mirror of
https://github.com/nillerusr/source-engine.git
synced 2024-12-31 18:43:02 +00:00
717 lines
15 KiB
C++
717 lines
15 KiB
C++
//========= Copyright Valve Corporation, All rights reserved. ============//
|
|
//
|
|
// Purpose:
|
|
//
|
|
// $NoKeywords: $
|
|
//
|
|
//=============================================================================//
|
|
|
|
#include "bitbuf.h"
|
|
#include "coordsize.h"
|
|
#include "mathlib/vector.h"
|
|
#include "mathlib/mathlib.h"
|
|
#include "tier1/strtools.h"
|
|
#include "bitvec.h"
|
|
|
|
// FIXME: Can't use this until we get multithreaded allocations in tier0 working for tools
|
|
// This is used by VVIS and fails to link
|
|
// NOTE: This must be the last file included!!!
|
|
//#include "tier0/memdbgon.h"
|
|
|
|
#ifdef _X360
|
|
// mandatory ... wary of above comment and isolating, tier0 is built as MT though
|
|
#include "tier0/memdbgon.h"
|
|
#endif
|
|
|
|
#include "stdio.h"
|
|
|
|
#if 0
|
|
|
|
void CBitWrite::StartWriting( void *pData, int nBytes, int iStartBit, int nBits )
|
|
{
|
|
// Make sure it's dword aligned and padded.
|
|
Assert( (nBytes % 4) == 0 );
|
|
Assert(((unsigned long)pData & 3) == 0);
|
|
Assert( iStartBit == 0 );
|
|
m_pData = (uint32 *) pData;
|
|
m_pDataOut = m_pData;
|
|
m_nDataBytes = nBytes;
|
|
|
|
if ( nBits == -1 )
|
|
{
|
|
m_nDataBits = nBytes << 3;
|
|
}
|
|
else
|
|
{
|
|
Assert( nBits <= nBytes*8 );
|
|
m_nDataBits = nBits;
|
|
}
|
|
m_bOverflow = false;
|
|
m_nOutBufWord = 0;
|
|
m_nOutBitsAvail = 32;
|
|
m_pBufferEnd = m_pDataOut + ( nBytes >> 2 );
|
|
}
|
|
|
|
const uint32 CBitBuffer::s_nMaskTable[33] = {
|
|
0,
|
|
( 1 << 1 ) - 1,
|
|
( 1 << 2 ) - 1,
|
|
( 1 << 3 ) - 1,
|
|
( 1 << 4 ) - 1,
|
|
( 1 << 5 ) - 1,
|
|
( 1 << 6 ) - 1,
|
|
( 1 << 7 ) - 1,
|
|
( 1 << 8 ) - 1,
|
|
( 1 << 9 ) - 1,
|
|
( 1 << 10 ) - 1,
|
|
( 1 << 11 ) - 1,
|
|
( 1 << 12 ) - 1,
|
|
( 1 << 13 ) - 1,
|
|
( 1 << 14 ) - 1,
|
|
( 1 << 15 ) - 1,
|
|
( 1 << 16 ) - 1,
|
|
( 1 << 17 ) - 1,
|
|
( 1 << 18 ) - 1,
|
|
( 1 << 19 ) - 1,
|
|
( 1 << 20 ) - 1,
|
|
( 1 << 21 ) - 1,
|
|
( 1 << 22 ) - 1,
|
|
( 1 << 23 ) - 1,
|
|
( 1 << 24 ) - 1,
|
|
( 1 << 25 ) - 1,
|
|
( 1 << 26 ) - 1,
|
|
( 1 << 27 ) - 1,
|
|
( 1 << 28 ) - 1,
|
|
( 1 << 29 ) - 1,
|
|
( 1 << 30 ) - 1,
|
|
0x7fffffff,
|
|
0xffffffff,
|
|
};
|
|
|
|
bool CBitWrite::WriteString( const char *pStr )
|
|
{
|
|
if(pStr)
|
|
{
|
|
while( *pStr )
|
|
{
|
|
WriteChar( * ( pStr++ ) );
|
|
}
|
|
}
|
|
WriteChar( 0 );
|
|
return !IsOverflowed();
|
|
}
|
|
|
|
|
|
void CBitWrite::WriteLongLong(int64 val)
|
|
{
|
|
uint *pLongs = (uint*)&val;
|
|
|
|
// Insert the two DWORDS according to network endian
|
|
const short endianIndex = 0x0100;
|
|
byte *idx = (byte*)&endianIndex;
|
|
WriteUBitLong(pLongs[*idx++], sizeof(long) << 3);
|
|
WriteUBitLong(pLongs[*idx], sizeof(long) << 3);
|
|
}
|
|
|
|
bool CBitWrite::WriteBits(const void *pInData, int nBits)
|
|
{
|
|
unsigned char *pOut = (unsigned char*)pInData;
|
|
int nBitsLeft = nBits;
|
|
|
|
// Bounds checking..
|
|
if ( ( GetNumBitsWritten() + nBits) > m_nDataBits )
|
|
{
|
|
SetOverflowFlag();
|
|
CallErrorHandler( BITBUFERROR_BUFFER_OVERRUN, m_pDebugName );
|
|
return false;
|
|
}
|
|
|
|
// !! speed!! need fast paths
|
|
// write remaining bytes
|
|
while ( nBitsLeft >= 8 )
|
|
{
|
|
WriteUBitLong( *pOut, 8, false );
|
|
++pOut;
|
|
nBitsLeft -= 8;
|
|
}
|
|
|
|
// write remaining bits
|
|
if ( nBitsLeft )
|
|
{
|
|
WriteUBitLong( *pOut, nBitsLeft, false );
|
|
}
|
|
|
|
return !IsOverflowed();
|
|
}
|
|
|
|
void CBitWrite::WriteBytes( const void *pBuf, int nBytes )
|
|
{
|
|
WriteBits(pBuf, nBytes << 3);
|
|
}
|
|
|
|
void CBitWrite::WriteBitCoord (const float f)
|
|
{
|
|
int signbit = (f <= -COORD_RESOLUTION);
|
|
int intval = (int)abs(f);
|
|
int fractval = abs((int)(f*COORD_DENOMINATOR)) & (COORD_DENOMINATOR-1);
|
|
|
|
|
|
// Send the bit flags that indicate whether we have an integer part and/or a fraction part.
|
|
WriteOneBit( intval );
|
|
WriteOneBit( fractval );
|
|
|
|
if ( intval || fractval )
|
|
{
|
|
// Send the sign bit
|
|
WriteOneBit( signbit );
|
|
|
|
// Send the integer if we have one.
|
|
if ( intval )
|
|
{
|
|
// Adjust the integers from [1..MAX_COORD_VALUE] to [0..MAX_COORD_VALUE-1]
|
|
intval--;
|
|
WriteUBitLong( (unsigned int)intval, COORD_INTEGER_BITS );
|
|
}
|
|
|
|
// Send the fraction if we have one
|
|
if ( fractval )
|
|
{
|
|
WriteUBitLong( (unsigned int)fractval, COORD_FRACTIONAL_BITS );
|
|
}
|
|
}
|
|
}
|
|
|
|
void CBitWrite::WriteBitCoordMP (const float f, bool bIntegral, bool bLowPrecision )
|
|
{
|
|
int signbit = (f <= -( bLowPrecision ? COORD_RESOLUTION_LOWPRECISION : COORD_RESOLUTION ));
|
|
int intval = (int)abs(f);
|
|
int fractval = bLowPrecision ?
|
|
( abs((int)(f*COORD_DENOMINATOR_LOWPRECISION)) & (COORD_DENOMINATOR_LOWPRECISION-1) ) :
|
|
( abs((int)(f*COORD_DENOMINATOR)) & (COORD_DENOMINATOR-1) );
|
|
|
|
bool bInBounds = intval < (1 << COORD_INTEGER_BITS_MP );
|
|
|
|
WriteOneBit( bInBounds );
|
|
|
|
if ( bIntegral )
|
|
{
|
|
// Send the sign bit
|
|
WriteOneBit( intval );
|
|
if ( intval )
|
|
{
|
|
WriteOneBit( signbit );
|
|
// Send the integer if we have one.
|
|
// Adjust the integers from [1..MAX_COORD_VALUE] to [0..MAX_COORD_VALUE-1]
|
|
intval--;
|
|
if ( bInBounds )
|
|
{
|
|
WriteUBitLong( (unsigned int)intval, COORD_INTEGER_BITS_MP );
|
|
}
|
|
else
|
|
{
|
|
WriteUBitLong( (unsigned int)intval, COORD_INTEGER_BITS );
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Send the bit flags that indicate whether we have an integer part and/or a fraction part.
|
|
WriteOneBit( intval );
|
|
// Send the sign bit
|
|
WriteOneBit( signbit );
|
|
|
|
// Send the integer if we have one.
|
|
if ( intval )
|
|
{
|
|
// Adjust the integers from [1..MAX_COORD_VALUE] to [0..MAX_COORD_VALUE-1]
|
|
intval--;
|
|
if ( bInBounds )
|
|
{
|
|
WriteUBitLong( (unsigned int)intval, COORD_INTEGER_BITS_MP );
|
|
}
|
|
else
|
|
{
|
|
WriteUBitLong( (unsigned int)intval, COORD_INTEGER_BITS );
|
|
}
|
|
}
|
|
WriteUBitLong( (unsigned int)fractval, bLowPrecision ? COORD_FRACTIONAL_BITS_MP_LOWPRECISION : COORD_FRACTIONAL_BITS );
|
|
}
|
|
}
|
|
|
|
void CBitWrite::SeekToBit( int nBit )
|
|
{
|
|
TempFlush();
|
|
m_pDataOut = m_pData + ( nBit / 32 );
|
|
m_nOutBufWord = *( m_pDataOut );
|
|
m_nOutBitsAvail = 32 - ( nBit & 31 );
|
|
}
|
|
|
|
|
|
|
|
void CBitWrite::WriteBitVec3Coord( const Vector& fa )
|
|
{
|
|
int xflag, yflag, zflag;
|
|
|
|
xflag = (fa[0] >= COORD_RESOLUTION) || (fa[0] <= -COORD_RESOLUTION);
|
|
yflag = (fa[1] >= COORD_RESOLUTION) || (fa[1] <= -COORD_RESOLUTION);
|
|
zflag = (fa[2] >= COORD_RESOLUTION) || (fa[2] <= -COORD_RESOLUTION);
|
|
|
|
WriteOneBit( xflag );
|
|
WriteOneBit( yflag );
|
|
WriteOneBit( zflag );
|
|
|
|
if ( xflag )
|
|
WriteBitCoord( fa[0] );
|
|
if ( yflag )
|
|
WriteBitCoord( fa[1] );
|
|
if ( zflag )
|
|
WriteBitCoord( fa[2] );
|
|
}
|
|
|
|
void CBitWrite::WriteBitNormal( float f )
|
|
{
|
|
int signbit = (f <= -NORMAL_RESOLUTION);
|
|
|
|
// NOTE: Since +/-1 are valid values for a normal, I'm going to encode that as all ones
|
|
unsigned int fractval = abs( (int)(f*NORMAL_DENOMINATOR) );
|
|
|
|
// clamp..
|
|
if (fractval > NORMAL_DENOMINATOR)
|
|
fractval = NORMAL_DENOMINATOR;
|
|
|
|
// Send the sign bit
|
|
WriteOneBit( signbit );
|
|
|
|
// Send the fractional component
|
|
WriteUBitLong( fractval, NORMAL_FRACTIONAL_BITS );
|
|
}
|
|
|
|
void CBitWrite::WriteBitVec3Normal( const Vector& fa )
|
|
{
|
|
int xflag, yflag;
|
|
|
|
xflag = (fa[0] >= NORMAL_RESOLUTION) || (fa[0] <= -NORMAL_RESOLUTION);
|
|
yflag = (fa[1] >= NORMAL_RESOLUTION) || (fa[1] <= -NORMAL_RESOLUTION);
|
|
|
|
WriteOneBit( xflag );
|
|
WriteOneBit( yflag );
|
|
|
|
if ( xflag )
|
|
WriteBitNormal( fa[0] );
|
|
if ( yflag )
|
|
WriteBitNormal( fa[1] );
|
|
|
|
// Write z sign bit
|
|
int signbit = (fa[2] <= -NORMAL_RESOLUTION);
|
|
WriteOneBit( signbit );
|
|
}
|
|
|
|
void CBitWrite::WriteBitAngle( float fAngle, int numbits )
|
|
{
|
|
|
|
unsigned int shift = GetBitForBitnum(numbits);
|
|
unsigned int mask = shift - 1;
|
|
|
|
int d = (int)( (fAngle / 360.0) * shift );
|
|
d &= mask;
|
|
|
|
WriteUBitLong((unsigned int)d, numbits);
|
|
}
|
|
|
|
bool CBitWrite::WriteBitsFromBuffer( bf_read *pIn, int nBits )
|
|
{
|
|
// This could be optimized a little by
|
|
while ( nBits > 32 )
|
|
{
|
|
WriteUBitLong( pIn->ReadUBitLong( 32 ), 32 );
|
|
nBits -= 32;
|
|
}
|
|
|
|
WriteUBitLong( pIn->ReadUBitLong( nBits ), nBits );
|
|
return !IsOverflowed() && !pIn->IsOverflowed();
|
|
}
|
|
|
|
void CBitWrite::WriteBitAngles( const QAngle& fa )
|
|
{
|
|
// FIXME:
|
|
Vector tmp( fa.x, fa.y, fa.z );
|
|
WriteBitVec3Coord( tmp );
|
|
}
|
|
|
|
bool CBitRead::Seek( int nPosition )
|
|
{
|
|
bool bSucc = true;
|
|
if ( nPosition < 0 || nPosition > m_nDataBits)
|
|
{
|
|
SetOverflowFlag();
|
|
bSucc = false;
|
|
nPosition = m_nDataBits;
|
|
}
|
|
int nHead = m_nDataBytes & 3; // non-multiple-of-4 bytes at head of buffer. We put the "round off"
|
|
// at the head to make reading and detecting the end efficient.
|
|
|
|
int nByteOfs = nPosition / 8;
|
|
if ( ( m_nDataBytes < 4 ) || ( nHead && ( nByteOfs < nHead ) ) )
|
|
{
|
|
// partial first dword
|
|
uint8 const *pPartial = ( uint8 const *) m_pData;
|
|
if ( m_pData )
|
|
{
|
|
m_nInBufWord = *( pPartial++ );
|
|
if ( nHead > 1 )
|
|
m_nInBufWord |= ( *pPartial++ ) << 8;
|
|
if ( nHead > 2 )
|
|
m_nInBufWord |= ( *pPartial++ ) << 16;
|
|
}
|
|
m_pDataIn = ( uint32 const * ) pPartial;
|
|
m_nInBufWord >>= ( nPosition & 31 );
|
|
m_nBitsAvail = ( nHead << 3 ) - ( nPosition & 31 );
|
|
}
|
|
else
|
|
{
|
|
int nAdjPosition = nPosition - ( nHead << 3 );
|
|
m_pDataIn = reinterpret_cast<uint32 const *> (
|
|
reinterpret_cast<uint8 const *>( m_pData ) + ( ( nAdjPosition / 32 ) << 2 ) + nHead );
|
|
if ( m_pData )
|
|
{
|
|
m_nBitsAvail = 32;
|
|
GrabNextDWord();
|
|
}
|
|
else
|
|
{
|
|
m_nInBufWord = 0;
|
|
m_nBitsAvail = 1;
|
|
}
|
|
m_nInBufWord >>= ( nAdjPosition & 31 );
|
|
m_nBitsAvail = min( m_nBitsAvail, 32 - ( nAdjPosition & 31 ) ); // in case grabnextdword overflowed
|
|
}
|
|
return bSucc;
|
|
}
|
|
|
|
|
|
void CBitRead::StartReading( const void *pData, int nBytes, int iStartBit, int nBits )
|
|
{
|
|
// Make sure it's dword aligned and padded.
|
|
Assert(((unsigned long)pData & 3) == 0);
|
|
m_pData = (uint32 *) pData;
|
|
m_pDataIn = m_pData;
|
|
m_nDataBytes = nBytes;
|
|
|
|
if ( nBits == -1 )
|
|
{
|
|
m_nDataBits = nBytes << 3;
|
|
}
|
|
else
|
|
{
|
|
Assert( nBits <= nBytes*8 );
|
|
m_nDataBits = nBits;
|
|
}
|
|
m_bOverflow = false;
|
|
m_pBufferEnd = reinterpret_cast<uint32 const *> ( reinterpret_cast< uint8 const *> (m_pData) + nBytes );
|
|
if ( m_pData )
|
|
Seek( iStartBit );
|
|
|
|
}
|
|
|
|
bool CBitRead::ReadString( char *pStr, int maxLen, bool bLine, int *pOutNumChars )
|
|
{
|
|
Assert( maxLen != 0 );
|
|
|
|
bool bTooSmall = false;
|
|
int iChar = 0;
|
|
while(1)
|
|
{
|
|
char val = ReadChar();
|
|
if ( val == 0 )
|
|
break;
|
|
else if ( bLine && val == '\n' )
|
|
break;
|
|
|
|
if ( iChar < (maxLen-1) )
|
|
{
|
|
pStr[iChar] = val;
|
|
++iChar;
|
|
}
|
|
else
|
|
{
|
|
bTooSmall = true;
|
|
}
|
|
}
|
|
|
|
// Make sure it's null-terminated.
|
|
Assert( iChar < maxLen );
|
|
pStr[iChar] = 0;
|
|
|
|
if ( pOutNumChars )
|
|
*pOutNumChars = iChar;
|
|
|
|
return !IsOverflowed() && !bTooSmall;
|
|
}
|
|
|
|
char* CBitRead::ReadAndAllocateString( bool *pOverflow )
|
|
{
|
|
char str[2048];
|
|
|
|
int nChars;
|
|
bool bOverflow = !ReadString( str, sizeof( str ), false, &nChars );
|
|
if ( pOverflow )
|
|
*pOverflow = bOverflow;
|
|
|
|
// Now copy into the output and return it;
|
|
char *pRet = new char[ nChars + 1 ];
|
|
for ( int i=0; i <= nChars; i++ )
|
|
pRet[i] = str[i];
|
|
|
|
return pRet;
|
|
}
|
|
|
|
int64 CBitRead::ReadLongLong( void )
|
|
{
|
|
int64 retval;
|
|
uint *pLongs = (uint*)&retval;
|
|
|
|
// Read the two DWORDs according to network endian
|
|
const short endianIndex = 0x0100;
|
|
byte *idx = (byte*)&endianIndex;
|
|
pLongs[*idx++] = ReadUBitLong(sizeof(long) << 3);
|
|
pLongs[*idx] = ReadUBitLong(sizeof(long) << 3);
|
|
return retval;
|
|
}
|
|
|
|
void CBitRead::ReadBits(void *pOutData, int nBits)
|
|
{
|
|
unsigned char *pOut = (unsigned char*)pOutData;
|
|
int nBitsLeft = nBits;
|
|
|
|
|
|
// align output to dword boundary
|
|
while( ((unsigned long)pOut & 3) != 0 && nBitsLeft >= 8 )
|
|
{
|
|
*pOut = (unsigned char)ReadUBitLong(8);
|
|
++pOut;
|
|
nBitsLeft -= 8;
|
|
}
|
|
|
|
// X360TBD: Can't read dwords in ReadBits because they'll get swapped
|
|
if ( IsPC() )
|
|
{
|
|
// read dwords
|
|
while ( nBitsLeft >= 32 )
|
|
{
|
|
*((unsigned long*)pOut) = ReadUBitLong(32);
|
|
pOut += sizeof(unsigned long);
|
|
nBitsLeft -= 32;
|
|
}
|
|
}
|
|
|
|
// read remaining bytes
|
|
while ( nBitsLeft >= 8 )
|
|
{
|
|
*pOut = ReadUBitLong(8);
|
|
++pOut;
|
|
nBitsLeft -= 8;
|
|
}
|
|
|
|
// read remaining bits
|
|
if ( nBitsLeft )
|
|
{
|
|
*pOut = ReadUBitLong(nBitsLeft);
|
|
}
|
|
|
|
}
|
|
|
|
bool CBitRead::ReadBytes(void *pOut, int nBytes)
|
|
{
|
|
ReadBits(pOut, nBytes << 3);
|
|
return !IsOverflowed();
|
|
}
|
|
|
|
float CBitRead::ReadBitAngle( int numbits )
|
|
{
|
|
float shift = (float)( GetBitForBitnum(numbits) );
|
|
|
|
int i = ReadUBitLong( numbits );
|
|
float fReturn = (float)i * (360.0 / shift);
|
|
|
|
return fReturn;
|
|
}
|
|
|
|
// Basic Coordinate Routines (these contain bit-field size AND fixed point scaling constants)
|
|
float CBitRead::ReadBitCoord (void)
|
|
{
|
|
int intval=0,fractval=0,signbit=0;
|
|
float value = 0.0;
|
|
|
|
|
|
// Read the required integer and fraction flags
|
|
intval = ReadOneBit();
|
|
fractval = ReadOneBit();
|
|
|
|
// If we got either parse them, otherwise it's a zero.
|
|
if ( intval || fractval )
|
|
{
|
|
// Read the sign bit
|
|
signbit = ReadOneBit();
|
|
|
|
// If there's an integer, read it in
|
|
if ( intval )
|
|
{
|
|
// Adjust the integers from [0..MAX_COORD_VALUE-1] to [1..MAX_COORD_VALUE]
|
|
intval = ReadUBitLong( COORD_INTEGER_BITS ) + 1;
|
|
}
|
|
|
|
// If there's a fraction, read it in
|
|
if ( fractval )
|
|
{
|
|
fractval = ReadUBitLong( COORD_FRACTIONAL_BITS );
|
|
}
|
|
|
|
// Calculate the correct floating point value
|
|
value = intval + ((float)fractval * COORD_RESOLUTION);
|
|
|
|
// Fixup the sign if negative.
|
|
if ( signbit )
|
|
value = -value;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
float CBitRead::ReadBitCoordMP( bool bIntegral, bool bLowPrecision )
|
|
{
|
|
int intval=0,fractval=0,signbit=0;
|
|
float value = 0.0;
|
|
|
|
bool bInBounds = ReadOneBit() ? true : false;
|
|
|
|
if ( bIntegral )
|
|
{
|
|
// Read the required integer and fraction flags
|
|
intval = ReadOneBit();
|
|
// If we got either parse them, otherwise it's a zero.
|
|
if ( intval )
|
|
{
|
|
// Read the sign bit
|
|
signbit = ReadOneBit();
|
|
|
|
// If there's an integer, read it in
|
|
// Adjust the integers from [0..MAX_COORD_VALUE-1] to [1..MAX_COORD_VALUE]
|
|
if ( bInBounds )
|
|
{
|
|
value = ReadUBitLong( COORD_INTEGER_BITS_MP ) + 1;
|
|
}
|
|
else
|
|
{
|
|
value = ReadUBitLong( COORD_INTEGER_BITS ) + 1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Read the required integer and fraction flags
|
|
intval = ReadOneBit();
|
|
|
|
// Read the sign bit
|
|
signbit = ReadOneBit();
|
|
|
|
// If we got either parse them, otherwise it's a zero.
|
|
if ( intval )
|
|
{
|
|
if ( bInBounds )
|
|
{
|
|
intval = ReadUBitLong( COORD_INTEGER_BITS_MP ) + 1;
|
|
}
|
|
else
|
|
{
|
|
intval = ReadUBitLong( COORD_INTEGER_BITS ) + 1;
|
|
}
|
|
}
|
|
|
|
// If there's a fraction, read it in
|
|
fractval = ReadUBitLong( bLowPrecision ? COORD_FRACTIONAL_BITS_MP_LOWPRECISION : COORD_FRACTIONAL_BITS );
|
|
|
|
// Calculate the correct floating point value
|
|
value = intval + ((float)fractval * ( bLowPrecision ? COORD_RESOLUTION_LOWPRECISION : COORD_RESOLUTION ) );
|
|
}
|
|
|
|
// Fixup the sign if negative.
|
|
if ( signbit )
|
|
value = -value;
|
|
|
|
return value;
|
|
}
|
|
|
|
void CBitRead::ReadBitVec3Coord( Vector& fa )
|
|
{
|
|
int xflag, yflag, zflag;
|
|
|
|
// This vector must be initialized! Otherwise, If any of the flags aren't set,
|
|
// the corresponding component will not be read and will be stack garbage.
|
|
fa.Init( 0, 0, 0 );
|
|
|
|
xflag = ReadOneBit();
|
|
yflag = ReadOneBit();
|
|
zflag = ReadOneBit();
|
|
|
|
if ( xflag )
|
|
fa[0] = ReadBitCoord();
|
|
if ( yflag )
|
|
fa[1] = ReadBitCoord();
|
|
if ( zflag )
|
|
fa[2] = ReadBitCoord();
|
|
}
|
|
|
|
float CBitRead::ReadBitNormal (void)
|
|
{
|
|
// Read the sign bit
|
|
int signbit = ReadOneBit();
|
|
|
|
// Read the fractional part
|
|
unsigned int fractval = ReadUBitLong( NORMAL_FRACTIONAL_BITS );
|
|
|
|
// Calculate the correct floating point value
|
|
float value = (float)fractval * NORMAL_RESOLUTION;
|
|
|
|
// Fixup the sign if negative.
|
|
if ( signbit )
|
|
value = -value;
|
|
|
|
return value;
|
|
}
|
|
|
|
void CBitRead::ReadBitVec3Normal( Vector& fa )
|
|
{
|
|
int xflag = ReadOneBit();
|
|
int yflag = ReadOneBit();
|
|
|
|
if (xflag)
|
|
fa[0] = ReadBitNormal();
|
|
else
|
|
fa[0] = 0.0f;
|
|
|
|
if (yflag)
|
|
fa[1] = ReadBitNormal();
|
|
else
|
|
fa[1] = 0.0f;
|
|
|
|
// The first two imply the third (but not its sign)
|
|
int znegative = ReadOneBit();
|
|
|
|
float fafafbfb = fa[0] * fa[0] + fa[1] * fa[1];
|
|
if (fafafbfb < 1.0f)
|
|
fa[2] = sqrt( 1.0f - fafafbfb );
|
|
else
|
|
fa[2] = 0.0f;
|
|
|
|
if (znegative)
|
|
fa[2] = -fa[2];
|
|
}
|
|
|
|
void CBitRead::ReadBitAngles( QAngle& fa )
|
|
{
|
|
Vector tmp;
|
|
ReadBitVec3Coord( tmp );
|
|
fa.Init( tmp.x, tmp.y, tmp.z );
|
|
}
|
|
|
|
#endif
|