source-engine/tier1/newbitbuf.cpp
FluorescentCIAAfricanAmerican 3bf9df6b27 1
2020-04-22 12:56:21 -04:00

717 lines
15 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#include "bitbuf.h"
#include "coordsize.h"
#include "mathlib/vector.h"
#include "mathlib/mathlib.h"
#include "tier1/strtools.h"
#include "bitvec.h"
// FIXME: Can't use this until we get multithreaded allocations in tier0 working for tools
// This is used by VVIS and fails to link
// NOTE: This must be the last file included!!!
//#include "tier0/memdbgon.h"
#ifdef _X360
// mandatory ... wary of above comment and isolating, tier0 is built as MT though
#include "tier0/memdbgon.h"
#endif
#include "stdio.h"
#if 0
void CBitWrite::StartWriting( void *pData, int nBytes, int iStartBit, int nBits )
{
// Make sure it's dword aligned and padded.
Assert( (nBytes % 4) == 0 );
Assert(((unsigned long)pData & 3) == 0);
Assert( iStartBit == 0 );
m_pData = (uint32 *) pData;
m_pDataOut = m_pData;
m_nDataBytes = nBytes;
if ( nBits == -1 )
{
m_nDataBits = nBytes << 3;
}
else
{
Assert( nBits <= nBytes*8 );
m_nDataBits = nBits;
}
m_bOverflow = false;
m_nOutBufWord = 0;
m_nOutBitsAvail = 32;
m_pBufferEnd = m_pDataOut + ( nBytes >> 2 );
}
const uint32 CBitBuffer::s_nMaskTable[33] = {
0,
( 1 << 1 ) - 1,
( 1 << 2 ) - 1,
( 1 << 3 ) - 1,
( 1 << 4 ) - 1,
( 1 << 5 ) - 1,
( 1 << 6 ) - 1,
( 1 << 7 ) - 1,
( 1 << 8 ) - 1,
( 1 << 9 ) - 1,
( 1 << 10 ) - 1,
( 1 << 11 ) - 1,
( 1 << 12 ) - 1,
( 1 << 13 ) - 1,
( 1 << 14 ) - 1,
( 1 << 15 ) - 1,
( 1 << 16 ) - 1,
( 1 << 17 ) - 1,
( 1 << 18 ) - 1,
( 1 << 19 ) - 1,
( 1 << 20 ) - 1,
( 1 << 21 ) - 1,
( 1 << 22 ) - 1,
( 1 << 23 ) - 1,
( 1 << 24 ) - 1,
( 1 << 25 ) - 1,
( 1 << 26 ) - 1,
( 1 << 27 ) - 1,
( 1 << 28 ) - 1,
( 1 << 29 ) - 1,
( 1 << 30 ) - 1,
0x7fffffff,
0xffffffff,
};
bool CBitWrite::WriteString( const char *pStr )
{
if(pStr)
{
while( *pStr )
{
WriteChar( * ( pStr++ ) );
}
}
WriteChar( 0 );
return !IsOverflowed();
}
void CBitWrite::WriteLongLong(int64 val)
{
uint *pLongs = (uint*)&val;
// Insert the two DWORDS according to network endian
const short endianIndex = 0x0100;
byte *idx = (byte*)&endianIndex;
WriteUBitLong(pLongs[*idx++], sizeof(long) << 3);
WriteUBitLong(pLongs[*idx], sizeof(long) << 3);
}
bool CBitWrite::WriteBits(const void *pInData, int nBits)
{
unsigned char *pOut = (unsigned char*)pInData;
int nBitsLeft = nBits;
// Bounds checking..
if ( ( GetNumBitsWritten() + nBits) > m_nDataBits )
{
SetOverflowFlag();
CallErrorHandler( BITBUFERROR_BUFFER_OVERRUN, m_pDebugName );
return false;
}
// !! speed!! need fast paths
// write remaining bytes
while ( nBitsLeft >= 8 )
{
WriteUBitLong( *pOut, 8, false );
++pOut;
nBitsLeft -= 8;
}
// write remaining bits
if ( nBitsLeft )
{
WriteUBitLong( *pOut, nBitsLeft, false );
}
return !IsOverflowed();
}
void CBitWrite::WriteBytes( const void *pBuf, int nBytes )
{
WriteBits(pBuf, nBytes << 3);
}
void CBitWrite::WriteBitCoord (const float f)
{
int signbit = (f <= -COORD_RESOLUTION);
int intval = (int)abs(f);
int fractval = abs((int)(f*COORD_DENOMINATOR)) & (COORD_DENOMINATOR-1);
// Send the bit flags that indicate whether we have an integer part and/or a fraction part.
WriteOneBit( intval );
WriteOneBit( fractval );
if ( intval || fractval )
{
// Send the sign bit
WriteOneBit( signbit );
// Send the integer if we have one.
if ( intval )
{
// Adjust the integers from [1..MAX_COORD_VALUE] to [0..MAX_COORD_VALUE-1]
intval--;
WriteUBitLong( (unsigned int)intval, COORD_INTEGER_BITS );
}
// Send the fraction if we have one
if ( fractval )
{
WriteUBitLong( (unsigned int)fractval, COORD_FRACTIONAL_BITS );
}
}
}
void CBitWrite::WriteBitCoordMP (const float f, bool bIntegral, bool bLowPrecision )
{
int signbit = (f <= -( bLowPrecision ? COORD_RESOLUTION_LOWPRECISION : COORD_RESOLUTION ));
int intval = (int)abs(f);
int fractval = bLowPrecision ?
( abs((int)(f*COORD_DENOMINATOR_LOWPRECISION)) & (COORD_DENOMINATOR_LOWPRECISION-1) ) :
( abs((int)(f*COORD_DENOMINATOR)) & (COORD_DENOMINATOR-1) );
bool bInBounds = intval < (1 << COORD_INTEGER_BITS_MP );
WriteOneBit( bInBounds );
if ( bIntegral )
{
// Send the sign bit
WriteOneBit( intval );
if ( intval )
{
WriteOneBit( signbit );
// Send the integer if we have one.
// Adjust the integers from [1..MAX_COORD_VALUE] to [0..MAX_COORD_VALUE-1]
intval--;
if ( bInBounds )
{
WriteUBitLong( (unsigned int)intval, COORD_INTEGER_BITS_MP );
}
else
{
WriteUBitLong( (unsigned int)intval, COORD_INTEGER_BITS );
}
}
}
else
{
// Send the bit flags that indicate whether we have an integer part and/or a fraction part.
WriteOneBit( intval );
// Send the sign bit
WriteOneBit( signbit );
// Send the integer if we have one.
if ( intval )
{
// Adjust the integers from [1..MAX_COORD_VALUE] to [0..MAX_COORD_VALUE-1]
intval--;
if ( bInBounds )
{
WriteUBitLong( (unsigned int)intval, COORD_INTEGER_BITS_MP );
}
else
{
WriteUBitLong( (unsigned int)intval, COORD_INTEGER_BITS );
}
}
WriteUBitLong( (unsigned int)fractval, bLowPrecision ? COORD_FRACTIONAL_BITS_MP_LOWPRECISION : COORD_FRACTIONAL_BITS );
}
}
void CBitWrite::SeekToBit( int nBit )
{
TempFlush();
m_pDataOut = m_pData + ( nBit / 32 );
m_nOutBufWord = *( m_pDataOut );
m_nOutBitsAvail = 32 - ( nBit & 31 );
}
void CBitWrite::WriteBitVec3Coord( const Vector& fa )
{
int xflag, yflag, zflag;
xflag = (fa[0] >= COORD_RESOLUTION) || (fa[0] <= -COORD_RESOLUTION);
yflag = (fa[1] >= COORD_RESOLUTION) || (fa[1] <= -COORD_RESOLUTION);
zflag = (fa[2] >= COORD_RESOLUTION) || (fa[2] <= -COORD_RESOLUTION);
WriteOneBit( xflag );
WriteOneBit( yflag );
WriteOneBit( zflag );
if ( xflag )
WriteBitCoord( fa[0] );
if ( yflag )
WriteBitCoord( fa[1] );
if ( zflag )
WriteBitCoord( fa[2] );
}
void CBitWrite::WriteBitNormal( float f )
{
int signbit = (f <= -NORMAL_RESOLUTION);
// NOTE: Since +/-1 are valid values for a normal, I'm going to encode that as all ones
unsigned int fractval = abs( (int)(f*NORMAL_DENOMINATOR) );
// clamp..
if (fractval > NORMAL_DENOMINATOR)
fractval = NORMAL_DENOMINATOR;
// Send the sign bit
WriteOneBit( signbit );
// Send the fractional component
WriteUBitLong( fractval, NORMAL_FRACTIONAL_BITS );
}
void CBitWrite::WriteBitVec3Normal( const Vector& fa )
{
int xflag, yflag;
xflag = (fa[0] >= NORMAL_RESOLUTION) || (fa[0] <= -NORMAL_RESOLUTION);
yflag = (fa[1] >= NORMAL_RESOLUTION) || (fa[1] <= -NORMAL_RESOLUTION);
WriteOneBit( xflag );
WriteOneBit( yflag );
if ( xflag )
WriteBitNormal( fa[0] );
if ( yflag )
WriteBitNormal( fa[1] );
// Write z sign bit
int signbit = (fa[2] <= -NORMAL_RESOLUTION);
WriteOneBit( signbit );
}
void CBitWrite::WriteBitAngle( float fAngle, int numbits )
{
unsigned int shift = GetBitForBitnum(numbits);
unsigned int mask = shift - 1;
int d = (int)( (fAngle / 360.0) * shift );
d &= mask;
WriteUBitLong((unsigned int)d, numbits);
}
bool CBitWrite::WriteBitsFromBuffer( bf_read *pIn, int nBits )
{
// This could be optimized a little by
while ( nBits > 32 )
{
WriteUBitLong( pIn->ReadUBitLong( 32 ), 32 );
nBits -= 32;
}
WriteUBitLong( pIn->ReadUBitLong( nBits ), nBits );
return !IsOverflowed() && !pIn->IsOverflowed();
}
void CBitWrite::WriteBitAngles( const QAngle& fa )
{
// FIXME:
Vector tmp( fa.x, fa.y, fa.z );
WriteBitVec3Coord( tmp );
}
bool CBitRead::Seek( int nPosition )
{
bool bSucc = true;
if ( nPosition < 0 || nPosition > m_nDataBits)
{
SetOverflowFlag();
bSucc = false;
nPosition = m_nDataBits;
}
int nHead = m_nDataBytes & 3; // non-multiple-of-4 bytes at head of buffer. We put the "round off"
// at the head to make reading and detecting the end efficient.
int nByteOfs = nPosition / 8;
if ( ( m_nDataBytes < 4 ) || ( nHead && ( nByteOfs < nHead ) ) )
{
// partial first dword
uint8 const *pPartial = ( uint8 const *) m_pData;
if ( m_pData )
{
m_nInBufWord = *( pPartial++ );
if ( nHead > 1 )
m_nInBufWord |= ( *pPartial++ ) << 8;
if ( nHead > 2 )
m_nInBufWord |= ( *pPartial++ ) << 16;
}
m_pDataIn = ( uint32 const * ) pPartial;
m_nInBufWord >>= ( nPosition & 31 );
m_nBitsAvail = ( nHead << 3 ) - ( nPosition & 31 );
}
else
{
int nAdjPosition = nPosition - ( nHead << 3 );
m_pDataIn = reinterpret_cast<uint32 const *> (
reinterpret_cast<uint8 const *>( m_pData ) + ( ( nAdjPosition / 32 ) << 2 ) + nHead );
if ( m_pData )
{
m_nBitsAvail = 32;
GrabNextDWord();
}
else
{
m_nInBufWord = 0;
m_nBitsAvail = 1;
}
m_nInBufWord >>= ( nAdjPosition & 31 );
m_nBitsAvail = min( m_nBitsAvail, 32 - ( nAdjPosition & 31 ) ); // in case grabnextdword overflowed
}
return bSucc;
}
void CBitRead::StartReading( const void *pData, int nBytes, int iStartBit, int nBits )
{
// Make sure it's dword aligned and padded.
Assert(((unsigned long)pData & 3) == 0);
m_pData = (uint32 *) pData;
m_pDataIn = m_pData;
m_nDataBytes = nBytes;
if ( nBits == -1 )
{
m_nDataBits = nBytes << 3;
}
else
{
Assert( nBits <= nBytes*8 );
m_nDataBits = nBits;
}
m_bOverflow = false;
m_pBufferEnd = reinterpret_cast<uint32 const *> ( reinterpret_cast< uint8 const *> (m_pData) + nBytes );
if ( m_pData )
Seek( iStartBit );
}
bool CBitRead::ReadString( char *pStr, int maxLen, bool bLine, int *pOutNumChars )
{
Assert( maxLen != 0 );
bool bTooSmall = false;
int iChar = 0;
while(1)
{
char val = ReadChar();
if ( val == 0 )
break;
else if ( bLine && val == '\n' )
break;
if ( iChar < (maxLen-1) )
{
pStr[iChar] = val;
++iChar;
}
else
{
bTooSmall = true;
}
}
// Make sure it's null-terminated.
Assert( iChar < maxLen );
pStr[iChar] = 0;
if ( pOutNumChars )
*pOutNumChars = iChar;
return !IsOverflowed() && !bTooSmall;
}
char* CBitRead::ReadAndAllocateString( bool *pOverflow )
{
char str[2048];
int nChars;
bool bOverflow = !ReadString( str, sizeof( str ), false, &nChars );
if ( pOverflow )
*pOverflow = bOverflow;
// Now copy into the output and return it;
char *pRet = new char[ nChars + 1 ];
for ( int i=0; i <= nChars; i++ )
pRet[i] = str[i];
return pRet;
}
int64 CBitRead::ReadLongLong( void )
{
int64 retval;
uint *pLongs = (uint*)&retval;
// Read the two DWORDs according to network endian
const short endianIndex = 0x0100;
byte *idx = (byte*)&endianIndex;
pLongs[*idx++] = ReadUBitLong(sizeof(long) << 3);
pLongs[*idx] = ReadUBitLong(sizeof(long) << 3);
return retval;
}
void CBitRead::ReadBits(void *pOutData, int nBits)
{
unsigned char *pOut = (unsigned char*)pOutData;
int nBitsLeft = nBits;
// align output to dword boundary
while( ((unsigned long)pOut & 3) != 0 && nBitsLeft >= 8 )
{
*pOut = (unsigned char)ReadUBitLong(8);
++pOut;
nBitsLeft -= 8;
}
// X360TBD: Can't read dwords in ReadBits because they'll get swapped
if ( IsPC() )
{
// read dwords
while ( nBitsLeft >= 32 )
{
*((unsigned long*)pOut) = ReadUBitLong(32);
pOut += sizeof(unsigned long);
nBitsLeft -= 32;
}
}
// read remaining bytes
while ( nBitsLeft >= 8 )
{
*pOut = ReadUBitLong(8);
++pOut;
nBitsLeft -= 8;
}
// read remaining bits
if ( nBitsLeft )
{
*pOut = ReadUBitLong(nBitsLeft);
}
}
bool CBitRead::ReadBytes(void *pOut, int nBytes)
{
ReadBits(pOut, nBytes << 3);
return !IsOverflowed();
}
float CBitRead::ReadBitAngle( int numbits )
{
float shift = (float)( GetBitForBitnum(numbits) );
int i = ReadUBitLong( numbits );
float fReturn = (float)i * (360.0 / shift);
return fReturn;
}
// Basic Coordinate Routines (these contain bit-field size AND fixed point scaling constants)
float CBitRead::ReadBitCoord (void)
{
int intval=0,fractval=0,signbit=0;
float value = 0.0;
// Read the required integer and fraction flags
intval = ReadOneBit();
fractval = ReadOneBit();
// If we got either parse them, otherwise it's a zero.
if ( intval || fractval )
{
// Read the sign bit
signbit = ReadOneBit();
// If there's an integer, read it in
if ( intval )
{
// Adjust the integers from [0..MAX_COORD_VALUE-1] to [1..MAX_COORD_VALUE]
intval = ReadUBitLong( COORD_INTEGER_BITS ) + 1;
}
// If there's a fraction, read it in
if ( fractval )
{
fractval = ReadUBitLong( COORD_FRACTIONAL_BITS );
}
// Calculate the correct floating point value
value = intval + ((float)fractval * COORD_RESOLUTION);
// Fixup the sign if negative.
if ( signbit )
value = -value;
}
return value;
}
float CBitRead::ReadBitCoordMP( bool bIntegral, bool bLowPrecision )
{
int intval=0,fractval=0,signbit=0;
float value = 0.0;
bool bInBounds = ReadOneBit() ? true : false;
if ( bIntegral )
{
// Read the required integer and fraction flags
intval = ReadOneBit();
// If we got either parse them, otherwise it's a zero.
if ( intval )
{
// Read the sign bit
signbit = ReadOneBit();
// If there's an integer, read it in
// Adjust the integers from [0..MAX_COORD_VALUE-1] to [1..MAX_COORD_VALUE]
if ( bInBounds )
{
value = ReadUBitLong( COORD_INTEGER_BITS_MP ) + 1;
}
else
{
value = ReadUBitLong( COORD_INTEGER_BITS ) + 1;
}
}
}
else
{
// Read the required integer and fraction flags
intval = ReadOneBit();
// Read the sign bit
signbit = ReadOneBit();
// If we got either parse them, otherwise it's a zero.
if ( intval )
{
if ( bInBounds )
{
intval = ReadUBitLong( COORD_INTEGER_BITS_MP ) + 1;
}
else
{
intval = ReadUBitLong( COORD_INTEGER_BITS ) + 1;
}
}
// If there's a fraction, read it in
fractval = ReadUBitLong( bLowPrecision ? COORD_FRACTIONAL_BITS_MP_LOWPRECISION : COORD_FRACTIONAL_BITS );
// Calculate the correct floating point value
value = intval + ((float)fractval * ( bLowPrecision ? COORD_RESOLUTION_LOWPRECISION : COORD_RESOLUTION ) );
}
// Fixup the sign if negative.
if ( signbit )
value = -value;
return value;
}
void CBitRead::ReadBitVec3Coord( Vector& fa )
{
int xflag, yflag, zflag;
// This vector must be initialized! Otherwise, If any of the flags aren't set,
// the corresponding component will not be read and will be stack garbage.
fa.Init( 0, 0, 0 );
xflag = ReadOneBit();
yflag = ReadOneBit();
zflag = ReadOneBit();
if ( xflag )
fa[0] = ReadBitCoord();
if ( yflag )
fa[1] = ReadBitCoord();
if ( zflag )
fa[2] = ReadBitCoord();
}
float CBitRead::ReadBitNormal (void)
{
// Read the sign bit
int signbit = ReadOneBit();
// Read the fractional part
unsigned int fractval = ReadUBitLong( NORMAL_FRACTIONAL_BITS );
// Calculate the correct floating point value
float value = (float)fractval * NORMAL_RESOLUTION;
// Fixup the sign if negative.
if ( signbit )
value = -value;
return value;
}
void CBitRead::ReadBitVec3Normal( Vector& fa )
{
int xflag = ReadOneBit();
int yflag = ReadOneBit();
if (xflag)
fa[0] = ReadBitNormal();
else
fa[0] = 0.0f;
if (yflag)
fa[1] = ReadBitNormal();
else
fa[1] = 0.0f;
// The first two imply the third (but not its sign)
int znegative = ReadOneBit();
float fafafbfb = fa[0] * fa[0] + fa[1] * fa[1];
if (fafafbfb < 1.0f)
fa[2] = sqrt( 1.0f - fafafbfb );
else
fa[2] = 0.0f;
if (znegative)
fa[2] = -fa[2];
}
void CBitRead::ReadBitAngles( QAngle& fa )
{
Vector tmp;
ReadBitVec3Coord( tmp );
fa.Init( tmp.x, tmp.y, tmp.z );
}
#endif