source-engine/game/client/episodic/c_prop_scalable.cpp
FluorescentCIAAfricanAmerican 3bf9df6b27 1
2020-04-22 12:56:21 -04:00

197 lines
5.5 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================
#include "cbase.h"
class C_PropScalable : public C_BaseAnimating
{
DECLARE_CLASS( C_PropScalable, C_BaseAnimating );
DECLARE_CLIENTCLASS();
DECLARE_DATADESC();
public:
C_PropScalable();
virtual void ApplyBoneMatrixTransform( matrix3x4_t& transform );
virtual void GetRenderBounds( Vector &theMins, Vector &theMaxs );
// Must be available to proxy functions
float m_flScaleX;
float m_flScaleY;
float m_flScaleZ;
float m_flLerpTimeX;
float m_flLerpTimeY;
float m_flLerpTimeZ;
float m_flGoalTimeX;
float m_flGoalTimeY;
float m_flGoalTimeZ;
float m_flCurrentScale[3];
bool m_bRunningScale[3];
float m_flTargetScale[3];
private:
void CalculateScale( void );
float m_nCalcFrame; // Frame the last calculation was made at
};
void RecvProxy_ScaleX( const CRecvProxyData *pData, void *pStruct, void *pOut )
{
C_PropScalable *pCoreData = (C_PropScalable *) pStruct;
pCoreData->m_flScaleX = pData->m_Value.m_Float;
if ( pCoreData->m_bRunningScale[0] == true )
{
pCoreData->m_flTargetScale[0] = pCoreData->m_flCurrentScale[0];
}
}
void RecvProxy_ScaleY( const CRecvProxyData *pData, void *pStruct, void *pOut )
{
C_PropScalable *pCoreData = (C_PropScalable *) pStruct;
pCoreData->m_flScaleY = pData->m_Value.m_Float;
if ( pCoreData->m_bRunningScale[1] == true )
{
pCoreData->m_flTargetScale[1] = pCoreData->m_flCurrentScale[1];
}
}
void RecvProxy_ScaleZ( const CRecvProxyData *pData, void *pStruct, void *pOut )
{
C_PropScalable *pCoreData = (C_PropScalable *) pStruct;
pCoreData->m_flScaleZ = pData->m_Value.m_Float;
if ( pCoreData->m_bRunningScale[2] == true )
{
pCoreData->m_flTargetScale[2] = pCoreData->m_flCurrentScale[2];
}
}
IMPLEMENT_CLIENTCLASS_DT( C_PropScalable, DT_PropScalable, CPropScalable )
RecvPropFloat( RECVINFO( m_flScaleX ), 0, RecvProxy_ScaleX ),
RecvPropFloat( RECVINFO( m_flScaleY ), 0, RecvProxy_ScaleY ),
RecvPropFloat( RECVINFO( m_flScaleZ ), 0, RecvProxy_ScaleZ ),
RecvPropFloat( RECVINFO( m_flLerpTimeX ) ),
RecvPropFloat( RECVINFO( m_flLerpTimeY ) ),
RecvPropFloat( RECVINFO( m_flLerpTimeZ ) ),
RecvPropFloat( RECVINFO( m_flGoalTimeX ) ),
RecvPropFloat( RECVINFO( m_flGoalTimeY ) ),
RecvPropFloat( RECVINFO( m_flGoalTimeZ ) ),
END_RECV_TABLE()
BEGIN_DATADESC( C_PropScalable )
DEFINE_AUTO_ARRAY( m_flTargetScale, FIELD_FLOAT ),
DEFINE_AUTO_ARRAY( m_bRunningScale, FIELD_BOOLEAN ),
END_DATADESC()
C_PropScalable::C_PropScalable( void )
{
m_flTargetScale[0] = 1.0f;
m_flTargetScale[1] = 1.0f;
m_flTargetScale[2] = 1.0f;
m_bRunningScale[0] = false;
m_bRunningScale[1] = false;
m_bRunningScale[2] = false;
m_nCalcFrame = 0;
}
//-----------------------------------------------------------------------------
// Purpose: Calculates the scake of the object once per frame
//-----------------------------------------------------------------------------
void C_PropScalable::CalculateScale( void )
{
// Don't bother to calculate this for a second time in the same frame
if ( m_nCalcFrame == gpGlobals->framecount )
return;
// Mark that we cached this value for the frame
m_nCalcFrame = gpGlobals->framecount;
float flVal[3] = { m_flTargetScale[0], m_flTargetScale[1], m_flTargetScale[2] };
float *flTargetScale[3] = { &m_flTargetScale[0], &m_flTargetScale[1], &m_flTargetScale[2] };
float flScale[3] = { m_flScaleX, m_flScaleY, m_flScaleZ };
float flLerpTime[3] = { m_flLerpTimeX, m_flLerpTimeY, m_flLerpTimeZ };
float flGoalTime[3] = { m_flGoalTimeX, m_flGoalTimeY, m_flGoalTimeZ };
bool *bRunning[3] = { &m_bRunningScale[0], &m_bRunningScale[1], &m_bRunningScale[2] };
for ( int i = 0; i < 3; i++ )
{
if ( *flTargetScale[i] != flScale[i] )
{
float deltaTime = (float)( gpGlobals->curtime - flGoalTime[i]) / flLerpTime[i];
float flRemapVal = SimpleSplineRemapValClamped( deltaTime, 0.0f, 1.0f, *flTargetScale[i], flScale[i] );
*bRunning[i] = true;
if ( deltaTime >= 1.0f )
{
*flTargetScale[i] = flScale[i];
*bRunning[i] = false;
}
flVal[i] = flRemapVal;
m_flCurrentScale[i] = flVal[i];
}
else
{
m_flCurrentScale[i] = m_flTargetScale[i];
}
}
}
//-----------------------------------------------------------------------------
// Purpose: Scales the bones based on the current scales
//-----------------------------------------------------------------------------
void C_PropScalable::ApplyBoneMatrixTransform( matrix3x4_t& transform )
{
BaseClass::ApplyBoneMatrixTransform( transform );
// Find the scale for this frame
CalculateScale();
VectorScale( transform[0], m_flCurrentScale[0], transform[0] );
VectorScale( transform[1], m_flCurrentScale[1], transform[1] );
VectorScale( transform[2], m_flCurrentScale[2], transform[2] );
UpdateVisibility();
}
//-----------------------------------------------------------------------------
// Purpose: Ensures the render bounds match the scales
//-----------------------------------------------------------------------------
void C_PropScalable::GetRenderBounds( Vector &theMins, Vector &theMaxs )
{
BaseClass::GetRenderBounds( theMins, theMaxs );
// Find the scale for this frame
CalculateScale();
// Extend our render bounds to encompass the scaled object
theMins.x *= m_flCurrentScale[0];
theMins.y *= m_flCurrentScale[1];
theMins.z *= m_flCurrentScale[2];
theMaxs.x *= m_flCurrentScale[0];
theMaxs.y *= m_flCurrentScale[1];
theMaxs.z *= m_flCurrentScale[2];
Assert( theMins.IsValid() && theMaxs.IsValid() );
}