mirror of
https://github.com/nillerusr/source-engine.git
synced 2025-01-26 00:48:59 +00:00
1716 lines
51 KiB
C
1716 lines
51 KiB
C
/* Copyright (C) 2002 Jean-Marc Valin
|
|
File: nb_celp.c
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include "nb_celp.h"
|
|
#include "lpc.h"
|
|
#include "lsp.h"
|
|
#include "ltp.h"
|
|
#include "quant_lsp.h"
|
|
#include "cb_search.h"
|
|
#include "filters.h"
|
|
#include "stack_alloc.h"
|
|
#include "vq.h"
|
|
#include "speex_bits.h"
|
|
#include "vbr.h"
|
|
#include "misc.h"
|
|
#include "speex_callbacks.h"
|
|
|
|
#ifdef SLOW_TRIG
|
|
#include "math_approx.h"
|
|
#define cos speex_cos
|
|
#endif
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846 /* pi */
|
|
#endif
|
|
|
|
#ifndef NULL
|
|
#define NULL 0
|
|
#endif
|
|
|
|
#define SUBMODE(x) st->submodes[st->submodeID]->x
|
|
|
|
float exc_gain_quant_scal3[8]={-2.794750, -1.810660, -1.169850, -0.848119, -0.587190, -0.329818, -0.063266, 0.282826};
|
|
|
|
float exc_gain_quant_scal1[2]={-0.35, 0.05};
|
|
|
|
#define sqr(x) ((x)*(x))
|
|
|
|
void *nb_encoder_init(SpeexMode *m)
|
|
{
|
|
EncState *st;
|
|
SpeexNBMode *mode;
|
|
int i;
|
|
|
|
mode=(SpeexNBMode *)m->mode;
|
|
st = (EncState*)speex_alloc(sizeof(EncState)+8000*sizeof(float));
|
|
if (!st)
|
|
return NULL;
|
|
|
|
st->stack = ((char*)st) + sizeof(EncState);
|
|
|
|
st->mode=m;
|
|
|
|
st->frameSize = mode->frameSize;
|
|
st->windowSize = st->frameSize*3/2;
|
|
st->nbSubframes=mode->frameSize/mode->subframeSize;
|
|
st->subframeSize=mode->subframeSize;
|
|
st->lpcSize = mode->lpcSize;
|
|
st->bufSize = mode->bufSize;
|
|
st->gamma1=mode->gamma1;
|
|
st->gamma2=mode->gamma2;
|
|
st->min_pitch=mode->pitchStart;
|
|
st->max_pitch=mode->pitchEnd;
|
|
st->lag_factor=mode->lag_factor;
|
|
st->lpc_floor = mode->lpc_floor;
|
|
st->preemph = mode->preemph;
|
|
|
|
st->submodes=mode->submodes;
|
|
st->submodeID=st->submodeSelect=mode->defaultSubmode;
|
|
st->pre_mem=0;
|
|
st->pre_mem2=0;
|
|
st->bounded_pitch = 1;
|
|
|
|
/* Allocating input buffer */
|
|
st->inBuf = PUSH(st->stack, st->bufSize, float);
|
|
st->frame = st->inBuf + st->bufSize - st->windowSize;
|
|
/* Allocating excitation buffer */
|
|
st->excBuf = PUSH(st->stack, st->bufSize, float);
|
|
st->exc = st->excBuf + st->bufSize - st->windowSize;
|
|
st->swBuf = PUSH(st->stack, st->bufSize, float);
|
|
st->sw = st->swBuf + st->bufSize - st->windowSize;
|
|
|
|
st->exc2Buf = PUSH(st->stack, st->bufSize, float);
|
|
st->exc2 = st->exc2Buf + st->bufSize - st->windowSize;
|
|
|
|
st->innov = PUSH(st->stack, st->frameSize, float);
|
|
|
|
/* Asymmetric "pseudo-Hamming" window */
|
|
{
|
|
int part1, part2;
|
|
part1 = st->subframeSize*7/2;
|
|
part2 = st->subframeSize*5/2;
|
|
st->window = PUSH(st->stack, st->windowSize, float);
|
|
for (i=0;i<part1;i++)
|
|
st->window[i]=.54-.46*cos(M_PI*i/part1);
|
|
for (i=0;i<part2;i++)
|
|
st->window[part1+i]=.54+.46*cos(M_PI*i/part2);
|
|
}
|
|
/* Create the window for autocorrelation (lag-windowing) */
|
|
st->lagWindow = PUSH(st->stack, st->lpcSize+1, float);
|
|
for (i=0;i<st->lpcSize+1;i++)
|
|
st->lagWindow[i]=exp(-.5*sqr(2*M_PI*st->lag_factor*i));
|
|
|
|
st->autocorr = PUSH(st->stack, st->lpcSize+1, float);
|
|
|
|
st->buf2 = PUSH(st->stack, st->windowSize, float);
|
|
|
|
st->lpc = PUSH(st->stack, st->lpcSize+1, float);
|
|
st->interp_lpc = PUSH(st->stack, st->lpcSize+1, float);
|
|
st->interp_qlpc = PUSH(st->stack, st->lpcSize+1, float);
|
|
st->bw_lpc1 = PUSH(st->stack, st->lpcSize+1, float);
|
|
st->bw_lpc2 = PUSH(st->stack, st->lpcSize+1, float);
|
|
|
|
st->lsp = PUSH(st->stack, st->lpcSize, float);
|
|
st->qlsp = PUSH(st->stack, st->lpcSize, float);
|
|
st->old_lsp = PUSH(st->stack, st->lpcSize, float);
|
|
st->old_qlsp = PUSH(st->stack, st->lpcSize, float);
|
|
st->interp_lsp = PUSH(st->stack, st->lpcSize, float);
|
|
st->interp_qlsp = PUSH(st->stack, st->lpcSize, float);
|
|
st->rc = PUSH(st->stack, st->lpcSize, float);
|
|
st->first = 1;
|
|
for (i=0;i<st->lpcSize;i++)
|
|
{
|
|
st->lsp[i]=(M_PI*((float)(i+1)))/(st->lpcSize+1);
|
|
}
|
|
|
|
st->mem_sp = PUSH(st->stack, st->lpcSize, float);
|
|
st->mem_sw = PUSH(st->stack, st->lpcSize, float);
|
|
st->mem_sw_whole = PUSH(st->stack, st->lpcSize, float);
|
|
st->mem_exc = PUSH(st->stack, st->lpcSize, float);
|
|
|
|
st->pi_gain = PUSH(st->stack, st->nbSubframes, float);
|
|
|
|
st->pitch = PUSH(st->stack, st->nbSubframes, int);
|
|
|
|
st->vbr = PUSHS(st->stack, VBRState);
|
|
vbr_init(st->vbr);
|
|
st->vbr_quality = 8;
|
|
st->vbr_enabled = 0;
|
|
st->vad_enabled = 0;
|
|
st->dtx_enabled = 0;
|
|
st->abr_enabled = 0;
|
|
st->abr_drift = 0;
|
|
|
|
st->complexity=2;
|
|
st->sampling_rate=8000;
|
|
st->dtx_count=0;
|
|
|
|
return st;
|
|
}
|
|
|
|
void nb_encoder_destroy(void *state)
|
|
{
|
|
EncState *st=(EncState *)state;
|
|
/* Free all allocated memory */
|
|
|
|
vbr_destroy(st->vbr);
|
|
|
|
/*Free state memory... should be last*/
|
|
speex_free(st);
|
|
}
|
|
|
|
int nb_encode(void *state, float *in, SpeexBits *bits)
|
|
{
|
|
EncState *st;
|
|
int i, sub, roots;
|
|
int ol_pitch;
|
|
float ol_pitch_coef;
|
|
float ol_gain;
|
|
float *res, *target, *mem;
|
|
char *stack;
|
|
float *syn_resp;
|
|
float lsp_dist=0;
|
|
float *orig;
|
|
|
|
st=(EncState *)state;
|
|
stack=st->stack;
|
|
|
|
/* Copy new data in input buffer */
|
|
speex_move(st->inBuf, st->inBuf+st->frameSize, (st->bufSize-st->frameSize)*sizeof(float));
|
|
st->inBuf[st->bufSize-st->frameSize] = in[0] - st->preemph*st->pre_mem;
|
|
for (i=1;i<st->frameSize;i++)
|
|
st->inBuf[st->bufSize-st->frameSize+i] = in[i] - st->preemph*in[i-1];
|
|
st->pre_mem = in[st->frameSize-1];
|
|
|
|
/* Move signals 1 frame towards the past */
|
|
speex_move(st->exc2Buf, st->exc2Buf+st->frameSize, (st->bufSize-st->frameSize)*sizeof(float));
|
|
speex_move(st->excBuf, st->excBuf+st->frameSize, (st->bufSize-st->frameSize)*sizeof(float));
|
|
speex_move(st->swBuf, st->swBuf+st->frameSize, (st->bufSize-st->frameSize)*sizeof(float));
|
|
|
|
|
|
/* Window for analysis */
|
|
for (i=0;i<st->windowSize;i++)
|
|
st->buf2[i] = st->frame[i] * st->window[i];
|
|
|
|
/* Compute auto-correlation */
|
|
_spx_autocorr(st->buf2, st->autocorr, st->lpcSize+1, st->windowSize);
|
|
|
|
st->autocorr[0] += 10; /* prevents NANs */
|
|
st->autocorr[0] *= st->lpc_floor; /* Noise floor in auto-correlation domain */
|
|
|
|
/* Lag windowing: equivalent to filtering in the power-spectrum domain */
|
|
for (i=0;i<st->lpcSize+1;i++)
|
|
st->autocorr[i] *= st->lagWindow[i];
|
|
|
|
/* Levinson-Durbin */
|
|
wld(st->lpc+1, st->autocorr, st->rc, st->lpcSize);
|
|
st->lpc[0]=1;
|
|
|
|
/* LPC to LSPs (x-domain) transform */
|
|
roots=lpc_to_lsp (st->lpc, st->lpcSize, st->lsp, 15, 0.2, stack);
|
|
/* Check if we found all the roots */
|
|
if (roots==st->lpcSize)
|
|
{
|
|
/* LSP x-domain to angle domain*/
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->lsp[i] = acos(st->lsp[i]);
|
|
} else {
|
|
/* Search again if we can afford it */
|
|
if (st->complexity>1)
|
|
roots = lpc_to_lsp (st->lpc, st->lpcSize, st->lsp, 11, 0.05, stack);
|
|
if (roots==st->lpcSize)
|
|
{
|
|
/* LSP x-domain to angle domain*/
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->lsp[i] = acos(st->lsp[i]);
|
|
} else {
|
|
/*If we can't find all LSP's, do some damage control and use previous filter*/
|
|
for (i=0;i<st->lpcSize;i++)
|
|
{
|
|
st->lsp[i]=st->old_lsp[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
lsp_dist=0;
|
|
for (i=0;i<st->lpcSize;i++)
|
|
lsp_dist += (st->old_lsp[i] - st->lsp[i])*(st->old_lsp[i] - st->lsp[i]);
|
|
|
|
/* Whole frame analysis (open-loop estimation of pitch and excitation gain) */
|
|
{
|
|
if (st->first)
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->interp_lsp[i] = st->lsp[i];
|
|
else
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->interp_lsp[i] = .375*st->old_lsp[i] + .625*st->lsp[i];
|
|
|
|
lsp_enforce_margin(st->interp_lsp, st->lpcSize, .002);
|
|
|
|
/* Compute interpolated LPCs (unquantized) for whole frame*/
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->interp_lsp[i] = cos(st->interp_lsp[i]);
|
|
lsp_to_lpc(st->interp_lsp, st->interp_lpc, st->lpcSize,stack);
|
|
|
|
|
|
/*Open-loop pitch*/
|
|
if (!st->submodes[st->submodeID] || st->vbr_enabled || st->vad_enabled || SUBMODE(forced_pitch_gain) ||
|
|
SUBMODE(lbr_pitch) != -1)
|
|
{
|
|
int nol_pitch[6];
|
|
float nol_pitch_coef[6];
|
|
|
|
bw_lpc(st->gamma1, st->interp_lpc, st->bw_lpc1, st->lpcSize);
|
|
bw_lpc(st->gamma2, st->interp_lpc, st->bw_lpc2, st->lpcSize);
|
|
|
|
filter_mem2(st->frame, st->bw_lpc1, st->bw_lpc2, st->sw, st->frameSize, st->lpcSize, st->mem_sw_whole);
|
|
|
|
open_loop_nbest_pitch(st->sw, st->min_pitch, st->max_pitch, st->frameSize,
|
|
nol_pitch, nol_pitch_coef, 6, stack);
|
|
ol_pitch=nol_pitch[0];
|
|
ol_pitch_coef = nol_pitch_coef[0];
|
|
/*Try to remove pitch multiples*/
|
|
for (i=1;i<6;i++)
|
|
{
|
|
if ((nol_pitch_coef[i]>.85*ol_pitch_coef) &&
|
|
(fabs(nol_pitch[i]-ol_pitch/2.0)<=1 || fabs(nol_pitch[i]-ol_pitch/3.0)<=1 ||
|
|
fabs(nol_pitch[i]-ol_pitch/4.0)<=1 || fabs(nol_pitch[i]-ol_pitch/5.0)<=1))
|
|
{
|
|
/*ol_pitch_coef=nol_pitch_coef[i];*/
|
|
ol_pitch = nol_pitch[i];
|
|
}
|
|
}
|
|
/*if (ol_pitch>50)
|
|
ol_pitch/=2;*/
|
|
/*ol_pitch_coef = sqrt(ol_pitch_coef);*/
|
|
} else {
|
|
ol_pitch=0;
|
|
ol_pitch_coef=0;
|
|
}
|
|
/*Compute "real" excitation*/
|
|
fir_mem2(st->frame, st->interp_lpc, st->exc, st->frameSize, st->lpcSize, st->mem_exc);
|
|
|
|
/* Compute open-loop excitation gain */
|
|
ol_gain=0;
|
|
for (i=0;i<st->frameSize;i++)
|
|
ol_gain += st->exc[i]*st->exc[i];
|
|
|
|
ol_gain=sqrt(1+ol_gain/st->frameSize);
|
|
}
|
|
|
|
/*VBR stuff*/
|
|
if (st->vbr && (st->vbr_enabled||st->vad_enabled))
|
|
{
|
|
|
|
if (st->abr_enabled)
|
|
{
|
|
float qual_change=0;
|
|
if (st->abr_drift2 * st->abr_drift > 0)
|
|
{
|
|
/* Only adapt if long-term and short-term drift are the same sign */
|
|
qual_change = -.00001*st->abr_drift/(1+st->abr_count);
|
|
if (qual_change>.05)
|
|
qual_change=.05;
|
|
if (qual_change<-.05)
|
|
qual_change=-.05;
|
|
}
|
|
st->vbr_quality += qual_change;
|
|
if (st->vbr_quality>10)
|
|
st->vbr_quality=10;
|
|
if (st->vbr_quality<0)
|
|
st->vbr_quality=0;
|
|
}
|
|
|
|
st->relative_quality = vbr_analysis(st->vbr, in, st->frameSize, ol_pitch, ol_pitch_coef);
|
|
/*if (delta_qual<0)*/
|
|
/* delta_qual*=.1*(3+st->vbr_quality);*/
|
|
if (st->vbr_enabled)
|
|
{
|
|
int mode;
|
|
int choice=0;
|
|
float min_diff=100;
|
|
mode = 8;
|
|
while (mode)
|
|
{
|
|
int v1;
|
|
float thresh;
|
|
v1=(int)floor(st->vbr_quality);
|
|
if (v1==10)
|
|
thresh = vbr_nb_thresh[mode][v1];
|
|
else
|
|
thresh = (st->vbr_quality-v1)*vbr_nb_thresh[mode][v1+1] + (1+v1-st->vbr_quality)*vbr_nb_thresh[mode][v1];
|
|
if (st->relative_quality > thresh &&
|
|
st->relative_quality-thresh<min_diff)
|
|
{
|
|
choice = mode;
|
|
min_diff = st->relative_quality-thresh;
|
|
}
|
|
mode--;
|
|
}
|
|
mode=choice;
|
|
if (mode==0)
|
|
{
|
|
if (st->dtx_count==0 || lsp_dist>.05 || !st->dtx_enabled || st->dtx_count>20)
|
|
{
|
|
mode=1;
|
|
st->dtx_count=1;
|
|
} else {
|
|
mode=0;
|
|
st->dtx_count++;
|
|
}
|
|
} else {
|
|
st->dtx_count=0;
|
|
}
|
|
|
|
speex_encoder_ctl(state, SPEEX_SET_MODE, &mode);
|
|
|
|
if (st->abr_enabled)
|
|
{
|
|
int bitrate;
|
|
speex_encoder_ctl(state, SPEEX_GET_BITRATE, &bitrate);
|
|
st->abr_drift+=(bitrate-st->abr_enabled);
|
|
st->abr_drift2 = .95*st->abr_drift2 + .05*(bitrate-st->abr_enabled);
|
|
st->abr_count += 1.0;
|
|
}
|
|
|
|
} else {
|
|
/*VAD only case*/
|
|
int mode;
|
|
if (st->relative_quality<2)
|
|
{
|
|
if (st->dtx_count==0 || lsp_dist>.05 || !st->dtx_enabled || st->dtx_count>20)
|
|
{
|
|
st->dtx_count=1;
|
|
mode=1;
|
|
} else {
|
|
mode=0;
|
|
st->dtx_count++;
|
|
}
|
|
} else {
|
|
st->dtx_count = 0;
|
|
mode=st->submodeSelect;
|
|
}
|
|
/*speex_encoder_ctl(state, SPEEX_SET_MODE, &mode);*/
|
|
st->submodeID=mode;
|
|
}
|
|
} else {
|
|
st->relative_quality = -1;
|
|
}
|
|
|
|
/* First, transmit a zero for narrowband */
|
|
speex_bits_pack(bits, 0, 1);
|
|
|
|
/* Transmit the sub-mode we use for this frame */
|
|
speex_bits_pack(bits, st->submodeID, NB_SUBMODE_BITS);
|
|
|
|
|
|
/* If null mode (no transmission), just set a couple things to zero*/
|
|
if (st->submodes[st->submodeID] == NULL)
|
|
{
|
|
for (i=0;i<st->frameSize;i++)
|
|
st->exc[i]=st->exc2[i]=st->sw[i]=0;
|
|
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->mem_sw[i]=0;
|
|
st->first=1;
|
|
st->bounded_pitch = 1;
|
|
|
|
/* Final signal synthesis from excitation */
|
|
iir_mem2(st->exc, st->interp_qlpc, st->frame, st->frameSize, st->lpcSize, st->mem_sp);
|
|
|
|
in[0] = st->frame[0] + st->preemph*st->pre_mem2;
|
|
for (i=1;i<st->frameSize;i++)
|
|
in[i]=st->frame[i] + st->preemph*in[i-1];
|
|
st->pre_mem2=in[st->frameSize-1];
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/* LSP Quantization */
|
|
if (st->first)
|
|
{
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->old_lsp[i] = st->lsp[i];
|
|
}
|
|
|
|
|
|
/*Quantize LSPs*/
|
|
#if 1 /*0 for unquantized*/
|
|
SUBMODE(lsp_quant)(st->lsp, st->qlsp, st->lpcSize, bits);
|
|
#else
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->qlsp[i]=st->lsp[i];
|
|
#endif
|
|
|
|
/*If we use low bit-rate pitch mode, transmit open-loop pitch*/
|
|
if (SUBMODE(lbr_pitch)!=-1)
|
|
{
|
|
speex_bits_pack(bits, ol_pitch-st->min_pitch, 7);
|
|
}
|
|
|
|
if (SUBMODE(forced_pitch_gain))
|
|
{
|
|
int quant;
|
|
quant = (int)floor(.5+15*ol_pitch_coef);
|
|
if (quant>15)
|
|
quant=15;
|
|
if (quant<0)
|
|
quant=0;
|
|
speex_bits_pack(bits, quant, 4);
|
|
ol_pitch_coef=0.066667*quant;
|
|
}
|
|
|
|
|
|
/*Quantize and transmit open-loop excitation gain*/
|
|
{
|
|
int qe = (int)(floor(3.5*log(ol_gain)));
|
|
if (qe<0)
|
|
qe=0;
|
|
if (qe>31)
|
|
qe=31;
|
|
ol_gain = exp(qe/3.5);
|
|
speex_bits_pack(bits, qe, 5);
|
|
}
|
|
|
|
/* Special case for first frame */
|
|
if (st->first)
|
|
{
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->old_qlsp[i] = st->qlsp[i];
|
|
}
|
|
|
|
/* Filter response */
|
|
res = PUSH(stack, st->subframeSize, float);
|
|
/* Target signal */
|
|
target = PUSH(stack, st->subframeSize, float);
|
|
syn_resp = PUSH(stack, st->subframeSize, float);
|
|
mem = PUSH(stack, st->lpcSize, float);
|
|
orig = PUSH(stack, st->frameSize, float);
|
|
for (i=0;i<st->frameSize;i++)
|
|
orig[i]=st->frame[i];
|
|
|
|
/* Loop on sub-frames */
|
|
for (sub=0;sub<st->nbSubframes;sub++)
|
|
{
|
|
float tmp;
|
|
int offset;
|
|
float *sp, *sw, *exc, *exc2;
|
|
int pitch;
|
|
|
|
/* Offset relative to start of frame */
|
|
offset = st->subframeSize*sub;
|
|
/* Original signal */
|
|
sp=st->frame+offset;
|
|
/* Excitation */
|
|
exc=st->exc+offset;
|
|
/* Weighted signal */
|
|
sw=st->sw+offset;
|
|
|
|
exc2=st->exc2+offset;
|
|
|
|
|
|
/* LSP interpolation (quantized and unquantized) */
|
|
tmp = (1.0 + sub)/st->nbSubframes;
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->interp_lsp[i] = (1-tmp)*st->old_lsp[i] + tmp*st->lsp[i];
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->interp_qlsp[i] = (1-tmp)*st->old_qlsp[i] + tmp*st->qlsp[i];
|
|
|
|
/* Make sure the filters are stable */
|
|
lsp_enforce_margin(st->interp_lsp, st->lpcSize, .002);
|
|
lsp_enforce_margin(st->interp_qlsp, st->lpcSize, .002);
|
|
|
|
/* Compute interpolated LPCs (quantized and unquantized) */
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->interp_lsp[i] = cos(st->interp_lsp[i]);
|
|
lsp_to_lpc(st->interp_lsp, st->interp_lpc, st->lpcSize,stack);
|
|
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->interp_qlsp[i] = cos(st->interp_qlsp[i]);
|
|
lsp_to_lpc(st->interp_qlsp, st->interp_qlpc, st->lpcSize, stack);
|
|
|
|
/* Compute analysis filter gain at w=pi (for use in SB-CELP) */
|
|
tmp=1;
|
|
st->pi_gain[sub]=0;
|
|
for (i=0;i<=st->lpcSize;i++)
|
|
{
|
|
st->pi_gain[sub] += tmp*st->interp_qlpc[i];
|
|
tmp = -tmp;
|
|
}
|
|
|
|
/* Compute bandwidth-expanded (unquantized) LPCs for perceptual weighting */
|
|
bw_lpc(st->gamma1, st->interp_lpc, st->bw_lpc1, st->lpcSize);
|
|
if (st->gamma2>=0)
|
|
bw_lpc(st->gamma2, st->interp_lpc, st->bw_lpc2, st->lpcSize);
|
|
else
|
|
{
|
|
st->bw_lpc2[0]=1;
|
|
st->bw_lpc2[1]=-st->preemph;
|
|
for (i=2;i<=st->lpcSize;i++)
|
|
st->bw_lpc2[i]=0;
|
|
}
|
|
|
|
/* Compute impulse response of A(z/g1) / ( A(z)*A(z/g2) )*/
|
|
for (i=0;i<st->subframeSize;i++)
|
|
exc[i]=0;
|
|
exc[0]=1;
|
|
syn_percep_zero(exc, st->interp_qlpc, st->bw_lpc1, st->bw_lpc2, syn_resp, st->subframeSize, st->lpcSize, stack);
|
|
|
|
/* Reset excitation */
|
|
for (i=0;i<st->subframeSize;i++)
|
|
exc[i]=0;
|
|
for (i=0;i<st->subframeSize;i++)
|
|
exc2[i]=0;
|
|
|
|
/* Compute zero response of A(z/g1) / ( A(z/g2) * A(z) ) */
|
|
for (i=0;i<st->lpcSize;i++)
|
|
mem[i]=st->mem_sp[i];
|
|
iir_mem2(exc, st->interp_qlpc, exc, st->subframeSize, st->lpcSize, mem);
|
|
|
|
for (i=0;i<st->lpcSize;i++)
|
|
mem[i]=st->mem_sw[i];
|
|
filter_mem2(exc, st->bw_lpc1, st->bw_lpc2, res, st->subframeSize, st->lpcSize, mem);
|
|
|
|
/* Compute weighted signal */
|
|
for (i=0;i<st->lpcSize;i++)
|
|
mem[i]=st->mem_sw[i];
|
|
filter_mem2(sp, st->bw_lpc1, st->bw_lpc2, sw, st->subframeSize, st->lpcSize, mem);
|
|
|
|
/* Compute target signal */
|
|
for (i=0;i<st->subframeSize;i++)
|
|
target[i]=sw[i]-res[i];
|
|
|
|
for (i=0;i<st->subframeSize;i++)
|
|
exc[i]=exc2[i]=0;
|
|
|
|
/* If we have a long-term predictor (otherwise, something's wrong) */
|
|
if (SUBMODE(ltp_quant))
|
|
{
|
|
int pit_min, pit_max;
|
|
/* Long-term prediction */
|
|
if (SUBMODE(lbr_pitch) != -1)
|
|
{
|
|
/* Low bit-rate pitch handling */
|
|
int margin;
|
|
margin = SUBMODE(lbr_pitch);
|
|
if (margin)
|
|
{
|
|
if (ol_pitch < st->min_pitch+margin-1)
|
|
ol_pitch=st->min_pitch+margin-1;
|
|
if (ol_pitch > st->max_pitch-margin)
|
|
ol_pitch=st->max_pitch-margin;
|
|
pit_min = ol_pitch-margin+1;
|
|
pit_max = ol_pitch+margin;
|
|
} else {
|
|
pit_min=pit_max=ol_pitch;
|
|
}
|
|
} else {
|
|
pit_min = st->min_pitch;
|
|
pit_max = st->max_pitch;
|
|
}
|
|
|
|
/* Force pitch to use only the current frame if needed */
|
|
if (st->bounded_pitch && pit_max>offset)
|
|
pit_max=offset;
|
|
|
|
/* Perform pitch search */
|
|
pitch = SUBMODE(ltp_quant)(target, sw, st->interp_qlpc, st->bw_lpc1, st->bw_lpc2,
|
|
exc, SUBMODE(ltp_params), pit_min, pit_max, ol_pitch_coef,
|
|
st->lpcSize, st->subframeSize, bits, stack,
|
|
exc2, syn_resp, st->complexity);
|
|
|
|
st->pitch[sub]=pitch;
|
|
} else {
|
|
speex_error ("No pitch prediction, what's wrong");
|
|
}
|
|
|
|
/* Update target for adaptive codebook contribution */
|
|
syn_percep_zero(exc, st->interp_qlpc, st->bw_lpc1, st->bw_lpc2, res, st->subframeSize, st->lpcSize, stack);
|
|
for (i=0;i<st->subframeSize;i++)
|
|
target[i]-=res[i];
|
|
|
|
|
|
/* Quantization of innovation */
|
|
{
|
|
float *innov;
|
|
float ener=0, ener_1;
|
|
|
|
innov = st->innov+sub*st->subframeSize;
|
|
for (i=0;i<st->subframeSize;i++)
|
|
innov[i]=0;
|
|
|
|
residue_percep_zero(target, st->interp_qlpc, st->bw_lpc1, st->bw_lpc2, st->buf2, st->subframeSize, st->lpcSize, stack);
|
|
for (i=0;i<st->subframeSize;i++)
|
|
ener+=st->buf2[i]*st->buf2[i];
|
|
ener=sqrt(.1+ener/st->subframeSize);
|
|
/*for (i=0;i<st->subframeSize;i++)
|
|
printf ("%f\n", st->buf2[i]/ener);
|
|
*/
|
|
|
|
ener /= ol_gain;
|
|
|
|
/* Calculate gain correction for the sub-frame (if any) */
|
|
if (SUBMODE(have_subframe_gain))
|
|
{
|
|
int qe;
|
|
ener=log(ener);
|
|
if (SUBMODE(have_subframe_gain)==3)
|
|
{
|
|
qe = vq_index(&ener, exc_gain_quant_scal3, 1, 8);
|
|
speex_bits_pack(bits, qe, 3);
|
|
ener=exc_gain_quant_scal3[qe];
|
|
} else {
|
|
qe = vq_index(&ener, exc_gain_quant_scal1, 1, 2);
|
|
speex_bits_pack(bits, qe, 1);
|
|
ener=exc_gain_quant_scal1[qe];
|
|
}
|
|
ener=exp(ener);
|
|
} else {
|
|
ener=1;
|
|
}
|
|
|
|
ener*=ol_gain;
|
|
|
|
/*printf ("%f %f\n", ener, ol_gain);*/
|
|
|
|
ener_1 = 1/ener;
|
|
|
|
/* Normalize innovation */
|
|
for (i=0;i<st->subframeSize;i++)
|
|
target[i]*=ener_1;
|
|
|
|
/* Quantize innovation */
|
|
if (SUBMODE(innovation_quant))
|
|
{
|
|
/* Codebook search */
|
|
SUBMODE(innovation_quant)(target, st->interp_qlpc, st->bw_lpc1, st->bw_lpc2,
|
|
SUBMODE(innovation_params), st->lpcSize, st->subframeSize,
|
|
innov, syn_resp, bits, stack, st->complexity);
|
|
|
|
/* De-normalize innovation and update excitation */
|
|
for (i=0;i<st->subframeSize;i++)
|
|
innov[i]*=ener;
|
|
for (i=0;i<st->subframeSize;i++)
|
|
exc[i] += innov[i];
|
|
} else {
|
|
speex_error("No fixed codebook");
|
|
}
|
|
|
|
/* In some (rare) modes, we do a second search (more bits) to reduce noise even more */
|
|
if (SUBMODE(double_codebook)) {
|
|
char *tmp_stack=stack;
|
|
float *innov2 = PUSH(tmp_stack, st->subframeSize, float);
|
|
for (i=0;i<st->subframeSize;i++)
|
|
innov2[i]=0;
|
|
for (i=0;i<st->subframeSize;i++)
|
|
target[i]*=2.2;
|
|
SUBMODE(innovation_quant)(target, st->interp_qlpc, st->bw_lpc1, st->bw_lpc2,
|
|
SUBMODE(innovation_params), st->lpcSize, st->subframeSize,
|
|
innov2, syn_resp, bits, tmp_stack, st->complexity);
|
|
for (i=0;i<st->subframeSize;i++)
|
|
innov2[i]*=ener*(1/2.2);
|
|
for (i=0;i<st->subframeSize;i++)
|
|
exc[i] += innov2[i];
|
|
}
|
|
|
|
for (i=0;i<st->subframeSize;i++)
|
|
target[i]*=ener;
|
|
|
|
}
|
|
|
|
/*Keep the previous memory*/
|
|
for (i=0;i<st->lpcSize;i++)
|
|
mem[i]=st->mem_sp[i];
|
|
/* Final signal synthesis from excitation */
|
|
iir_mem2(exc, st->interp_qlpc, sp, st->subframeSize, st->lpcSize, st->mem_sp);
|
|
|
|
/* Compute weighted signal again, from synthesized speech (not sure it's the right thing) */
|
|
filter_mem2(sp, st->bw_lpc1, st->bw_lpc2, sw, st->subframeSize, st->lpcSize, st->mem_sw);
|
|
for (i=0;i<st->subframeSize;i++)
|
|
exc2[i]=exc[i];
|
|
}
|
|
|
|
/* Store the LSPs for interpolation in the next frame */
|
|
if (st->submodeID>=1)
|
|
{
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->old_lsp[i] = st->lsp[i];
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->old_qlsp[i] = st->qlsp[i];
|
|
}
|
|
|
|
if (st->submodeID==1)
|
|
{
|
|
if (st->dtx_count)
|
|
speex_bits_pack(bits, 15, 4);
|
|
else
|
|
speex_bits_pack(bits, 0, 4);
|
|
}
|
|
|
|
/* The next frame will not be the first (Duh!) */
|
|
st->first = 0;
|
|
|
|
{
|
|
float ener=0, err=0;
|
|
float snr;
|
|
for (i=0;i<st->frameSize;i++)
|
|
{
|
|
ener+=st->frame[i]*st->frame[i];
|
|
err += (st->frame[i]-orig[i])*(st->frame[i]-orig[i]);
|
|
}
|
|
snr = 10*log10((ener+1)/(err+1));
|
|
/*printf ("%f %f %f\n", snr, ener, err);*/
|
|
}
|
|
|
|
/* Replace input by synthesized speech */
|
|
in[0] = st->frame[0] + st->preemph*st->pre_mem2;
|
|
for (i=1;i<st->frameSize;i++)
|
|
in[i]=st->frame[i] + st->preemph*in[i-1];
|
|
st->pre_mem2=in[st->frameSize-1];
|
|
|
|
if (SUBMODE(innovation_quant) == noise_codebook_quant || st->submodeID==0)
|
|
st->bounded_pitch = 1;
|
|
else
|
|
st->bounded_pitch = 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
void *nb_decoder_init(SpeexMode *m)
|
|
{
|
|
DecState *st;
|
|
SpeexNBMode *mode;
|
|
int i;
|
|
|
|
mode=(SpeexNBMode*)m->mode;
|
|
st = (DecState *)speex_alloc(sizeof(DecState)+4000*sizeof(float));
|
|
st->mode=m;
|
|
|
|
st->stack = ((char*)st) + sizeof(DecState);
|
|
|
|
st->first=1;
|
|
/* Codec parameters, should eventually have several "modes"*/
|
|
st->frameSize = mode->frameSize;
|
|
st->windowSize = st->frameSize*3/2;
|
|
st->nbSubframes=mode->frameSize/mode->subframeSize;
|
|
st->subframeSize=mode->subframeSize;
|
|
st->lpcSize = mode->lpcSize;
|
|
st->bufSize = mode->bufSize;
|
|
st->gamma1=mode->gamma1;
|
|
st->gamma2=mode->gamma2;
|
|
st->min_pitch=mode->pitchStart;
|
|
st->max_pitch=mode->pitchEnd;
|
|
st->preemph = mode->preemph;
|
|
|
|
st->submodes=mode->submodes;
|
|
st->submodeID=mode->defaultSubmode;
|
|
|
|
st->pre_mem=0;
|
|
st->lpc_enh_enabled=0;
|
|
|
|
|
|
st->inBuf = PUSH(st->stack, st->bufSize, float);
|
|
st->frame = st->inBuf + st->bufSize - st->windowSize;
|
|
st->excBuf = PUSH(st->stack, st->bufSize, float);
|
|
st->exc = st->excBuf + st->bufSize - st->windowSize;
|
|
for (i=0;i<st->bufSize;i++)
|
|
st->inBuf[i]=0;
|
|
for (i=0;i<st->bufSize;i++)
|
|
st->excBuf[i]=0;
|
|
st->innov = PUSH(st->stack, st->frameSize, float);
|
|
|
|
st->interp_qlpc = PUSH(st->stack, st->lpcSize+1, float);
|
|
st->qlsp = PUSH(st->stack, st->lpcSize, float);
|
|
st->old_qlsp = PUSH(st->stack, st->lpcSize, float);
|
|
st->interp_qlsp = PUSH(st->stack, st->lpcSize, float);
|
|
st->mem_sp = PUSH(st->stack, 5*st->lpcSize, float);
|
|
st->comb_mem = PUSHS(st->stack, CombFilterMem);
|
|
comp_filter_mem_init (st->comb_mem);
|
|
|
|
st->pi_gain = PUSH(st->stack, st->nbSubframes, float);
|
|
st->last_pitch = 40;
|
|
st->count_lost=0;
|
|
st->pitch_gain_buf[0] = st->pitch_gain_buf[1] = st->pitch_gain_buf[2] = 0;
|
|
st->pitch_gain_buf_idx = 0;
|
|
|
|
st->sampling_rate=8000;
|
|
st->last_ol_gain = 0;
|
|
|
|
st->user_callback.func = &speex_default_user_handler;
|
|
st->user_callback.data = NULL;
|
|
for (i=0;i<16;i++)
|
|
st->speex_callbacks[i].func = NULL;
|
|
|
|
st->voc_m1=st->voc_m2=st->voc_mean=0;
|
|
st->voc_offset=0;
|
|
st->dtx_enabled=0;
|
|
return st;
|
|
}
|
|
|
|
void nb_decoder_destroy(void *state)
|
|
{
|
|
DecState *st;
|
|
st=(DecState*)state;
|
|
|
|
speex_free(state);
|
|
}
|
|
|
|
#define median3(a, b, c) ((a) < (b) ? ((b) < (c) ? (b) : ((a) < (c) ? (c) : (a))) : ((c) < (b) ? (b) : ((c) < (a) ? (c) : (a))))
|
|
|
|
static void nb_decode_lost(DecState *st, float *out, char *stack)
|
|
{
|
|
int i, sub;
|
|
float *awk1, *awk2, *awk3;
|
|
float pitch_gain, fact, gain_med;
|
|
|
|
fact = exp(-.04*st->count_lost*st->count_lost);
|
|
gain_med = median3(st->pitch_gain_buf[0], st->pitch_gain_buf[1], st->pitch_gain_buf[2]);
|
|
if (gain_med < st->last_pitch_gain)
|
|
st->last_pitch_gain = gain_med;
|
|
|
|
pitch_gain = st->last_pitch_gain;
|
|
if (pitch_gain>.95)
|
|
pitch_gain=.95;
|
|
|
|
pitch_gain *= fact;
|
|
|
|
/* Shift all buffers by one frame */
|
|
speex_move(st->inBuf, st->inBuf+st->frameSize, (st->bufSize-st->frameSize)*sizeof(float));
|
|
speex_move(st->excBuf, st->excBuf+st->frameSize, (st->bufSize-st->frameSize)*sizeof(float));
|
|
|
|
awk1=PUSH(stack, (st->lpcSize+1), float);
|
|
awk2=PUSH(stack, (st->lpcSize+1), float);
|
|
awk3=PUSH(stack, (st->lpcSize+1), float);
|
|
|
|
for (sub=0;sub<st->nbSubframes;sub++)
|
|
{
|
|
int offset;
|
|
float *sp, *exc;
|
|
/* Offset relative to start of frame */
|
|
offset = st->subframeSize*sub;
|
|
/* Original signal */
|
|
sp=st->frame+offset;
|
|
/* Excitation */
|
|
exc=st->exc+offset;
|
|
/* Excitation after post-filter*/
|
|
|
|
/* Calculate perceptually enhanced LPC filter */
|
|
if (st->lpc_enh_enabled)
|
|
{
|
|
float r=.9;
|
|
|
|
float k1,k2,k3;
|
|
if (st->submodes[st->submodeID] != NULL)
|
|
{
|
|
k1=SUBMODE(lpc_enh_k1);
|
|
k2=SUBMODE(lpc_enh_k2);
|
|
} else {
|
|
k1=k2=.7;
|
|
}
|
|
k3=(1-(1-r*k1)/(1-r*k2))/r;
|
|
if (!st->lpc_enh_enabled)
|
|
{
|
|
k1=k2;
|
|
k3=0;
|
|
}
|
|
bw_lpc(k1, st->interp_qlpc, awk1, st->lpcSize);
|
|
bw_lpc(k2, st->interp_qlpc, awk2, st->lpcSize);
|
|
bw_lpc(k3, st->interp_qlpc, awk3, st->lpcSize);
|
|
}
|
|
|
|
/* Make up a plausible excitation */
|
|
/* THIS CAN BE IMPROVED */
|
|
/*if (pitch_gain>.95)
|
|
pitch_gain=.95;*/
|
|
{
|
|
float innov_gain=0;
|
|
for (i=0;i<st->frameSize;i++)
|
|
innov_gain += st->innov[i]*st->innov[i];
|
|
innov_gain=sqrt(innov_gain/st->frameSize);
|
|
for (i=0;i<st->subframeSize;i++)
|
|
{
|
|
#if 0
|
|
exc[i] = pitch_gain * exc[i - st->last_pitch] + fact*sqrt(1-pitch_gain)*st->innov[i+offset];
|
|
/*Just so it give the same lost packets as with if 0*/
|
|
/*rand();*/
|
|
#else
|
|
/*exc[i]=pitch_gain*exc[i-st->last_pitch] + fact*st->innov[i+offset];*/
|
|
exc[i]=pitch_gain*exc[i-st->last_pitch] +
|
|
fact*sqrt(1-pitch_gain)*speex_rand(innov_gain);
|
|
#endif
|
|
}
|
|
}
|
|
for (i=0;i<st->subframeSize;i++)
|
|
sp[i]=exc[i];
|
|
|
|
/* Signal synthesis */
|
|
if (st->lpc_enh_enabled)
|
|
{
|
|
filter_mem2(sp, awk2, awk1, sp, st->subframeSize, st->lpcSize,
|
|
st->mem_sp+st->lpcSize);
|
|
filter_mem2(sp, awk3, st->interp_qlpc, sp, st->subframeSize, st->lpcSize,
|
|
st->mem_sp);
|
|
} else {
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->mem_sp[st->lpcSize+i] = 0;
|
|
iir_mem2(sp, st->interp_qlpc, sp, st->subframeSize, st->lpcSize,
|
|
st->mem_sp);
|
|
}
|
|
}
|
|
|
|
out[0] = st->frame[0] + st->preemph*st->pre_mem;
|
|
for (i=1;i<st->frameSize;i++)
|
|
out[i]=st->frame[i] + st->preemph*out[i-1];
|
|
st->pre_mem=out[st->frameSize-1];
|
|
|
|
st->first = 0;
|
|
st->count_lost++;
|
|
st->pitch_gain_buf[st->pitch_gain_buf_idx++] = pitch_gain;
|
|
if (st->pitch_gain_buf_idx > 2) /* rollover */
|
|
st->pitch_gain_buf_idx = 0;
|
|
}
|
|
|
|
int nb_decode(void *state, SpeexBits *bits, float *out)
|
|
{
|
|
DecState *st;
|
|
int i, sub;
|
|
int pitch;
|
|
float pitch_gain[3];
|
|
float ol_gain=0;
|
|
int ol_pitch=0;
|
|
float ol_pitch_coef=0;
|
|
int best_pitch=40;
|
|
float best_pitch_gain=0;
|
|
int wideband;
|
|
int m;
|
|
char *stack;
|
|
float *awk1, *awk2, *awk3;
|
|
float pitch_average=0;
|
|
|
|
st=(DecState*)state;
|
|
stack=st->stack;
|
|
|
|
/* Check if we're in DTX mode*/
|
|
if (!bits && st->dtx_enabled)
|
|
{
|
|
st->submodeID=0;
|
|
} else
|
|
{
|
|
/* If bits is NULL, consider the packet to be lost (what could we do anyway) */
|
|
if (!bits)
|
|
{
|
|
nb_decode_lost(st, out, stack);
|
|
return 0;
|
|
}
|
|
|
|
/* Search for next narrowband block (handle requests, skip wideband blocks) */
|
|
do {
|
|
wideband = speex_bits_unpack_unsigned(bits, 1);
|
|
if (wideband) /* Skip wideband block (for compatibility) */
|
|
{
|
|
int submode;
|
|
int advance;
|
|
advance = submode = speex_bits_unpack_unsigned(bits, SB_SUBMODE_BITS);
|
|
speex_mode_query(&speex_wb_mode, SPEEX_SUBMODE_BITS_PER_FRAME, &advance);
|
|
if (advance < 0)
|
|
{
|
|
speex_warning ("Invalid wideband mode encountered. Corrupted stream?");
|
|
return -2;
|
|
}
|
|
advance -= (SB_SUBMODE_BITS+1);
|
|
speex_bits_advance(bits, advance);
|
|
wideband = speex_bits_unpack_unsigned(bits, 1);
|
|
if (wideband)
|
|
{
|
|
advance = submode = speex_bits_unpack_unsigned(bits, SB_SUBMODE_BITS);
|
|
speex_mode_query(&speex_wb_mode, SPEEX_SUBMODE_BITS_PER_FRAME, &advance);
|
|
if (advance < 0)
|
|
{
|
|
speex_warning ("Invalid wideband mode encountered: corrupted stream?");
|
|
return -2;
|
|
}
|
|
advance -= (SB_SUBMODE_BITS+1);
|
|
speex_bits_advance(bits, advance);
|
|
wideband = speex_bits_unpack_unsigned(bits, 1);
|
|
if (wideband)
|
|
{
|
|
speex_warning ("More than to wideband layers found: corrupted stream?");
|
|
return -2;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
/* FIXME: Check for overflow */
|
|
m = speex_bits_unpack_unsigned(bits, 4);
|
|
if (m==15) /* We found a terminator */
|
|
{
|
|
return -1;
|
|
} else if (m==14) /* Speex in-band request */
|
|
{
|
|
int ret = speex_inband_handler(bits, st->speex_callbacks, state);
|
|
if (ret)
|
|
return ret;
|
|
} else if (m==13) /* User in-band request */
|
|
{
|
|
int ret = st->user_callback.func(bits, state, st->user_callback.data);
|
|
if (ret)
|
|
return ret;
|
|
} else if (m>8) /* Invalid mode */
|
|
{
|
|
speex_warning("Invalid mode encountered: corrupted stream?");
|
|
return -2;
|
|
}
|
|
|
|
} while (m>8);
|
|
|
|
/* Get the sub-mode that was used */
|
|
st->submodeID = m;
|
|
|
|
}
|
|
|
|
/* Shift all buffers by one frame */
|
|
speex_move(st->inBuf, st->inBuf+st->frameSize, (st->bufSize-st->frameSize)*sizeof(float));
|
|
speex_move(st->excBuf, st->excBuf+st->frameSize, (st->bufSize-st->frameSize)*sizeof(float));
|
|
|
|
/* If null mode (no transmission), just set a couple things to zero*/
|
|
if (st->submodes[st->submodeID] == NULL)
|
|
{
|
|
float *lpc;
|
|
lpc = PUSH(stack,11, float);
|
|
bw_lpc(.93, st->interp_qlpc, lpc, 10);
|
|
/*for (i=0;i<st->frameSize;i++)
|
|
st->exc[i]=0;*/
|
|
{
|
|
float innov_gain=0;
|
|
float pgain=st->last_pitch_gain;
|
|
if (pgain>.6)
|
|
pgain=.6;
|
|
for (i=0;i<st->frameSize;i++)
|
|
innov_gain += st->innov[i]*st->innov[i];
|
|
innov_gain=sqrt(innov_gain/st->frameSize);
|
|
for (i=0;i<st->frameSize;i++)
|
|
st->exc[i]=0;
|
|
speex_rand_vec(innov_gain, st->exc, st->frameSize);
|
|
}
|
|
|
|
|
|
st->first=1;
|
|
|
|
/* Final signal synthesis from excitation */
|
|
iir_mem2(st->exc, lpc, st->frame, st->frameSize, st->lpcSize, st->mem_sp);
|
|
|
|
out[0] = st->frame[0] + st->preemph*st->pre_mem;
|
|
for (i=1;i<st->frameSize;i++)
|
|
out[i]=st->frame[i] + st->preemph*out[i-1];
|
|
st->pre_mem=out[st->frameSize-1];
|
|
st->count_lost=0;
|
|
return 0;
|
|
}
|
|
|
|
/* Unquantize LSPs */
|
|
SUBMODE(lsp_unquant)(st->qlsp, st->lpcSize, bits);
|
|
|
|
/*Damp memory if a frame was lost and the LSP changed too much*/
|
|
if (st->count_lost)
|
|
{
|
|
float lsp_dist=0, fact;
|
|
for (i=0;i<st->lpcSize;i++)
|
|
lsp_dist += fabs(st->old_qlsp[i] - st->qlsp[i]);
|
|
fact = .6*exp(-.2*lsp_dist);
|
|
for (i=0;i<2*st->lpcSize;i++)
|
|
st->mem_sp[i] *= fact;
|
|
}
|
|
|
|
|
|
/* Handle first frame and lost-packet case */
|
|
if (st->first || st->count_lost)
|
|
{
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->old_qlsp[i] = st->qlsp[i];
|
|
}
|
|
|
|
/* Get open-loop pitch estimation for low bit-rate pitch coding */
|
|
if (SUBMODE(lbr_pitch)!=-1)
|
|
{
|
|
ol_pitch = st->min_pitch+speex_bits_unpack_unsigned(bits, 7);
|
|
}
|
|
|
|
if (SUBMODE(forced_pitch_gain))
|
|
{
|
|
int quant;
|
|
quant = speex_bits_unpack_unsigned(bits, 4);
|
|
ol_pitch_coef=0.066667*quant;
|
|
}
|
|
|
|
/* Get global excitation gain */
|
|
{
|
|
int qe;
|
|
qe = speex_bits_unpack_unsigned(bits, 5);
|
|
ol_gain = exp(qe/3.5);
|
|
}
|
|
|
|
awk1=PUSH(stack, st->lpcSize+1, float);
|
|
awk2=PUSH(stack, st->lpcSize+1, float);
|
|
awk3=PUSH(stack, st->lpcSize+1, float);
|
|
|
|
if (st->submodeID==1)
|
|
{
|
|
int extra;
|
|
extra = speex_bits_unpack_unsigned(bits, 4);
|
|
|
|
if (extra==15)
|
|
st->dtx_enabled=1;
|
|
else
|
|
st->dtx_enabled=0;
|
|
}
|
|
if (st->submodeID>1)
|
|
st->dtx_enabled=0;
|
|
|
|
/*Loop on subframes */
|
|
for (sub=0;sub<st->nbSubframes;sub++)
|
|
{
|
|
int offset;
|
|
float *sp, *exc, tmp;
|
|
|
|
/* Offset relative to start of frame */
|
|
offset = st->subframeSize*sub;
|
|
/* Original signal */
|
|
sp=st->frame+offset;
|
|
/* Excitation */
|
|
exc=st->exc+offset;
|
|
/* Excitation after post-filter*/
|
|
|
|
/* LSP interpolation (quantized and unquantized) */
|
|
tmp = (1.0 + sub)/st->nbSubframes;
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->interp_qlsp[i] = (1-tmp)*st->old_qlsp[i] + tmp*st->qlsp[i];
|
|
|
|
/* Make sure the LSP's are stable */
|
|
lsp_enforce_margin(st->interp_qlsp, st->lpcSize, .002);
|
|
|
|
|
|
/* Compute interpolated LPCs (unquantized) */
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->interp_qlsp[i] = cos(st->interp_qlsp[i]);
|
|
lsp_to_lpc(st->interp_qlsp, st->interp_qlpc, st->lpcSize, stack);
|
|
|
|
/* Compute enhanced synthesis filter */
|
|
if (st->lpc_enh_enabled)
|
|
{
|
|
float r=.9;
|
|
|
|
float k1,k2,k3;
|
|
k1=SUBMODE(lpc_enh_k1);
|
|
k2=SUBMODE(lpc_enh_k2);
|
|
k3=(1-(1-r*k1)/(1-r*k2))/r;
|
|
if (!st->lpc_enh_enabled)
|
|
{
|
|
k1=k2;
|
|
k3=0;
|
|
}
|
|
bw_lpc(k1, st->interp_qlpc, awk1, st->lpcSize);
|
|
bw_lpc(k2, st->interp_qlpc, awk2, st->lpcSize);
|
|
bw_lpc(k3, st->interp_qlpc, awk3, st->lpcSize);
|
|
|
|
}
|
|
|
|
/* Compute analysis filter at w=pi */
|
|
tmp=1;
|
|
st->pi_gain[sub]=0;
|
|
for (i=0;i<=st->lpcSize;i++)
|
|
{
|
|
st->pi_gain[sub] += tmp*st->interp_qlpc[i];
|
|
tmp = -tmp;
|
|
}
|
|
|
|
/* Reset excitation */
|
|
for (i=0;i<st->subframeSize;i++)
|
|
exc[i]=0;
|
|
|
|
/*Adaptive codebook contribution*/
|
|
if (SUBMODE(ltp_unquant))
|
|
{
|
|
int pit_min, pit_max;
|
|
/* Handle pitch constraints if any */
|
|
if (SUBMODE(lbr_pitch) != -1)
|
|
{
|
|
int margin;
|
|
margin = SUBMODE(lbr_pitch);
|
|
if (margin)
|
|
{
|
|
/* GT - need optimization?
|
|
if (ol_pitch < st->min_pitch+margin-1)
|
|
ol_pitch=st->min_pitch+margin-1;
|
|
if (ol_pitch > st->max_pitch-margin)
|
|
ol_pitch=st->max_pitch-margin;
|
|
pit_min = ol_pitch-margin+1;
|
|
pit_max = ol_pitch+margin;
|
|
*/
|
|
pit_min = ol_pitch-margin+1;
|
|
if (pit_min < st->min_pitch)
|
|
pit_min = st->min_pitch;
|
|
pit_max = ol_pitch+margin;
|
|
if (pit_max > st->max_pitch)
|
|
pit_max = st->max_pitch;
|
|
} else {
|
|
pit_min = pit_max = ol_pitch;
|
|
}
|
|
} else {
|
|
pit_min = st->min_pitch;
|
|
pit_max = st->max_pitch;
|
|
}
|
|
|
|
/* Pitch synthesis */
|
|
SUBMODE(ltp_unquant)(exc, pit_min, pit_max, ol_pitch_coef, SUBMODE(ltp_params),
|
|
st->subframeSize, &pitch, &pitch_gain[0], bits, stack, st->count_lost, offset, st->last_pitch_gain);
|
|
|
|
/* If we had lost frames, check energy of last received frame */
|
|
if (st->count_lost && ol_gain < st->last_ol_gain)
|
|
{
|
|
float fact = ol_gain/(st->last_ol_gain+1);
|
|
for (i=0;i<st->subframeSize;i++)
|
|
exc[i]*=fact;
|
|
}
|
|
|
|
tmp = fabs(pitch_gain[0]+pitch_gain[1]+pitch_gain[2]);
|
|
tmp = fabs(pitch_gain[1]);
|
|
if (pitch_gain[0]>0)
|
|
tmp += pitch_gain[0];
|
|
else
|
|
tmp -= .5*pitch_gain[0];
|
|
if (pitch_gain[2]>0)
|
|
tmp += pitch_gain[2];
|
|
else
|
|
tmp -= .5*pitch_gain[0];
|
|
|
|
|
|
pitch_average += tmp;
|
|
if (tmp>best_pitch_gain)
|
|
{
|
|
best_pitch = pitch;
|
|
best_pitch_gain = tmp;
|
|
/* best_pitch_gain = tmp*.9;
|
|
if (best_pitch_gain>.85)
|
|
best_pitch_gain=.85;*/
|
|
}
|
|
} else {
|
|
speex_error("No pitch prediction, what's wrong");
|
|
}
|
|
|
|
/* Unquantize the innovation */
|
|
{
|
|
int q_energy;
|
|
float ener;
|
|
float *innov;
|
|
|
|
innov = st->innov+sub*st->subframeSize;
|
|
for (i=0;i<st->subframeSize;i++)
|
|
innov[i]=0;
|
|
|
|
/* Decode sub-frame gain correction */
|
|
if (SUBMODE(have_subframe_gain)==3)
|
|
{
|
|
q_energy = speex_bits_unpack_unsigned(bits, 3);
|
|
ener = ol_gain*exp(exc_gain_quant_scal3[q_energy]);
|
|
} else if (SUBMODE(have_subframe_gain)==1)
|
|
{
|
|
q_energy = speex_bits_unpack_unsigned(bits, 1);
|
|
ener = ol_gain*exp(exc_gain_quant_scal1[q_energy]);
|
|
} else {
|
|
ener = ol_gain;
|
|
}
|
|
|
|
if (SUBMODE(innovation_unquant))
|
|
{
|
|
/*Fixed codebook contribution*/
|
|
SUBMODE(innovation_unquant)(innov, SUBMODE(innovation_params), st->subframeSize, bits, stack);
|
|
} else {
|
|
speex_error("No fixed codebook");
|
|
}
|
|
|
|
/* De-normalize innovation and update excitation */
|
|
for (i=0;i<st->subframeSize;i++)
|
|
innov[i]*=ener;
|
|
|
|
/*Vocoder mode*/
|
|
if (st->submodeID==1)
|
|
{
|
|
float g=ol_pitch_coef;
|
|
|
|
|
|
for (i=0;i<st->subframeSize;i++)
|
|
exc[i]=0;
|
|
while (st->voc_offset<st->subframeSize)
|
|
{
|
|
if (st->voc_offset>=0)
|
|
exc[st->voc_offset]=sqrt(1.0*ol_pitch);
|
|
st->voc_offset+=ol_pitch;
|
|
}
|
|
st->voc_offset -= st->subframeSize;
|
|
|
|
g=.5+2*(g-.6);
|
|
if (g<0)
|
|
g=0;
|
|
if (g>1)
|
|
g=1;
|
|
for (i=0;i<st->subframeSize;i++)
|
|
{
|
|
float exci=exc[i];
|
|
exc[i]=.8*g*exc[i]*ol_gain + .6*g*st->voc_m1*ol_gain + .5*g*innov[i] - .5*g*st->voc_m2 + (1-g)*innov[i];
|
|
st->voc_m1 = exci;
|
|
st->voc_m2=innov[i];
|
|
st->voc_mean = .95*st->voc_mean + .05*exc[i];
|
|
exc[i]-=st->voc_mean;
|
|
}
|
|
} else {
|
|
for (i=0;i<st->subframeSize;i++)
|
|
exc[i]+=innov[i];
|
|
}
|
|
/* Decode second codebook (only for some modes) */
|
|
if (SUBMODE(double_codebook))
|
|
{
|
|
char *tmp_stack=stack;
|
|
float *innov2 = PUSH(tmp_stack, st->subframeSize, float);
|
|
for (i=0;i<st->subframeSize;i++)
|
|
innov2[i]=0;
|
|
SUBMODE(innovation_unquant)(innov2, SUBMODE(innovation_params), st->subframeSize, bits, tmp_stack);
|
|
for (i=0;i<st->subframeSize;i++)
|
|
innov2[i]*=ener*(1/2.2);
|
|
for (i=0;i<st->subframeSize;i++)
|
|
exc[i] += innov2[i];
|
|
}
|
|
|
|
}
|
|
|
|
for (i=0;i<st->subframeSize;i++)
|
|
sp[i]=exc[i];
|
|
|
|
/* Signal synthesis */
|
|
if (st->lpc_enh_enabled && SUBMODE(comb_gain)>0)
|
|
comb_filter(exc, sp, st->interp_qlpc, st->lpcSize, st->subframeSize,
|
|
pitch, pitch_gain, SUBMODE(comb_gain), st->comb_mem);
|
|
if (st->lpc_enh_enabled)
|
|
{
|
|
/* Use enhanced LPC filter */
|
|
filter_mem2(sp, awk2, awk1, sp, st->subframeSize, st->lpcSize,
|
|
st->mem_sp+st->lpcSize);
|
|
filter_mem2(sp, awk3, st->interp_qlpc, sp, st->subframeSize, st->lpcSize,
|
|
st->mem_sp);
|
|
} else {
|
|
/* Use regular filter */
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->mem_sp[st->lpcSize+i] = 0;
|
|
iir_mem2(sp, st->interp_qlpc, sp, st->subframeSize, st->lpcSize,
|
|
st->mem_sp);
|
|
}
|
|
}
|
|
|
|
/*Copy output signal*/
|
|
out[0] = st->frame[0] + st->preemph*st->pre_mem;
|
|
for (i=1;i<st->frameSize;i++)
|
|
out[i]=st->frame[i] + st->preemph*out[i-1];
|
|
st->pre_mem=out[st->frameSize-1];
|
|
|
|
|
|
/* Store the LSPs for interpolation in the next frame */
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->old_qlsp[i] = st->qlsp[i];
|
|
|
|
/* The next frame will not be the first (Duh!) */
|
|
st->first = 0;
|
|
st->count_lost=0;
|
|
st->last_pitch = best_pitch;
|
|
st->last_pitch_gain = .25*pitch_average;
|
|
st->pitch_gain_buf[st->pitch_gain_buf_idx++] = st->last_pitch_gain;
|
|
if (st->pitch_gain_buf_idx > 2) /* rollover */
|
|
st->pitch_gain_buf_idx = 0;
|
|
|
|
st->last_ol_gain = ol_gain;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int nb_encoder_ctl(void *state, int request, void *ptr)
|
|
{
|
|
EncState *st;
|
|
st=(EncState*)state;
|
|
switch(request)
|
|
{
|
|
case SPEEX_GET_FRAME_SIZE:
|
|
(*(int*)ptr) = st->frameSize;
|
|
break;
|
|
case SPEEX_SET_LOW_MODE:
|
|
case SPEEX_SET_MODE:
|
|
st->submodeSelect = st->submodeID = (*(int*)ptr);
|
|
break;
|
|
case SPEEX_GET_LOW_MODE:
|
|
case SPEEX_GET_MODE:
|
|
(*(int*)ptr) = st->submodeID;
|
|
break;
|
|
case SPEEX_SET_VBR:
|
|
st->vbr_enabled = (*(int*)ptr);
|
|
break;
|
|
case SPEEX_GET_VBR:
|
|
(*(int*)ptr) = st->vbr_enabled;
|
|
break;
|
|
case SPEEX_SET_VAD:
|
|
st->vad_enabled = (*(int*)ptr);
|
|
break;
|
|
case SPEEX_GET_VAD:
|
|
(*(int*)ptr) = st->vad_enabled;
|
|
break;
|
|
case SPEEX_SET_DTX:
|
|
st->dtx_enabled = (*(int*)ptr);
|
|
break;
|
|
case SPEEX_GET_DTX:
|
|
(*(int*)ptr) = st->dtx_enabled;
|
|
break;
|
|
case SPEEX_SET_ABR:
|
|
st->abr_enabled = (*(int*)ptr);
|
|
st->vbr_enabled = 1;
|
|
{
|
|
int i=10, rate, target;
|
|
float vbr_qual;
|
|
target = (*(int*)ptr);
|
|
while (i>=0)
|
|
{
|
|
speex_encoder_ctl(st, SPEEX_SET_QUALITY, &i);
|
|
speex_encoder_ctl(st, SPEEX_GET_BITRATE, &rate);
|
|
if (rate <= target)
|
|
break;
|
|
i--;
|
|
}
|
|
vbr_qual=i;
|
|
if (vbr_qual<0)
|
|
vbr_qual=0;
|
|
speex_encoder_ctl(st, SPEEX_SET_VBR_QUALITY, &vbr_qual);
|
|
st->abr_count=0;
|
|
st->abr_drift=0;
|
|
st->abr_drift2=0;
|
|
}
|
|
|
|
break;
|
|
case SPEEX_GET_ABR:
|
|
(*(int*)ptr) = st->abr_enabled;
|
|
break;
|
|
case SPEEX_SET_VBR_QUALITY:
|
|
st->vbr_quality = (*(float*)ptr);
|
|
break;
|
|
case SPEEX_GET_VBR_QUALITY:
|
|
(*(float*)ptr) = st->vbr_quality;
|
|
break;
|
|
case SPEEX_SET_QUALITY:
|
|
{
|
|
int quality = (*(int*)ptr);
|
|
if (quality < 0)
|
|
quality = 0;
|
|
if (quality > 10)
|
|
quality = 10;
|
|
st->submodeSelect = st->submodeID = ((SpeexNBMode*)(st->mode->mode))->quality_map[quality];
|
|
}
|
|
break;
|
|
case SPEEX_SET_COMPLEXITY:
|
|
st->complexity = (*(int*)ptr);
|
|
if (st->complexity<1)
|
|
st->complexity=1;
|
|
break;
|
|
case SPEEX_GET_COMPLEXITY:
|
|
(*(int*)ptr) = st->complexity;
|
|
break;
|
|
case SPEEX_SET_BITRATE:
|
|
{
|
|
int i=10, rate, target;
|
|
target = (*(int*)ptr);
|
|
while (i>=0)
|
|
{
|
|
speex_encoder_ctl(st, SPEEX_SET_QUALITY, &i);
|
|
speex_encoder_ctl(st, SPEEX_GET_BITRATE, &rate);
|
|
if (rate <= target)
|
|
break;
|
|
i--;
|
|
}
|
|
}
|
|
break;
|
|
case SPEEX_GET_BITRATE:
|
|
if (st->submodes[st->submodeID])
|
|
(*(int*)ptr) = st->sampling_rate*SUBMODE(bits_per_frame)/st->frameSize;
|
|
else
|
|
(*(int*)ptr) = st->sampling_rate*(NB_SUBMODE_BITS+1)/st->frameSize;
|
|
break;
|
|
case SPEEX_SET_SAMPLING_RATE:
|
|
st->sampling_rate = (*(int*)ptr);
|
|
break;
|
|
case SPEEX_GET_SAMPLING_RATE:
|
|
(*(int*)ptr)=st->sampling_rate;
|
|
break;
|
|
case SPEEX_RESET_STATE:
|
|
{
|
|
int i;
|
|
st->bounded_pitch = 1;
|
|
st->first = 1;
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->lsp[i]=(M_PI*((float)(i+1)))/(st->lpcSize+1);
|
|
for (i=0;i<st->lpcSize;i++)
|
|
st->mem_sw[i]=st->mem_sw_whole[i]=st->mem_sp[i]=st->mem_exc[i]=0;
|
|
for (i=0;i<st->bufSize;i++)
|
|
st->excBuf[i]=st->swBuf[i]=st->inBuf[i]=st->exc2Buf[i]=0;
|
|
}
|
|
break;
|
|
case SPEEX_GET_PI_GAIN:
|
|
{
|
|
int i;
|
|
float *g = (float*)ptr;
|
|
for (i=0;i<st->nbSubframes;i++)
|
|
g[i]=st->pi_gain[i];
|
|
}
|
|
break;
|
|
case SPEEX_GET_EXC:
|
|
{
|
|
int i;
|
|
float *e = (float*)ptr;
|
|
for (i=0;i<st->frameSize;i++)
|
|
e[i]=st->exc[i];
|
|
}
|
|
break;
|
|
case SPEEX_GET_INNOV:
|
|
{
|
|
int i;
|
|
float *e = (float*)ptr;
|
|
for (i=0;i<st->frameSize;i++)
|
|
e[i]=st->innov[i];
|
|
}
|
|
break;
|
|
case SPEEX_GET_RELATIVE_QUALITY:
|
|
(*(float*)ptr)=st->relative_quality;
|
|
break;
|
|
default:
|
|
speex_warning_int("Unknown nb_ctl request: ", request);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int nb_decoder_ctl(void *state, int request, void *ptr)
|
|
{
|
|
DecState *st;
|
|
st=(DecState*)state;
|
|
switch(request)
|
|
{
|
|
case SPEEX_GET_LOW_MODE:
|
|
case SPEEX_GET_MODE:
|
|
(*(int*)ptr) = st->submodeID;
|
|
break;
|
|
case SPEEX_SET_ENH:
|
|
st->lpc_enh_enabled = *((int*)ptr);
|
|
break;
|
|
case SPEEX_GET_ENH:
|
|
*((int*)ptr) = st->lpc_enh_enabled;
|
|
break;
|
|
case SPEEX_GET_FRAME_SIZE:
|
|
(*(int*)ptr) = st->frameSize;
|
|
break;
|
|
case SPEEX_GET_BITRATE:
|
|
if (st->submodes[st->submodeID])
|
|
(*(int*)ptr) = st->sampling_rate*SUBMODE(bits_per_frame)/st->frameSize;
|
|
else
|
|
(*(int*)ptr) = st->sampling_rate*(NB_SUBMODE_BITS+1)/st->frameSize;
|
|
break;
|
|
case SPEEX_SET_SAMPLING_RATE:
|
|
st->sampling_rate = (*(int*)ptr);
|
|
break;
|
|
case SPEEX_GET_SAMPLING_RATE:
|
|
(*(int*)ptr)=st->sampling_rate;
|
|
break;
|
|
case SPEEX_SET_HANDLER:
|
|
{
|
|
SpeexCallback *c = (SpeexCallback*)ptr;
|
|
st->speex_callbacks[c->callback_id].func=c->func;
|
|
st->speex_callbacks[c->callback_id].data=c->data;
|
|
st->speex_callbacks[c->callback_id].callback_id=c->callback_id;
|
|
}
|
|
break;
|
|
case SPEEX_SET_USER_HANDLER:
|
|
{
|
|
SpeexCallback *c = (SpeexCallback*)ptr;
|
|
st->user_callback.func=c->func;
|
|
st->user_callback.data=c->data;
|
|
st->user_callback.callback_id=c->callback_id;
|
|
}
|
|
break;
|
|
case SPEEX_RESET_STATE:
|
|
{
|
|
int i;
|
|
for (i=0;i<2*st->lpcSize;i++)
|
|
st->mem_sp[i]=0;
|
|
for (i=0;i<st->bufSize;i++)
|
|
st->excBuf[i]=st->inBuf[i]=0;
|
|
}
|
|
break;
|
|
case SPEEX_GET_PI_GAIN:
|
|
{
|
|
int i;
|
|
float *g = (float*)ptr;
|
|
for (i=0;i<st->nbSubframes;i++)
|
|
g[i]=st->pi_gain[i];
|
|
}
|
|
break;
|
|
case SPEEX_GET_EXC:
|
|
{
|
|
int i;
|
|
float *e = (float*)ptr;
|
|
for (i=0;i<st->frameSize;i++)
|
|
e[i]=st->exc[i];
|
|
}
|
|
break;
|
|
case SPEEX_GET_INNOV:
|
|
{
|
|
int i;
|
|
float *e = (float*)ptr;
|
|
for (i=0;i<st->frameSize;i++)
|
|
e[i]=st->innov[i];
|
|
}
|
|
break;
|
|
case SPEEX_GET_DTX_STATUS:
|
|
*((int*)ptr) = st->dtx_enabled;
|
|
break;
|
|
default:
|
|
speex_warning_int("Unknown nb_ctl request: ", request);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|