mirror of
https://github.com/nillerusr/source-engine.git
synced 2025-01-26 00:48:59 +00:00
329 lines
8.8 KiB
C
329 lines
8.8 KiB
C
/*---------------------------------------------------------------------------*\
|
|
Original copyright
|
|
FILE........: AKSLSPD.C
|
|
TYPE........: Turbo C
|
|
COMPANY.....: Voicetronix
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: 24/2/93
|
|
|
|
Modified by Jean-Marc Valin
|
|
|
|
This file contains functions for converting Linear Prediction
|
|
Coefficients (LPC) to Line Spectral Pair (LSP) and back. Note that the
|
|
LSP coefficients are not in radians format but in the x domain of the
|
|
unit circle.
|
|
|
|
Speex License:
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include "lsp.h"
|
|
#include "stack_alloc.h"
|
|
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846 /* pi */
|
|
#endif
|
|
|
|
#ifndef NULL
|
|
#define NULL 0
|
|
#endif
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: cheb_poly_eva()
|
|
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: 24/2/93
|
|
|
|
This function evaluates a series of Chebyshev polynomials
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
static float cheb_poly_eva(float *coef,float x,int m,char *stack)
|
|
/* float coef[] coefficients of the polynomial to be evaluated */
|
|
/* float x the point where polynomial is to be evaluated */
|
|
/* int m order of the polynomial */
|
|
{
|
|
int i;
|
|
float *T,sum;
|
|
int m2=m>>1;
|
|
|
|
/* Allocate memory for Chebyshev series formulation */
|
|
T=PUSH(stack, m2+1, float);
|
|
|
|
/* Initialise values */
|
|
T[0]=1;
|
|
T[1]=x;
|
|
|
|
/* Evaluate Chebyshev series formulation using iterative approach */
|
|
/* Evaluate polynomial and return value also free memory space */
|
|
sum = coef[m2] + coef[m2-1]*x;
|
|
x *= 2;
|
|
for(i=2;i<=m2;i++)
|
|
{
|
|
T[i] = x*T[i-1] - T[i-2];
|
|
sum += coef[m2-i] * T[i];
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: lpc_to_lsp()
|
|
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: 24/2/93
|
|
|
|
This function converts LPC coefficients to LSP
|
|
coefficients.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
|
|
int lpc_to_lsp (float *a,int lpcrdr,float *freq,int nb,float delta, char *stack)
|
|
/* float *a lpc coefficients */
|
|
/* int lpcrdr order of LPC coefficients (10) */
|
|
/* float *freq LSP frequencies in the x domain */
|
|
/* int nb number of sub-intervals (4) */
|
|
/* float delta grid spacing interval (0.02) */
|
|
|
|
|
|
{
|
|
|
|
float psuml,psumr,psumm,temp_xr,xl,xr,xm=0;
|
|
float temp_psumr/*,temp_qsumr*/;
|
|
int i,j,m,flag,k;
|
|
float *Q; /* ptrs for memory allocation */
|
|
float *P;
|
|
float *px; /* ptrs of respective P'(z) & Q'(z) */
|
|
float *qx;
|
|
float *p;
|
|
float *q;
|
|
float *pt; /* ptr used for cheb_poly_eval()
|
|
whether P' or Q' */
|
|
int roots=0; /* DR 8/2/94: number of roots found */
|
|
flag = 1; /* program is searching for a root when,
|
|
1 else has found one */
|
|
m = lpcrdr/2; /* order of P'(z) & Q'(z) polynomials */
|
|
|
|
|
|
/* Allocate memory space for polynomials */
|
|
Q = PUSH(stack, (m+1), float);
|
|
P = PUSH(stack, (m+1), float);
|
|
|
|
/* determine P'(z)'s and Q'(z)'s coefficients where
|
|
P'(z) = P(z)/(1 + z^(-1)) and Q'(z) = Q(z)/(1-z^(-1)) */
|
|
|
|
px = P; /* initialise ptrs */
|
|
qx = Q;
|
|
p = px;
|
|
q = qx;
|
|
*px++ = 1.0;
|
|
*qx++ = 1.0;
|
|
for(i=1;i<=m;i++){
|
|
*px++ = a[i]+a[lpcrdr+1-i]-*p++;
|
|
*qx++ = a[i]-a[lpcrdr+1-i]+*q++;
|
|
}
|
|
px = P;
|
|
qx = Q;
|
|
for(i=0;i<m;i++){
|
|
*px = 2**px;
|
|
*qx = 2**qx;
|
|
px++;
|
|
qx++;
|
|
}
|
|
px = P; /* re-initialise ptrs */
|
|
qx = Q;
|
|
|
|
/* Search for a zero in P'(z) polynomial first and then alternate to Q'(z).
|
|
Keep alternating between the two polynomials as each zero is found */
|
|
|
|
xr = 0; /* initialise xr to zero */
|
|
xl = 1.0; /* start at point xl = 1 */
|
|
|
|
|
|
for(j=0;j<lpcrdr;j++){
|
|
if(j%2) /* determines whether P' or Q' is eval. */
|
|
pt = qx;
|
|
else
|
|
pt = px;
|
|
|
|
psuml = cheb_poly_eva(pt,xl,lpcrdr,stack); /* evals poly. at xl */
|
|
flag = 1;
|
|
while(flag && (xr >= -1.0)){
|
|
float dd;
|
|
/* Modified by JMV to provide smaller steps around x=+-1 */
|
|
dd=(delta*(1-.9*xl*xl));
|
|
if (fabs(psuml)<.2)
|
|
dd *= .5;
|
|
|
|
xr = xl - dd; /* interval spacing */
|
|
psumr = cheb_poly_eva(pt,xr,lpcrdr,stack);/* poly(xl-delta_x) */
|
|
temp_psumr = psumr;
|
|
temp_xr = xr;
|
|
|
|
/* if no sign change increment xr and re-evaluate poly(xr). Repeat til
|
|
sign change.
|
|
if a sign change has occurred the interval is bisected and then
|
|
checked again for a sign change which determines in which
|
|
interval the zero lies in.
|
|
If there is no sign change between poly(xm) and poly(xl) set interval
|
|
between xm and xr else set interval between xl and xr and repeat till
|
|
root is located within the specified limits */
|
|
|
|
if((psumr*psuml)<0.0){
|
|
roots++;
|
|
|
|
psumm=psuml;
|
|
for(k=0;k<=nb;k++){
|
|
xm = (xl+xr)/2; /* bisect the interval */
|
|
psumm=cheb_poly_eva(pt,xm,lpcrdr,stack);
|
|
if(psumm*psuml>0.){
|
|
psuml=psumm;
|
|
xl=xm;
|
|
}
|
|
else{
|
|
psumr=psumm;
|
|
xr=xm;
|
|
}
|
|
}
|
|
|
|
/* once zero is found, reset initial interval to xr */
|
|
freq[j] = (xm);
|
|
xl = xm;
|
|
flag = 0; /* reset flag for next search */
|
|
}
|
|
else{
|
|
psuml=temp_psumr;
|
|
xl=temp_xr;
|
|
}
|
|
}
|
|
}
|
|
return(roots);
|
|
}
|
|
|
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
FUNCTION....: lsp_to_lpc()
|
|
|
|
AUTHOR......: David Rowe
|
|
DATE CREATED: 24/2/93
|
|
|
|
lsp_to_lpc: This function converts LSP coefficients to LPC
|
|
coefficients.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
|
|
void lsp_to_lpc(float *freq,float *ak,int lpcrdr, char *stack)
|
|
/* float *freq array of LSP frequencies in the x domain */
|
|
/* float *ak array of LPC coefficients */
|
|
/* int lpcrdr order of LPC coefficients */
|
|
|
|
|
|
{
|
|
int i,j;
|
|
float xout1,xout2,xin1,xin2;
|
|
float *Wp;
|
|
float *pw,*n1,*n2,*n3,*n4=NULL;
|
|
int m = lpcrdr/2;
|
|
|
|
Wp = PUSH(stack, 4*m+2, float);
|
|
pw = Wp;
|
|
|
|
/* initialise contents of array */
|
|
|
|
for(i=0;i<=4*m+1;i++){ /* set contents of buffer to 0 */
|
|
*pw++ = 0.0;
|
|
}
|
|
|
|
/* Set pointers up */
|
|
|
|
pw = Wp;
|
|
xin1 = 1.0;
|
|
xin2 = 1.0;
|
|
|
|
/* reconstruct P(z) and Q(z) by cascading second order
|
|
polynomials in form 1 - 2xz(-1) +z(-2), where x is the
|
|
LSP coefficient */
|
|
|
|
for(j=0;j<=lpcrdr;j++){
|
|
int i2=0;
|
|
for(i=0;i<m;i++,i2+=2){
|
|
n1 = pw+(i*4);
|
|
n2 = n1 + 1;
|
|
n3 = n2 + 1;
|
|
n4 = n3 + 1;
|
|
xout1 = xin1 - 2*(freq[i2]) * *n1 + *n2;
|
|
xout2 = xin2 - 2*(freq[i2+1]) * *n3 + *n4;
|
|
*n2 = *n1;
|
|
*n4 = *n3;
|
|
*n1 = xin1;
|
|
*n3 = xin2;
|
|
xin1 = xout1;
|
|
xin2 = xout2;
|
|
}
|
|
xout1 = xin1 + *(n4+1);
|
|
xout2 = xin2 - *(n4+2);
|
|
ak[j] = (xout1 + xout2)*0.5;
|
|
*(n4+1) = xin1;
|
|
*(n4+2) = xin2;
|
|
|
|
xin1 = 0.0;
|
|
xin2 = 0.0;
|
|
}
|
|
|
|
}
|
|
|
|
/*Added by JMV
|
|
Makes sure the LSPs are stable*/
|
|
void lsp_enforce_margin(float *lsp, int len, float margin)
|
|
{
|
|
int i;
|
|
if (lsp[0]<margin)
|
|
lsp[0]=margin;
|
|
if (lsp[len-1]>M_PI-margin)
|
|
lsp[len-1]=M_PI-margin;
|
|
for (i=1;i<len-1;i++)
|
|
{
|
|
if (lsp[i]<lsp[i-1]+margin)
|
|
lsp[i]=lsp[i-1]+margin;
|
|
|
|
if (lsp[i]>lsp[i+1]-margin)
|
|
lsp[i]= .5* (lsp[i] + lsp[i+1]-margin);
|
|
}
|
|
}
|