|
return ng;
|
|
}
|
|
|
|
#undef rrddmulthi
|
|
#undef rrddrenorm
|
|
#undef rrddmultlo
|
|
#undef rrddmultlos
|
|
#undef RRSPECIAL
|
|
#undef RRCOPYFP
|
|
|
|
#endif
|
|
|
|
// clean up
|
|
#undef rU16
|
|
#undef rU32
|
|
#undef rS32
|
|
#undef rU64
|
|
#undef rS64
|
|
#undef RRPUBLIC_DEC
|
|
#undef RRPUBLIC_DEF
|
|
#undef RR_SPRINTF_DECORATE
|
|
#undef RR_UNALIGNED
|
|
|
|
#endif
|
|
|
|
#endif
|