source-engine/game/server/cstrike/cs_nav_generate.cpp
FluorescentCIAAfricanAmerican 3bf9df6b27 1
2020-04-22 12:56:21 -04:00

270 lines
6.8 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
// nav_generate.cpp
// Auto-generate a Navigation Mesh by sampling the current map
// Author: Michael S. Booth (mike@turtlerockstudios.com), 2003
#include "cbase.h"
#include "util_shared.h"
#include "nav_mesh.h"
#include "cs_nav_area.h"
#include "cs_nav_node.h"
#include "cs_nav_pathfind.h"
#include "viewport_panel_names.h"
enum { MAX_BLOCKED_AREAS = 256 };
static unsigned int blockedID[ MAX_BLOCKED_AREAS ];
static int blockedIDCount = 0;
static float lastMsgTime = 0.0f;
//ConVar nav_slope_limit( "nav_slope_limit", "0.7", FCVAR_GAMEDLL, "The ground unit normal's Z component must be greater than this for nav areas to be generated." );
ConVar nav_restart_after_analysis( "nav_restart_after_analysis", "1", FCVAR_GAMEDLL, "When nav nav_restart_after_analysis finishes, restart the server. Turning this off can cause crashes, but is useful for incremental generation." );
//--------------------------------------------------------------------------------------------------------------
/**
* Shortest path cost, paying attention to "blocked" areas
*/
class ApproachAreaCost
{
public:
// HPE_TODO[pmf]: check that these new parameters are okay to be ignored
float operator() ( CNavArea *area, CNavArea *fromArea, const CNavLadder *ladder, const CFuncElevator *elevator, float length )
{
// check if this area is "blocked"
for( int i=0; i<blockedIDCount; ++i )
{
if (area->GetID() == blockedID[i])
{
return -1.0f;
}
}
if (fromArea == NULL)
{
// first area in path, no cost
return 0.0f;
}
else
{
// compute distance traveled along path so far
float dist;
if (ladder)
{
dist = ladder->m_length;
}
else
{
dist = (area->GetCenter() - fromArea->GetCenter()).Length();
}
float cost = dist + fromArea->GetCostSoFar();
return cost;
}
}
};
/*
* Determine the set of "approach areas".
* An approach area is an area representing a place where players
* move into/out of our local neighborhood of areas.
* @todo Optimize by search from eye outward and modifying pathfinder to treat all links as bi-directional
*/
void CCSNavArea::ComputeApproachAreas( void )
{
m_approachCount = 0;
if (nav_quicksave.GetBool())
return;
// use the center of the nav area as the "view" point
Vector eye = m_center;
if (TheNavMesh->GetGroundHeight( eye, &eye.z ) == false)
return;
// approximate eye position
if (GetAttributes() & NAV_MESH_CROUCH)
eye.z += 0.9f * HalfHumanHeight;
else
eye.z += 0.9f * HumanHeight;
enum { MAX_PATH_LENGTH = 256 };
CNavArea *path[ MAX_PATH_LENGTH ];
ApproachAreaCost cost;
enum SearchType
{
FROM_EYE, ///< start search from our eyepoint outward to farArea
TO_EYE, ///< start search from farArea beack towards our eye
SEARCH_FINISHED
};
//
// In order to *completely* enumerate all of the approach areas, we
// need to search from our eyepoint outward, as well as from outwards
// towards our eyepoint
//
for( int searchType = FROM_EYE; searchType != SEARCH_FINISHED; ++searchType )
{
//
// In order to enumerate all of the approach areas, we need to
// run the algorithm many times, once for each "far away" area
// and keep the union of the approach area sets
//
int it;
for( it = 0; it < TheNavAreas.Count(); ++it )
{
CNavArea *farArea = TheNavAreas[ it ];
blockedIDCount = 0;
// skip the small areas
const float minSize = 200.0f; // 150
Extent extent;
farArea->GetExtent(&extent);
if (extent.SizeX() < minSize || extent.SizeY() < minSize)
{
continue;
}
// if we can see 'farArea', try again - the whole point is to go "around the bend", so to speak
if (farArea->IsVisible( eye ))
{
continue;
}
//
// Keep building paths to farArea and blocking them off until we
// cant path there any more.
// As areas are blocked off, all exits will be enumerated.
//
while( m_approachCount < MAX_APPROACH_AREAS )
{
CNavArea *from, *to;
if (searchType == FROM_EYE)
{
// find another path *to* 'farArea'
// we must pathfind from us in order to pick up one-way paths OUT OF our area
from = this;
to = farArea;
}
else // TO_EYE
{
// find another path *from* 'farArea'
// we must pathfind to us in order to pick up one-way paths INTO our area
from = farArea;
to = this;
}
// build the actual path
if (NavAreaBuildPath( from, to, NULL, cost ) == false)
{
break;
}
// find number of areas on path
int count = 0;
CNavArea *area;
for( area = to; area; area = area->GetParent() )
{
++count;
}
if (count > MAX_PATH_LENGTH)
{
count = MAX_PATH_LENGTH;
}
// if the path is only two areas long, there can be no approach points
if (count <= 2)
{
break;
}
// build path starting from eye
int i = 0;
if (searchType == FROM_EYE)
{
for( area = to; i < count && area; area = area->GetParent() )
{
path[ count-i-1 ] = area;
++i;
}
}
else // TO_EYE
{
for( area = to; i < count && area; area = area->GetParent() )
{
path[ i++ ] = area;
}
}
// traverse path to find first area we cannot see (skip the first area)
for( i=1; i<count; ++i )
{
// if we see this area, continue on
if (path[i]->IsVisible( eye ))
{
continue;
}
// we can't see this area - mark this area as "blocked" and unusable by subsequent approach paths
if (blockedIDCount == MAX_BLOCKED_AREAS)
{
Msg( "Overflow computing approach areas for area #%d.\n", GetID());
return;
}
// if the area to be blocked is actually farArea, block the one just prior
// (blocking farArea will cause all subsequent pathfinds to fail)
int block = (path[i] == farArea) ? i-1 : i;
// dont block the start area, or all subsequence pathfinds will fail
if (block == 0)
{
continue;
}
blockedID[ blockedIDCount++ ] = path[ block ]->GetID();
// store new approach area if not already in set
int a;
for( a=0; a<m_approachCount; ++a )
{
if (m_approach[a].here.area == path[block-1])
{
break;
}
}
if (a == m_approachCount)
{
m_approach[ m_approachCount ].prev.area = (block >= 2) ? path[block-2] : NULL;
m_approach[ m_approachCount ].here.area = path[block-1];
m_approach[ m_approachCount ].prevToHereHow = path[block-1]->GetParentHow();
m_approach[ m_approachCount ].next.area = path[block];
m_approach[ m_approachCount ].hereToNextHow = path[block]->GetParentHow();
++m_approachCount;
}
// we are done with this path
break;
}
}
}
}
}