source-engine/materialsystem/checkmaterials.cpp
FluorescentCIAAfricanAmerican 3bf9df6b27 1
2020-04-22 12:56:21 -04:00

665 lines
18 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================
#include "pch_materialsystem.h"
// NOTE: currently this file is marked as "exclude from build"
//#define _CHECK_MATERIALS_FOR_PROBLEMS 1
#ifdef _CHECK_MATERIALS_FOR_PROBLEMS
#include "vtf/vtf.h"
#include "tier1/utlbuffer.h"
#include "tier1/utlstring.h"
void CheckMateralsInDirectoryRecursive( const char *pRoot, const char *pDirectory );
#endif
#ifdef _CHECK_MATERIALS_FOR_PROBLEMS
//-----------------------------------------------------------------------------
// Does a texture have alpha?
//-----------------------------------------------------------------------------
static bool DoesTextureUseAlpha( const char *pTextureName, const char *pMaterialName )
{
if ( IsX360() )
{
// not supporting
return false;
}
// Special textures start with '_'..
if ( pTextureName[0] == '_' )
return false;
// The texture name doubles as the relative file name
// It's assumed to have already been set by this point
// Compute the cache name
char pCacheFileName[MATERIAL_MAX_PATH];
Q_snprintf( pCacheFileName, sizeof( pCacheFileName ), "materials/%s.vtf", pTextureName );
CUtlBuffer buf;
FileHandle_t fileHandle = g_pFullFileSystem->Open( pCacheFileName, "rb" );
if ( fileHandle == FILESYSTEM_INVALID_HANDLE)
{
Warning( "Material \"%s\": can't open texture \"%s\"\n", pMaterialName, pCacheFileName );
return false;
}
// Check the .vtf for an alpha channel
IVTFTexture *pVTFTexture = CreateVTFTexture();
int nHeaderSize = VTFFileHeaderSize( VTF_MAJOR_VERSION );
buf.EnsureCapacity( nHeaderSize );
// read the header first.. it's faster!!
g_pFullFileSystem->Read( buf.Base(), nHeaderSize, fileHandle );
buf.SeekPut( CUtlBuffer::SEEK_HEAD, nHeaderSize );
// Unserialize the header
bool bUsesAlpha = false;
if (!pVTFTexture->Unserialize( buf, true ))
{
Warning( "Error reading material \"%s\"\n", pCacheFileName );
g_pFullFileSystem->Close(fileHandle);
}
else
{
if ( pVTFTexture->Flags() & (TEXTUREFLAGS_ONEBITALPHA | TEXTUREFLAGS_EIGHTBITALPHA) )
{
bUsesAlpha = true;
}
}
DestroyVTFTexture( pVTFTexture );
g_pFullFileSystem->Close( fileHandle );
return bUsesAlpha;
}
//-----------------------------------------------------------------------------
// Does a texture have alpha?
//-----------------------------------------------------------------------------
static bool DoesTextureUseNormal( const char *pTextureName, const char *pMaterialName, bool &bUsesAlpha, bool &bIsCompressed, int &nSizeInBytes )
{
nSizeInBytes = 0;
bUsesAlpha = false;
if ( IsX360() )
{
// not supporting
return false;
}
// Special textures start with '_'..
if ( !pTextureName || ( pTextureName[0] == '_' ) || ( pTextureName[0] == 0 ) )
return false;
// The texture name doubles as the relative file name
// It's assumed to have already been set by this point
// Compute the cache name
char pCacheFileName[MATERIAL_MAX_PATH];
Q_snprintf( pCacheFileName, sizeof( pCacheFileName ), "materials/%s.vtf", pTextureName );
CUtlBuffer buf;
FileHandle_t fileHandle = g_pFullFileSystem->Open( pCacheFileName, "rb" );
if ( fileHandle == FILESYSTEM_INVALID_HANDLE)
{
// Warning( "Material \"%s\": can't open texture \"%s\"\n", pMaterialName, pCacheFileName );
return false;
}
// Check the .vtf for an alpha channel
IVTFTexture *pVTFTexture = CreateVTFTexture();
int nHeaderSize = VTFFileHeaderSize( VTF_MAJOR_VERSION );
buf.EnsureCapacity( nHeaderSize );
// read the header first.. it's faster!!
g_pFullFileSystem->Read( buf.Base(), nHeaderSize, fileHandle );
buf.SeekPut( CUtlBuffer::SEEK_HEAD, nHeaderSize );
// Unserialize the header
bool bUsesNormal = false;
if ( !pVTFTexture->Unserialize( buf, true ) )
{
Warning( "Error reading material \"%s\"\n", pCacheFileName );
}
else
{
if ( pVTFTexture->Flags() & TEXTUREFLAGS_NORMAL )
{
bUsesAlpha = false;
bUsesNormal = true;
bIsCompressed = ImageLoader::IsCompressed( pVTFTexture->Format() ) || ( pVTFTexture->Format() == IMAGE_FORMAT_A8 );
nSizeInBytes = pVTFTexture->ComputeTotalSize();
if ( pVTFTexture->Flags() & (TEXTUREFLAGS_ONEBITALPHA | TEXTUREFLAGS_EIGHTBITALPHA) )
{
bUsesAlpha = true;
}
}
}
DestroyVTFTexture( pVTFTexture );
g_pFullFileSystem->Close( fileHandle );
return bUsesNormal;
}
//-----------------------------------------------------------------------------
// Is this a real texture
//-----------------------------------------------------------------------------
static bool IsTexture( const char *pTextureName )
{
// Special textures start with '_'..
if ( pTextureName[0] == '_' )
return false;
// The texture name doubles as the relative file name
// It's assumed to have already been set by this point
// Compute the cache name
char pCacheFileName[MATERIAL_MAX_PATH];
Q_snprintf( pCacheFileName, sizeof( pCacheFileName ), "materials/%s.vtf", pTextureName );
FileHandle_t fileHandle = g_pFullFileSystem->Open( pCacheFileName, "rb" );
if ( fileHandle == FILESYSTEM_INVALID_HANDLE)
return false;
g_pFullFileSystem->Close( fileHandle );
return true;
}
//-----------------------------------------------------------------------------
// Scan material + all subsections for key
//-----------------------------------------------------------------------------
static float MaterialFloatKeyValue( KeyValues *pKeyValues, const char *pKeyName, float flDefault )
{
float flValue = pKeyValues->GetFloat( pKeyName, flDefault );
if ( flValue != flDefault )
return flValue;
for( KeyValues *pSubKey = pKeyValues->GetFirstTrueSubKey(); pSubKey; pSubKey = pSubKey->GetNextTrueSubKey() )
{
float flValue = MaterialFloatKeyValue( pSubKey, pKeyName, flDefault );
if ( flValue != flDefault )
return flValue;
}
return flDefault;
}
int ParseVectorFromKeyValueString( KeyValues *pKeyValue, const char *pMaterialName, float vecVal[4] );
static bool AsVectorsEqual( int nDim1, float *pVector1, int nDim2, float *pVector2 )
{
if ( nDim1 != nDim2 )
return false;
for ( int i = 0; i < nDim1; ++i )
{
if ( fabs( pVector1[i] - pVector2[i] ) > 1e-3 )
return false;
}
return true;
}
static bool MaterialVectorKeyValue( KeyValues *pKeyValues, const char *pKeyName, int nDefaultDim, float *pDefault, int *pDim, float *pVector )
{
int nDim;
float retVal[4];
KeyValues *pValue = pKeyValues->FindKey( pKeyName );
if ( pValue )
{
switch( pValue->GetDataType() )
{
case KeyValues::TYPE_INT:
{
int nInt = pValue->GetInt();
for ( int i = 0; i < 4; ++i )
{
retVal[i] = nInt;
}
if ( !AsVectorsEqual( nDefaultDim, pDefault, nDefaultDim, retVal ) )
{
*pDim = nDefaultDim;
memcpy( pVector, retVal, nDefaultDim * sizeof(float) );
return true;
}
}
break;
case KeyValues::TYPE_FLOAT:
{
float flFloat = pValue->GetFloat();
for ( int i = 0; i < 4; ++i )
{
retVal[i] = flFloat;
}
if ( !AsVectorsEqual( nDefaultDim, pDefault, nDefaultDim, retVal ) )
{
*pDim = nDefaultDim;
memcpy( pVector, retVal, nDefaultDim * sizeof(float) );
return true;
}
}
break;
case KeyValues::TYPE_STRING:
{
nDim = ParseVectorFromKeyValueString( pValue, "", retVal );
if ( !AsVectorsEqual( nDefaultDim, pDefault, nDim, retVal ) )
{
*pDim = nDim;
memcpy( pVector, retVal, nDim * sizeof(float) );
return true;
}
}
break;
}
}
for( KeyValues *pSubKey = pKeyValues->GetFirstTrueSubKey(); pSubKey; pSubKey = pSubKey->GetNextTrueSubKey() )
{
if ( MaterialVectorKeyValue( pSubKey, pKeyName, nDefaultDim, pDefault, &nDim, retVal ) )
{
*pDim = nDim;
memcpy( pVector, retVal, nDim * sizeof(float) );
return true;
}
}
*pDim = nDefaultDim;
memcpy( pVector, pDefault, nDefaultDim * sizeof(float) );
return false;
}
//-----------------------------------------------------------------------------
// Scan material + all subsections for key
//-----------------------------------------------------------------------------
static bool DoesMaterialHaveKey( KeyValues *pKeyValues, const char *pKeyName )
{
if ( pKeyValues->GetString( pKeyName, NULL ) != NULL )
return true;
for( KeyValues *pSubKey = pKeyValues->GetFirstTrueSubKey(); pSubKey; pSubKey = pSubKey->GetNextTrueSubKey() )
{
if ( DoesMaterialHaveKey( pSubKey, pKeyName ) )
return true;
}
return false;
}
//-----------------------------------------------------------------------------
// Scan all materials for errors
//-----------------------------------------------------------------------------
static int s_nNormalBytes;
static int s_nNormalCompressedBytes;
static int s_nNormalPalettizedBytes;
static int s_nNormalWithAlphaBytes;
static int s_nNormalWithAlphaCompressedBytes;
struct VTFInfo_t
{
CUtlString m_VTFName;
bool m_bFoundInVMT;
};
void CheckKeyValues( KeyValues *pKeyValues, CUtlVector<VTFInfo_t> &vtf )
{
for ( KeyValues *pSubKey = pKeyValues->GetFirstValue(); pSubKey; pSubKey = pSubKey->GetNextValue() )
{
if ( pSubKey->GetDataType() != KeyValues::TYPE_STRING )
continue;
if ( IsTexture( pSubKey->GetString() ) )
{
int nLen = Q_strlen( pSubKey->GetString() ) + 1;
char *pTemp = (char*)_alloca( nLen );
memcpy( pTemp, pSubKey->GetString(), nLen );
Q_FixSlashes( pTemp );
int nCount = vtf.Count();
for ( int i = 0; i < nCount; ++i )
{
if ( Q_stricmp( vtf[i].m_VTFName, pTemp ) )
continue;
vtf[i].m_bFoundInVMT = true;
break;
}
}
}
for ( KeyValues *pSubKey = pKeyValues->GetFirstTrueSubKey(); pSubKey; pSubKey = pSubKey->GetNextTrueSubKey() )
{
CheckKeyValues( pSubKey, vtf );
}
}
void CheckMaterial( KeyValues *pKeyValues, const char *pRoot, const char *pFileName, CUtlVector<VTFInfo_t> &vtf )
{
const char *pShaderName = pKeyValues->GetName();
/*
if ( Q_stristr( pShaderName, "Water" ) ||
Q_stristr( pShaderName, "Eyeball" ) ||
Q_stristr( pShaderName, "Shadow" ) ||
Q_stristr( pShaderName, "Refract" ) ||
Q_stristr( pShaderName, "Predator" ) ||
Q_stristr( pShaderName, "ParticleSphere" ) ||
Q_stristr( pShaderName, "DebugLuxels" ) ||
Q_stristr( pShaderName, "GooInGlass" ) ||
Q_stristr( pShaderName, "Modulate" ) ||
Q_stristr( pShaderName, "UnlitTwoTexture" ) ||
Q_stristr( pShaderName, "Cloud" ) ||
Q_stristr( pShaderName, "WorldVertexTransition" ) ||
Q_stristr( pShaderName, "DecalModulate" ) ||
Q_stristr( pShaderName, "DecalBaseTimesLightmapAlphaBlendSelfIllum" ) ||
Q_stristr( pShaderName, "Sprite" ) )
{
return;
}
// Check for alpha channels
const char *pBaseTextureName = pKeyValues->GetString( "$basetexture", NULL );
if ( pBaseTextureName != NULL )
{
if ( DoesTextureUseAlpha( pBaseTextureName, pFileName ) )
{
float flAlpha = MaterialFloatKeyValue( pKeyValues, "$alpha", 1.0f );
bool bHasVertexAlpha = DoesMaterialHaveKey( pKeyValues, "$vertexalpha" ); // Modulation always happens here whether we want it to or not
bool bHasAlphaTest = DoesMaterialHaveKey( pKeyValues, "$alphatest" );
bool bHasTranslucent = DoesMaterialHaveKey( pKeyValues, "$translucent" );
bool bHasSelfIllum = DoesMaterialHaveKey( pKeyValues, "$selfillum" );
bool bHasBaseAlphaEnvMapMask = DoesMaterialHaveKey( pKeyValues, "$basealphaenvmapmask" );
if ( (flAlpha == 1.0f) && !bHasVertexAlpha && !bHasAlphaTest && !bHasTranslucent && !bHasSelfIllum && !bHasBaseAlphaEnvMapMask )
{
Warning("Material \"%s\": BASETEXTURE \"%s\"\n", pFileName, pBaseTextureName );
}
}
}
*/
/*
// Check for bump, spec, and no normalmapalphaenvmapmask
const char *pBumpmapName = pKeyValues->GetString( "$bumpmap", NULL );
if ( pBumpmapName != NULL )
{
if ( DoesTextureUseAlpha( pBumpmapName, pFileName ) )
{
bool bHasEnvmap = DoesMaterialHaveKey( pKeyValues, "$envmap" );
bool bHasNormalMapAlphaEnvMapMask = DoesMaterialHaveKey( pKeyValues, "$normalmapalphaenvmapmask" );
if ( !bHasEnvmap || !bHasNormalMapAlphaEnvMapMask )
{
Warning("Material \"%s\": BUMPMAP \"%s\"\n", pFileName, pBumpmapName );
}
}
}
*/
/*
if ( !Q_stristr( pShaderName, "LightmappedGeneric" ) &&
!Q_stristr( pShaderName, "VertexLitGeneric" ) )
{
return;
}
if ( DoesMaterialHaveKey( pKeyValues, "$envmap" ) && DoesMaterialHaveKey( pKeyValues, "$bumpmap" ) )
{
int nDim;
float retVal[4];
float defaultVal[4] = { 1, 1, 1, 1 };
if ( MaterialVectorKeyValue( pKeyValues, "$envmaptint", 3, defaultVal, &nDim, retVal ) )
{
Warning("ENVMAP + ENVMAPTINT : Material \"%s\"\n", pFileName );
}
// else
// {
// Warning("ENVMAP only: Material \"%s\"\n", pFileName );
// }
}
*/
/*
if ( !Q_stristr( pShaderName, "Refract" ) )
{
return;
}
if ( !DoesMaterialHaveKey( pKeyValues, "$envmap" ) )
{
bool bUsesAlpha, bIsCompressed, bIsPalettized;
int nSizeInBytes;
if ( DoesTextureUseNormal( pKeyValues->GetString( "$normalmap" ),
pFileName, bUsesAlpha, bIsCompressed, bIsPalettized, nSizeInBytes ) )
{
if ( bIsCompressed )
{
Warning("Bad : Material compressed \"%s\"\n", pFileName );
}
else
{
Warning("Bad : Material \"%s\"\n", pFileName );
}
}
}
*/
/*
if ( !Q_stristr( pShaderName, "WorldTwoTextureBlend" ) )
{
return;
}
if ( DoesMaterialHaveKey( pKeyValues, "$envmap" ) ||
DoesMaterialHaveKey( pKeyValues, "$parallaxmap" ) ||
DoesMaterialHaveKey( pKeyValues, "$bumpmap" ) ||
DoesMaterialHaveKey( pKeyValues, "$vertexcolor" ) ||
DoesMaterialHaveKey( pKeyValues, "$basetexture2" )
)
{
Warning("Bad : Material \"%s\"\n", pFileName );
}
*/
for ( KeyValues *pSubKey = pKeyValues->GetFirstValue(); pSubKey; pSubKey = pSubKey->GetNextValue() )
{
// Msg( " Checking %s\n", pSubKey->GetString() );
if ( pSubKey->GetDataType() != KeyValues::TYPE_STRING )
continue;
bool bUsesAlpha, bIsCompressed;
int nSizeInBytes;
if ( DoesTextureUseNormal( pSubKey->GetString(), pFileName, bUsesAlpha, bIsCompressed, nSizeInBytes ) )
{
if ( bUsesAlpha )
{
if ( bIsCompressed )
{
s_nNormalWithAlphaCompressedBytes += nSizeInBytes;
}
else
{
s_nNormalWithAlphaBytes += nSizeInBytes;
Msg( "Normal texture w alpha uncompressed %s\n", pSubKey->GetString() );
}
}
else
{
if ( bIsCompressed )
{
s_nNormalCompressedBytes += nSizeInBytes;
}
else
{
s_nNormalBytes += nSizeInBytes;
}
}
}
}
/*
if ( !Q_stristr( pShaderName, "VertexLitGeneric" ) )
return;
if ( !DoesMaterialHaveKey( pKeyValues, "$envmap" ) && DoesMaterialHaveKey( pKeyValues, "$bumpmap" ) )
{
Warning("BUMPMAP + no ENVMAP : Material \"%s\"\n", pFileName );
}
*/
// CheckKeyValues( pKeyValues, vtf );
}
//-----------------------------------------------------------------------------
// Build list of all VTFs
//-----------------------------------------------------------------------------
void CheckVTFInDirectoryRecursive( const char *pRoot, const char *pDirectory, CUtlVector< VTFInfo_t > &vtf )
{
#define BUF_SIZE 1024
char buf[BUF_SIZE];
WIN32_FIND_DATA wfd;
HANDLE findHandle;
sprintf( buf, "%s/%s/*.vtf", pRoot, pDirectory );
findHandle = FindFirstFile( buf, &wfd );
if ( findHandle != INVALID_HANDLE_VALUE )
{
do
{
int i = vtf.AddToTail( );
char buf[MAX_PATH];
char buf2[MAX_PATH];
Q_snprintf( buf, MAX_PATH, "%s/%s", pDirectory, wfd.cFileName );
Q_FixSlashes( buf );
Q_StripExtension( buf, buf2, sizeof(buf2) );
Assert( !Q_strnicmp( buf2, "materials\\", 10 ) );
vtf[i].m_VTFName = &buf2[10];
vtf[i].m_bFoundInVMT = false;
} while ( FindNextFile ( findHandle, &wfd ) );
FindClose ( findHandle );
}
// do subdirectories
sprintf( buf, "%s/%s/*.*", pRoot, pDirectory );
findHandle = FindFirstFile( buf, &wfd );
if ( findHandle != INVALID_HANDLE_VALUE )
{
do
{
if( wfd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY )
{
if( ( strcmp( wfd.cFileName, ".." ) == 0 ) ||
( strcmp( wfd.cFileName, "." ) == 0 ) )
{
continue;
}
char buf[MAX_PATH];
Q_snprintf( buf, MAX_PATH, "%s/%s", pDirectory, wfd.cFileName );
CheckVTFInDirectoryRecursive( pRoot, buf, vtf );
}
} while ( FindNextFile ( findHandle, &wfd ) );
FindClose ( findHandle );
}
#undef BUF_SIZE
}
//-----------------------------------------------------------------------------
// Scan all materials for errors
//-----------------------------------------------------------------------------
void _CheckMateralsInDirectoryRecursive( const char *pRoot, const char *pDirectory, CUtlVector< VTFInfo_t > &vtf )
{
#define BUF_SIZE 1024
char buf[BUF_SIZE];
WIN32_FIND_DATA wfd;
HANDLE findHandle;
sprintf( buf, "%s/%s/*.vmt", pRoot, pDirectory );
findHandle = FindFirstFile( buf, &wfd );
if ( findHandle != INVALID_HANDLE_VALUE )
{
do
{
KeyValues * vmtKeyValues = new KeyValues("vmt");
char pFileName[MAX_PATH];
Q_snprintf( pFileName, sizeof( pFileName ), "%s/%s", pDirectory, wfd.cFileName );
if ( !vmtKeyValues->LoadFromFile( g_pFullFileSystem, pFileName, "GAME" ) )
{
Warning( "CheckMateralsInDirectoryRecursive: can't open \"%s\"\n", pFileName );
continue;
}
CheckMaterial( vmtKeyValues, pRoot, pFileName, vtf );
vmtKeyValues->deleteThis();
} while ( FindNextFile ( findHandle, &wfd ) );
FindClose ( findHandle );
}
// do subdirectories
sprintf( buf, "%s/%s/*.*", pRoot, pDirectory );
findHandle = FindFirstFile( buf, &wfd );
if ( findHandle != INVALID_HANDLE_VALUE )
{
do
{
if( wfd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY )
{
if( ( strcmp( wfd.cFileName, ".." ) == 0 ) ||
( strcmp( wfd.cFileName, "." ) == 0 ) )
{
continue;
}
char buf[MAX_PATH];
Q_snprintf( buf, MAX_PATH, "%s/%s", pDirectory, wfd.cFileName );
_CheckMateralsInDirectoryRecursive( pRoot, buf, vtf );
}
} while ( FindNextFile ( findHandle, &wfd ) );
FindClose ( findHandle );
}
// Msg( "Normal only %d/%d/%d Normal w alpha %d/%d\n", s_nNormalBytes, s_nNormalPalettizedBytes, s_nNormalCompressedBytes, s_nNormalWithAlphaBytes, s_nNormalWithAlphaCompressedBytes );
#undef BUF_SIZE
}
void CheckMateralsInDirectoryRecursive( const char *pRoot, const char *pDirectory )
{
CUtlVector< VTFInfo_t > vtfNames;
// CheckVTFInDirectoryRecursive( pRoot, pDirectory, vtfNames );
_CheckMateralsInDirectoryRecursive( pRoot, pDirectory, vtfNames );
/*
int nCount = vtfNames.Count();
for ( int i = 0; i < nCount; ++i )
{
if ( !vtfNames[i].m_bFoundInVMT )
{
Msg( "Unused VTF %s\n", vtfNames[i].m_VTFName );
}
}
*/
}
#endif // _CHECK_MATERIALS_FOR_PROBLEMS