source-engine/common/crypto.h
FluorescentCIAAfricanAmerican 3bf9df6b27 1
2020-04-22 12:56:21 -04:00

282 lines
14 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: This module is for wrapping Crypto++ functions, including crypto++
// directly has nasty consequences polluting the global namespace, and
// conflicting with xdebug and locale stuff, so we only include it here
// and use this wrapper in the rest of our code.
//
// $NoKeywords: $
//=============================================================================
#ifndef CRYPTO_H
#define CRYPTO_H
#include <tier0/dbg.h> // for Assert & AssertMsg
#include "tier1/passwordhash.h"
#include "tier1/utlmemory.h"
#include <steam/steamtypes.h> // for Salt_t
extern void FreeListRNG();
const unsigned int k_cubSHA256Hash = 32;
typedef unsigned char SHA256Digest_t[ k_cubSHA256Hash ];
const int k_nSymmetricBlockSize = 16; // AES block size (128 bits)
const int k_nSymmetricKeyLen = 32; // length in bytes of keys used for symmetric encryption
const int k_nRSAKeyLenMax = 1024; // max length in bytes of keys used for RSA encryption (includes DER encoding)
const int k_nRSAKeyLenMaxEncoded = k_nRSAKeyLenMax*2; // max length in bytes of hex-encoded key (hex encoding exactly doubles size)
const int k_nRSAKeyBits = 1024; // length in bits of keys used for RSA encryption
const int k_cubRSAEncryptedBlockSize = 128;
const int k_cubRSAPlaintextBlockSize = 86 + 1; // assume plaintext is text, so add a byte for the trailing \0
const uint32 k_cubRSASignature = k_cubRSAEncryptedBlockSize;
// Simple buffer class to encapsulate output from crypto functions with unknown output size
class CCryptoOutBuffer
{
public:
CCryptoOutBuffer()
{
m_pubData = NULL;
m_cubData = 0;
}
~CCryptoOutBuffer()
{
if ( m_pubData )
delete[] m_pubData;
m_pubData = NULL;
m_cubData = 0;
}
void Set( uint8 *pubData, uint32 cubData )
{
if ( !pubData || !cubData )
return;
if ( m_pubData )
delete[] m_pubData;
m_pubData = new uint8[ cubData ];
memcpy( m_pubData, pubData, cubData );
m_cubData = cubData;
}
void Allocate( uint32 cubData )
{
if ( m_pubData )
delete[] m_pubData;
m_pubData = new uint8[ cubData ];
m_cubData = cubData;
}
void Trim( uint32 cubTrim )
{
Assert( cubTrim <= m_cubData );
m_cubData = cubTrim;
}
uint8 *PubData() { return m_pubData; }
uint32 CubData() { return m_cubData; }
private:
uint8 *m_pubData;
uint32 m_cubData;
};
#if !defined(_PS3)
class CCrypto
{
public:
static uint32 GetSymmetricEncryptedSize( uint32 cubPlaintextData );
// this method writes the encrypted IV, then the ciphertext
static bool SymmetricEncryptWithIV( const uint8 * pubPlaintextData, uint32 cubPlaintextData,
const uint8 * pIV, uint32 cubIV,
uint8 * pubEncryptedData, uint32 * pcubEncryptedData,
const uint8 * pubKey, uint32 cubKey );
static bool SymmetricEncrypt( const uint8 * pubPlaintextData, uint32 cubPlaintextData,
uint8 * pubEncryptedData, uint32 * pcubEncryptedData,
const uint8 * pubKey, uint32 cubKey );
// this method assumes there is no IV before the payload - dissimilar to SymmetricEncryptWithIV
static bool SymmetricDecryptWithIV( const uint8 * pubEncryptedData, uint32 cubEncryptedData,
const uint8 * pIV, uint32 cubIV,
uint8 * pubPlaintextData, uint32 * pcubPlaintextData,
const uint8 * pubKey, uint32 cubKey );
static bool SymmetricDecrypt( const uint8 * pubEncryptedData, uint32 cubEncryptedData,
uint8 * pubPlaintextData, uint32 * pcubPlaintextData,
const uint8 * pubKey, uint32 cubKey );
// symmetrically encrypt data with a text password. A SHA256 hash of the password
// is used as an AES encryption key (calls SymmetricEncrypt, above).
// An HMAC of the ciphertext is appended, for authentication.
static bool EncryptWithPasswordAndHMAC( const uint8 *pubPlaintextData, uint32 cubPlaintextData,
uint8 * pubEncryptedData, uint32 * pcubEncryptedData,
const char *pchPassword );
// Same as above but uses an explicit IV. The format of the ciphertext is the same.
// Be sure you know what you're doing if you use this - a random IV is much more secure in general!
static bool EncryptWithPasswordAndHMACWithIV( const uint8 *pubPlaintextData, uint32 cubPlaintextData,
const uint8 * pIV, uint32 cubIV,
uint8 * pubEncryptedData, uint32 * pcubEncryptedData,
const char *pchPassword );
// Symmetrically decrypt data with the given password (see above).
// If the HMAC does not match what we expect, then we know that either the password is
// incorrect or the message is corrupted.
static bool DecryptWithPasswordAndAuthenticate( const uint8 * pubEncryptedData, uint32 cubEncryptedData,
uint8 * pubPlaintextData, uint32 * pcubPlaintextData,
const char *pchPassword );
static bool RSAGenerateKeys( uint8 *pubPublicKey, uint32 *pcubPublicKey, uint8 *pubPrivateKey, uint32 *pcubPrivateKey );
static bool RSAEncrypt( const uint8 *pubPlaintextPlaintextData, const uint32 cubData, uint8 *pubEncryptedData,
uint32 *pcubEncryptedData, const uint8 *pubPublicKey, const uint32 cubPublicKey );
static bool RSADecrypt( const uint8 *pubEncryptedData, uint32 cubEncryptedData,
uint8 *pubPlaintextData, uint32 *pcubPlaintextData, const uint8 *pubPrivateKey, const uint32 cubPrivateKey );
// decrypt using a public key, and no padding
static bool RSAPublicDecrypt_NoPadding( const uint8 *pubEncryptedData, uint32 cubEncryptedData,
uint8 *pubPlaintextData, uint32 *pcubPlaintextData, const uint8 *pubPublicKey, const uint32 cubPublicKey );
static bool RSASign( const uint8 *pubData, const uint32 cubData,
uint8 *pubSignature, uint32 *pcubSignature,
const uint8 * pubPrivateKey, const uint32 cubPrivateKey );
static bool RSAVerifySignature( const uint8 *pubData, const uint32 cubData,
const uint8 *pubSignature, const uint32 cubSignature,
const uint8 *pubPublicKey, const uint32 cubPublicKey );
static bool RSASignSHA256( const uint8 *pubData, const uint32 cubData,
uint8 *pubSignature, uint32 *pcubSignature,
const uint8 * pubPrivateKey, const uint32 cubPrivateKey );
static bool RSAVerifySignatureSHA256( const uint8 *pubData, const uint32 cubData,
const uint8 *pubSignature, const uint32 cubSignature,
const uint8 *pubPublicKey, const uint32 cubPublicKey );
static bool HexEncode( const uint8 *pubData, const uint32 cubData, char *pchEncodedData, uint32 cchEncodedData );
static bool HexDecode( const char *pchData, uint8 *pubDecodedData, uint32 *pcubDecodedData );
static uint32 Base64EncodeMaxOutput( uint32 cubData, const char *pszLineBreakOrNull );
static bool Base64Encode( const uint8 *pubData, uint32 cubData, char *pchEncodedData, uint32 cchEncodedData, bool bInsertLineBreaks = true ); // legacy, deprecated
static bool Base64Encode( const uint8 *pubData, uint32 cubData, char *pchEncodedData, uint32 *pcchEncodedData, const char *pszLineBreak = "\n" );
static uint32 Base64DecodeMaxOutput( uint32 cubData ) { return ( (cubData + 3 ) / 4) * 3 + 1; }
static bool Base64Decode( const char *pchEncodedData, uint8 *pubDecodedData, uint32 *pcubDecodedData, bool bIgnoreInvalidCharacters = true ); // legacy, deprecated
static bool Base64Decode( const char *pchEncodedData, uint32 cchEncodedData, uint8 *pubDecodedData, uint32 *pcubDecodedData, bool bIgnoreInvalidCharacters = true );
static bool GenerateSalt( Salt_t *pSalt );
static bool GenerateSHA1Digest( const uint8 *pubInput, const int cubInput, SHADigest_t *pOutDigest );
static bool GenerateSaltedSHA1Digest( const char *pchInput, const Salt_t *pSalt, SHADigest_t *pOutDigest );
static bool GenerateRandomBlock( uint8 *pubDest, int cubDest );
static bool GenerateHMAC( const uint8 *pubData, uint32 cubData, const uint8 *pubKey, uint32 cubKey, SHADigest_t *pOutputDigest );
static bool GenerateHMAC256( const uint8 *pubData, uint32 cubData, const uint8 *pubKey, uint32 cubKey, SHA256Digest_t *pOutputDigest );
static bool BGeneratePasswordHash( const char *pchInput, EPasswordHashAlg hashType, const Salt_t &Salt, PasswordHash_t &OutPasswordHash );
static bool BValidatePasswordHash( const char *pchInput, EPasswordHashAlg hashType, const PasswordHash_t &DigestStored, const Salt_t &Salt, PasswordHash_t *pDigestComputed );
static bool BGeneratePBKDF2Hash( const char *pchInput, const Salt_t &Salt, unsigned int rounds, PasswordHash_t &OutPasswordHash );
static bool BGenerateWrappedSHA1PasswordHash( const char *pchInput, const Salt_t &Salt, unsigned int rounds, PasswordHash_t &OutPasswordHash );
static bool BUpgradeOrWrapPasswordHash( PasswordHash_t &InPasswordHash, EPasswordHashAlg hashTypeIn, const Salt_t &Salt, PasswordHash_t &OutPasswordHash, EPasswordHashAlg &hashTypeOut );
static bool BGzipBuffer( const uint8 *pubData, uint32 cubData, CCryptoOutBuffer &bufOutput );
static bool BGunzipBuffer( const uint8 *pubData, uint32 cubData, CCryptoOutBuffer &bufOutput );
#ifdef DBGFLAG_VALIDATE
static void ValidateStatics( CValidator &validator, const char *pchName );
#endif
};
#else
// bugbug ps3 - stub until we implement from PS3 libs
class CCrypto
{
public:
// ps3 only
static bool Init();
static void Shutdown();
//shared
static uint32 GetSymmetricEncryptedSize( uint32 cubPlaintextData );
static bool SymmetricEncrypt( const uint8 * pubPlaintextData, uint32 cubPlaintextData, uint8 * pubEncryptedData, uint32 * pcubEncryptedData, const uint8 * pubKey, uint32 cubKey );
static bool SymmetricDecrypt( const uint8 * pubEncryptedData, uint32 cubEncryptedData, uint8 * pubPlaintextData, uint32 * pcubPlaintextData, const uint8 * pubKey, uint32 cubKey );
static bool RSAGenerateKeys( uint8 *pubPublicKey, uint32 *pcubPublicKey, uint8 *pubPrivateKey, uint32 *pcubPrivateKey ) { AssertMsg( false, "RSAGenerateKeys not implemented on PS3" ); return false; }
static bool RSAEncrypt( const uint8 *pubPlaintextPlaintextData, const uint32 cubData, uint8 *pubEncryptedData, uint32 *pcubEncryptedData, const uint8 *pubPublicKey, const uint32 cubPublicKey );
static bool RSADecrypt( const uint8 *pubEncryptedData, uint32 cubEncryptedData, uint8 *pubPlaintextData, uint32 *pcubPlaintextData, const uint8 *pubPrivateKey, const uint32 cubPrivateKey );
static bool RSAPublicDecrypt_NoPadding( const uint8 *pubEncryptedData, uint32 cubEncryptedData, uint8 *pubPlaintextData, uint32 *pcubPlaintextData, const uint8 *pubPublicKey, const uint32 cubPublicKey ) { AssertMsg( false, "RSAPublicDecrypt_NoPadding not implemented on PS3" ); return false; }
static bool RSASign( const uint8 *pubData, const uint32 cubData, uint8 *pubSignature, uint32 *pcubSignature, const uint8 * pubPrivateKey, const uint32 cubPrivateKey );
static bool RSAVerifySignature( const uint8 *pubData, const uint32 cubData, const uint8 *pubSignature, const uint32 cubSignature, const uint8 *pubPublicKey, const uint32 cubPublicKey );
static bool HexEncode( const uint8 *pubData, const uint32 cubData, char *pchEncodedData, uint32 cchEncodedData );
static bool HexDecode( const char *pchData, uint8 *pubDecodedData, uint32 *pcubDecodedData );
static bool Base64Encode( const uint8 *pubData, const uint32 cubData, char *pchEncodedData, uint32 cchEncodedData, bool bInsertLineBreaks = true ) { AssertMsg( false, "Base64Encode not implemented on PS3" ); return false; } // cellHttpUtilBase64Encoder()
static bool Base64Decode( const char *pchData, uint8 *pubDecodedData, uint32 *pcubDecodedData, bool bIgnoreInvalidCharacters = true ) { AssertMsg( false, "Base64Decode not implemented on PS3" ); return false; } // cellHttpUtilBase64Decoder()
static bool GenerateSalt( Salt_t *pSalt );
static bool GenerateSHA1Digest( const uint8 *pubInput, const int cubInput, SHADigest_t *pOutDigest );
static bool GenerateSaltedSHA1Digest( const char *pchInput, const Salt_t *pSalt, SHADigest_t *pOutDigest ) { AssertMsg( false, "GenerateSaltedSHA1Digest not implemented on PS3" ); return false; }
static bool GenerateRandomBlock( uint8 *pubDest, int cubDest );
static bool GenerateHMAC( const uint8 *pubData, uint32 cubData, const uint8 *pubKey, uint32 cubKey, SHADigest_t *pOutputDigest ) { AssertMsg( false, "GenerateHMAC not implemented on PS3" ); return false; }
static bool GenerateHMAC256( const uint8 *pubData, uint32 cubData, const uint8 *pubKey, uint32 cubKey, SHA256Digest_t *pOutputDigest ) { AssertMsg( false, "GenerateHMAC256 not implemented on PS3" ); return false; }
static bool BGzipBuffer( const uint8 *pubData, uint32 cubData, CCryptoOutBuffer &bufOutput );
static bool BGunzipBuffer( const uint8 *pubData, uint32 cubData, CCryptoOutBuffer &bufOutput );
#ifdef DBGFLAG_VALIDATE
static void ValidateStatics( CValidator &validator, const char *pchName );
#endif
};
#endif //!_PS3
class CSimpleBitString;
//-----------------------------------------------------------------------------
// Purpose: Implement hex encoding / decoding using a custom lookup table.
// This is a class because the decoding is done via a generated
// reverse-lookup table, and to save time it's best to just create
// that table once.
//-----------------------------------------------------------------------------
class CCustomHexEncoder
{
public:
CCustomHexEncoder( const char *pchEncodingTable );
~CCustomHexEncoder();
bool Encode( const uint8 *pubData, const uint32 cubData, char *pchEncodedData, uint32 cchEncodedData );
bool Decode( const char *pchData, uint8 *pubDecodedData, uint32 *pcubDecodedData );
private:
bool m_bValidEncoding;
uint8 m_rgubEncodingTable[16];
int m_rgnDecodingTable[256];
};
//-----------------------------------------------------------------------------
// Purpose: Implement base32 encoding / decoding using a custom lookup table.
// This is a class because the decoding is done via a generated
// reverse-lookup table, and to save time it's best to just create
// that table once.
//-----------------------------------------------------------------------------
class CCustomBase32Encoder
{
public:
CCustomBase32Encoder( const char *pchEncodingTable );
~CCustomBase32Encoder();
bool Encode( const uint8 *pubData, const uint32 cubData, char *pchEncodedData, uint32 cchEncodedData );
bool Decode( const char *pchData, uint8 *pubDecodedData, uint32 *pcubDecodedData );
bool Encode( CSimpleBitString *pBitStringData, char *pchEncodedData, uint32 cchEncodedData );
bool Decode( const char *pchData, CSimpleBitString *pBitStringDecodedData );
private:
bool m_bValidEncoding;
uint8 m_rgubEncodingTable[32];
int m_rgnDecodingTable[256];
};
#endif // CRYPTO_H