source-engine/bitmap/colorconversion.cpp

2374 lines
65 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================//
#ifdef IS_WINDOWS_PC
#include <windows.h>
#endif
#include "bitmap/imageformat.h"
#include "basetypes.h"
#include "tier0/dbg.h"
#include <memory.h>
#include "mathlib/mathlib.h"
#include "mathlib/vector.h"
#include "tier1/utlmemory.h"
#include "tier1/strtools.h"
#include "mathlib/compressed_vector.h"
#include "nvtc.h"
#ifdef POSIX
typedef int32 *DWORD_PTR;
#endif
#include "ATI_Compress.h"
#include "bitmap/float_bm.h"
#define STB_DXT_IMPLEMENTATION
#include "stb_dxt.h"
// Should be last include
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
// Various important function types for each color format
//-----------------------------------------------------------------------------
typedef void (*UserFormatToRGBA8888Func_t )( const uint8 *src, uint8 *dst, int numPixels );
typedef void (*RGBA8888ToUserFormatFunc_t )( const uint8 *src, uint8 *dst, int numPixels );
namespace ImageLoader
{
// Color Conversion functions
static void RGBA8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToABGR8888( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToRGB888( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToBGR888( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToRGB565( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToI8( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToIA88( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToP8( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToA8( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToRGB888_BLUESCREEN( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToBGR888_BLUESCREEN( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToARGB8888( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToBGRA8888( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToBGRX8888( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToBGR565( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToBGRX5551( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToBGRA5551( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToBGRA4444( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToUV88( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToUVWQ8888( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA8888ToUVLX8888( const uint8 *src, uint8 *dst, int numPixels );
//static void RGBA8888ToRGBA16161616F( const uint8 *src, uint8 *dst, int numPixels );
static void ABGR8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void RGB888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void BGR888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void RGB565ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void I8ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void IA88ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void P8ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void A8ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void RGB888_BLUESCREENToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void BGR888_BLUESCREENToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void ARGB8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void BGRA8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void BGRX8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void BGR565ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void BGRX5551ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void BGRA5551ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void BGRA4444ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void UV88ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void UVWQ8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void UVLX8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static void RGBA16161616ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
//static void RGBA16161616FToRGBA8888( const uint8 *src, uint8 *dst, int numPixels );
static UserFormatToRGBA8888Func_t GetUserFormatToRGBA8888Func_t( ImageFormat srcImageFormat )
{
switch( srcImageFormat )
{
case IMAGE_FORMAT_RGBA8888:
return RGBA8888ToRGBA8888;
case IMAGE_FORMAT_ABGR8888:
return ABGR8888ToRGBA8888;
case IMAGE_FORMAT_RGB888:
return RGB888ToRGBA8888;
case IMAGE_FORMAT_BGR888:
return BGR888ToRGBA8888;
case IMAGE_FORMAT_RGB565:
return NULL;
case IMAGE_FORMAT_I8:
return I8ToRGBA8888;
case IMAGE_FORMAT_IA88:
return IA88ToRGBA8888;
case IMAGE_FORMAT_A8:
return A8ToRGBA8888;
case IMAGE_FORMAT_RGB888_BLUESCREEN:
return RGB888_BLUESCREENToRGBA8888;
case IMAGE_FORMAT_BGR888_BLUESCREEN:
return BGR888_BLUESCREENToRGBA8888;
case IMAGE_FORMAT_ARGB8888:
return ARGB8888ToRGBA8888;
case IMAGE_FORMAT_BGRA8888:
return BGRA8888ToRGBA8888;
case IMAGE_FORMAT_BGRX8888:
return BGRX8888ToRGBA8888;
case IMAGE_FORMAT_BGR565:
return BGR565ToRGBA8888;
case IMAGE_FORMAT_BGRX5551:
return BGRX5551ToRGBA8888;
case IMAGE_FORMAT_BGRA5551:
return BGRA5551ToRGBA8888;
case IMAGE_FORMAT_BGRA4444:
return BGRA4444ToRGBA8888;
case IMAGE_FORMAT_UV88:
return UV88ToRGBA8888;
case IMAGE_FORMAT_UVWQ8888:
return UVWQ8888ToRGBA8888;
case IMAGE_FORMAT_UVLX8888:
return UVLX8888ToRGBA8888;
case IMAGE_FORMAT_RGBA16161616:
return RGBA16161616ToRGBA8888;
case IMAGE_FORMAT_RGBA16161616F:
return NULL;
#if defined( _X360 )
case IMAGE_FORMAT_LINEAR_RGBA8888:
return RGBA8888ToRGBA8888;
case IMAGE_FORMAT_LINEAR_ABGR8888:
return ABGR8888ToRGBA8888;
case IMAGE_FORMAT_LINEAR_RGB888:
return RGB888ToRGBA8888;
case IMAGE_FORMAT_LINEAR_BGR888:
return BGR888ToRGBA8888;
case IMAGE_FORMAT_LINEAR_I8:
return I8ToRGBA8888;
case IMAGE_FORMAT_LINEAR_ARGB8888:
return ARGB8888ToRGBA8888;
case IMAGE_FORMAT_LINEAR_BGRA8888:
return BGRA8888ToRGBA8888;
case IMAGE_FORMAT_LINEAR_BGRX8888:
return BGRX8888ToRGBA8888;
case IMAGE_FORMAT_LINEAR_BGRX5551:
return BGRX5551ToRGBA8888;
case IMAGE_FORMAT_LINEAR_RGBA16161616:
return RGBA16161616ToRGBA8888;
#endif
default:
return NULL;
}
}
static RGBA8888ToUserFormatFunc_t GetRGBA8888ToUserFormatFunc_t( ImageFormat dstImageFormat )
{
switch( dstImageFormat )
{
case IMAGE_FORMAT_RGBA8888:
return RGBA8888ToRGBA8888;
case IMAGE_FORMAT_ABGR8888:
return RGBA8888ToABGR8888;
case IMAGE_FORMAT_RGB888:
return RGBA8888ToRGB888;
case IMAGE_FORMAT_BGR888:
return RGBA8888ToBGR888;
case IMAGE_FORMAT_RGB565:
return NULL;
case IMAGE_FORMAT_I8:
return RGBA8888ToI8;
case IMAGE_FORMAT_IA88:
return RGBA8888ToIA88;
case IMAGE_FORMAT_A8:
return RGBA8888ToA8;
case IMAGE_FORMAT_RGB888_BLUESCREEN:
return RGBA8888ToRGB888_BLUESCREEN;
case IMAGE_FORMAT_BGR888_BLUESCREEN:
return RGBA8888ToBGR888_BLUESCREEN;
case IMAGE_FORMAT_ARGB8888:
return RGBA8888ToARGB8888;
case IMAGE_FORMAT_BGRA8888:
return RGBA8888ToBGRA8888;
case IMAGE_FORMAT_BGRX8888:
return RGBA8888ToBGRX8888;
case IMAGE_FORMAT_BGR565:
return RGBA8888ToBGR565;
case IMAGE_FORMAT_BGRX5551:
return RGBA8888ToBGRX5551;
case IMAGE_FORMAT_BGRA5551:
return RGBA8888ToBGRA5551;
case IMAGE_FORMAT_BGRA4444:
return RGBA8888ToBGRA4444;
case IMAGE_FORMAT_UV88:
return RGBA8888ToUV88;
case IMAGE_FORMAT_UVWQ8888:
return RGBA8888ToUVWQ8888;
case IMAGE_FORMAT_UVLX8888:
return RGBA8888ToUVLX8888;
case IMAGE_FORMAT_RGBA16161616F:
return NULL;
#if defined( _X360 )
case IMAGE_FORMAT_LINEAR_RGBA8888:
return RGBA8888ToRGBA8888;
case IMAGE_FORMAT_LINEAR_ABGR8888:
return RGBA8888ToABGR8888;
case IMAGE_FORMAT_LINEAR_RGB888:
return RGBA8888ToRGB888;
case IMAGE_FORMAT_LINEAR_BGR888:
return RGBA8888ToBGR888;
case IMAGE_FORMAT_LINEAR_I8:
return RGBA8888ToI8;
case IMAGE_FORMAT_LINEAR_ARGB8888:
return RGBA8888ToARGB8888;
case IMAGE_FORMAT_LINEAR_BGRA8888:
return RGBA8888ToBGRA8888;
case IMAGE_FORMAT_LINEAR_BGRX8888:
return RGBA8888ToBGRX8888;
case IMAGE_FORMAT_LINEAR_BGRX5551:
return RGBA8888ToBGRX5551;
#endif
default:
return NULL;
}
}
#pragma pack(1)
struct DXTColBlock
{
WORD col0;
WORD col1;
// no bit fields - use bytes
BYTE row[4];
};
struct DXTAlphaBlock3BitLinear
{
BYTE alpha0;
BYTE alpha1;
BYTE stuff[6];
};
#pragma pack()
static inline void GetColorBlockColorsBGRA8888( DXTColBlock *pBlock, BGRA8888_t *col_0,
BGRA8888_t *col_1, BGRA8888_t *col_2,
BGRA8888_t *col_3, WORD & wrd )
{
// input data is assumed to be x86 order
// swap to target platform for proper dxt decoding
WORD color0 = LittleShort( pBlock->col0 );
WORD color1 = LittleShort( pBlock->col1 );
// convert to full precision correctly.
// If this was a perf problem, we could optimize it. But this isn't used in any hotpaths
// (now) so let's just do the correct but slow fp math.
col_0->a = 0xff;
col_0->r = ( uint8 ) round( ( ( BGR565_t* ) &color0 )->r * 255.0f / 31.0f );
col_0->g = ( uint8 ) round( ( ( BGR565_t* ) &color0 )->g * 255.0f / 63.0f );
col_0->b = ( uint8 ) round( ( ( BGR565_t* ) &color0 )->b * 255.0f / 31.0f );
col_1->a = 0xff;
col_1->r = ( uint8 ) round( ( ( BGR565_t* ) &color1 )->r * 255.0f / 31.0f );
col_1->g = ( uint8 ) round( ( ( BGR565_t* ) &color1 )->g * 255.0f / 63.0f );
col_1->b = ( uint8 ) round( ( ( BGR565_t* ) &color1 )->b * 255.0f / 31.0f );
if ( color0 > color1 )
{
// Four-color block: derive the other two colors.
// 00 = color_0, 01 = color_1, 10 = color_2, 11 = color_3
// These two bit codes correspond to the 2-bit fields
// stored in the 64-bit block.
wrd = ((WORD)col_0->r * 2 + (WORD)col_1->r )/3;
// no +1 for rounding
// as bits have been shifted to 888
col_2->r = (BYTE)wrd;
wrd = ((WORD)col_0->g * 2 + (WORD)col_1->g )/3;
col_2->g = (BYTE)wrd;
wrd = ((WORD)col_0->b * 2 + (WORD)col_1->b )/3;
col_2->b = (BYTE)wrd;
col_2->a = 0xff;
wrd = ((WORD)col_0->r + (WORD)col_1->r *2 )/3;
col_3->r = (BYTE)wrd;
wrd = ((WORD)col_0->g + (WORD)col_1->g *2 )/3;
col_3->g = (BYTE)wrd;
wrd = ((WORD)col_0->b + (WORD)col_1->b *2 )/3;
col_3->b = (BYTE)wrd;
col_3->a = 0xff;
}
else
{
// Three-color block: derive the other color.
// 00 = color_0, 01 = color_1, 10 = color_2,
// 11 = transparent.
// These two bit codes correspond to the 2-bit fields
// stored in the 64-bit block.
// explicit for each component, unlike some refrasts...????
wrd = ((WORD)col_0->r + (WORD)col_1->r )/2;
col_2->r = (BYTE)wrd;
wrd = ((WORD)col_0->g + (WORD)col_1->g )/2;
col_2->g = (BYTE)wrd;
wrd = ((WORD)col_0->b + (WORD)col_1->b )/2;
col_2->b = (BYTE)wrd;
col_2->a = 0xff;
col_3->r = 0x00; // random color to indicate alpha
col_3->g = 0xff;
col_3->b = 0xff;
col_3->a = 0x00;
}
}
template <class CDestPixel>
static inline void DecodeColorBlock( CDestPixel *pOutputImage, DXTColBlock *pColorBlock, int width,
BGRA8888_t *col_0, BGRA8888_t *col_1,
BGRA8888_t *col_2, BGRA8888_t *col_3 )
{
// width is width of image in pixels
DWORD bits;
int r,n;
// bit masks = 00000011, 00001100, 00110000, 11000000
const DWORD masks[] = { 3 << 0, 3 << 2, 3 << 4, 3 << 6 };
const int shift[] = { 0, 2, 4, 6 };
// r steps through lines in y
for ( r=0; r < 4; r++, pOutputImage += width-4 ) // no width*4 as DWORD ptr inc will *4
{
// width * 4 bytes per pixel per line
// each j dxtc row is 4 lines of pixels
// n steps through pixels
for ( n=0; n < 4; n++ )
{
bits = pColorBlock->row[r] & masks[n];
bits >>= shift[n];
switch( bits )
{
case 0:
*pOutputImage = *col_0;
pOutputImage++; // increment to next output pixel
break;
case 1:
*pOutputImage = *col_1;
pOutputImage++;
break;
case 2:
*pOutputImage = *col_2;
pOutputImage++;
break;
case 3:
*pOutputImage = *col_3;
pOutputImage++;
break;
default:
Assert( 0 );
pOutputImage++;
break;
}
}
}
}
template <class CDestPixel>
static inline void DecodeAlpha3BitLinear( CDestPixel *pImPos, DXTAlphaBlock3BitLinear *pAlphaBlock, int width, int nChannelSelect = 3 )
{
static BYTE gBits[4][4];
static WORD gAlphas[8];
static BGRA8888_t gACol[4][4];
gAlphas[0] = pAlphaBlock->alpha0;
gAlphas[1] = pAlphaBlock->alpha1;
// 8-alpha or 6-alpha block?
if( gAlphas[0] > gAlphas[1] )
{
// 8-alpha block: derive the other 6 alphas.
// 000 = alpha_0, 001 = alpha_1, others are interpolated
gAlphas[2] = ( 6 * gAlphas[0] + gAlphas[1]) / 7; // bit code 010
gAlphas[3] = ( 5 * gAlphas[0] + 2 * gAlphas[1]) / 7; // Bit code 011
gAlphas[4] = ( 4 * gAlphas[0] + 3 * gAlphas[1]) / 7; // Bit code 100
gAlphas[5] = ( 3 * gAlphas[0] + 4 * gAlphas[1]) / 7; // Bit code 101
gAlphas[6] = ( 2 * gAlphas[0] + 5 * gAlphas[1]) / 7; // Bit code 110
gAlphas[7] = ( gAlphas[0] + 6 * gAlphas[1]) / 7; // Bit code 111
}
else
{
// 6-alpha block: derive the other alphas.
// 000 = alpha_0, 001 = alpha_1, others are interpolated
gAlphas[2] = (4 * gAlphas[0] + gAlphas[1]) / 5; // Bit code 010
gAlphas[3] = (3 * gAlphas[0] + 2 * gAlphas[1]) / 5; // Bit code 011
gAlphas[4] = (2 * gAlphas[0] + 3 * gAlphas[1]) / 5; // Bit code 100
gAlphas[5] = ( gAlphas[0] + 4 * gAlphas[1]) / 5; // Bit code 101
gAlphas[6] = 0; // Bit code 110
gAlphas[7] = 255; // Bit code 111
}
// Decode 3-bit fields into array of 16 BYTES with same value
// first two rows of 4 pixels each:
// pRows = (Alpha3BitRows*) & ( pAlphaBlock->stuff[0] );
const DWORD mask = 0x00000007; // bits = 00 00 01 11
DWORD bits;
memcpy( &bits, &(pAlphaBlock->stuff[0]), sizeof(DWORD) );
gBits[0][0] = (BYTE)( bits & mask );
bits >>= 3;
gBits[0][1] = (BYTE)( bits & mask );
bits >>= 3;
gBits[0][2] = (BYTE)( bits & mask );
bits >>= 3;
gBits[0][3] = (BYTE)( bits & mask );
bits >>= 3;
gBits[1][0] = (BYTE)( bits & mask );
bits >>= 3;
gBits[1][1] = (BYTE)( bits & mask );
bits >>= 3;
gBits[1][2] = (BYTE)( bits & mask );
bits >>= 3;
gBits[1][3] = (BYTE)( bits & mask );
// now for last two rows:
memcpy( &bits, &(pAlphaBlock->stuff[3]), sizeof(DWORD) );
gBits[2][0] = (BYTE)( bits & mask );
bits >>= 3;
gBits[2][1] = (BYTE)( bits & mask );
bits >>= 3;
gBits[2][2] = (BYTE)( bits & mask );
bits >>= 3;
gBits[2][3] = (BYTE)( bits & mask );
bits >>= 3;
gBits[3][0] = (BYTE)( bits & mask );
bits >>= 3;
gBits[3][1] = (BYTE)( bits & mask );
bits >>= 3;
gBits[3][2] = (BYTE)( bits & mask );
bits >>= 3;
gBits[3][3] = (BYTE)( bits & mask );
// decode the codes into alpha values
int row, pix;
for ( row = 0; row < 4; row++ )
{
for ( pix=0; pix < 4; pix++ )
{
gACol[row][pix].a = (BYTE) gAlphas[ gBits[row][pix] ];
Assert( gACol[row][pix].r == 0 );
Assert( gACol[row][pix].g == 0 );
Assert( gACol[row][pix].b == 0 );
}
}
// Write out alpha values to the image bits
for ( row=0; row < 4; row++, pImPos += width-4 )
{
for ( pix = 0; pix < 4; pix++ )
{
// zero the alpha bits of image pixel
switch ( nChannelSelect )
{
case 0:
pImPos->r = ( *(( BGRA8888_t *) &(gACol[row][pix])) ).a;
pImPos->g = 0; // Danger...stepping on the other color channels
pImPos->b = 0;
pImPos->a = 0;
break;
case 1:
pImPos->g = ( *(( BGRA8888_t *) &(gACol[row][pix])) ).a;
break;
case 2:
pImPos->b = ( *(( BGRA8888_t *) &(gACol[row][pix])) ).a;
break;
default:
case 3:
pImPos->a = ( *(( BGRA8888_t *) &(gACol[row][pix])) ).a;
break;
}
pImPos++;
}
}
}
template <class CDestPixel>
static void ConvertFromDXT1( const uint8 *src, CDestPixel *dst, int width, int height )
{
Assert( sizeof( BGRA8888_t ) == 4 );
Assert( sizeof( RGBA8888_t ) == 4 );
Assert( sizeof( RGB888_t ) == 3 );
Assert( sizeof( BGR888_t ) == 3 );
Assert( sizeof( BGR565_t ) == 2 );
Assert( sizeof( BGRA5551_t ) == 2 );
Assert( sizeof( BGRA4444_t ) == 2 );
int realWidth = 0;
int realHeight = 0;
CDestPixel *realDst = NULL;
// Deal with the case where we have a dimension smaller than 4.
if ( width < 4 || height < 4 )
{
realWidth = width;
realHeight = height;
// round up to the nearest four
width = ( width + 3 ) & ~3;
height = ( height + 3 ) & ~3;
realDst = dst;
dst = ( CDestPixel * )_alloca( width * height * sizeof( CDestPixel ) );
Assert( dst );
}
Assert( !( width % 4 ) );
Assert( !( height % 4 ) );
int xblocks, yblocks;
xblocks = width >> 2;
yblocks = height >> 2;
CDestPixel *pDstScan = dst;
DWORD *pSrcScan = ( DWORD * )src;
DXTColBlock *pBlock;
BGRA8888_t col_0, col_1, col_2, col_3;
WORD wrdDummy;
int i, j;
for ( j = 0; j < yblocks; j++ )
{
// 8 bytes per block
pBlock = ( DXTColBlock * )( ( uint8 * )pSrcScan + j * xblocks * 8 );
for ( i=0; i < xblocks; i++, pBlock++ )
{
GetColorBlockColorsBGRA8888( pBlock, &col_0, &col_1, &col_2, &col_3, wrdDummy );
// now decode the color block into the bitmap bits
// inline func:
pDstScan = dst + i*4 + j*4*width;
DecodeColorBlock<CDestPixel>( pDstScan, pBlock, width, &col_0, &col_1, &col_2, &col_3 );
}
}
// Deal with the case where we have a dimension smaller than 4.
if ( realDst )
{
int x, y;
for ( y = 0; y < realHeight; y++ )
{
for ( x = 0; x < realWidth; x++ )
{
realDst[x+(y*realWidth)] = dst[x+(y*width)];
}
}
}
}
template <class CDestPixel>
static void ConvertFromDXT5( const uint8 *src, CDestPixel *dst, int width, int height )
{
int realWidth = 0;
int realHeight = 0;
CDestPixel *realDst = NULL;
// Deal with the case where we have a dimension smaller than 4.
if ( width < 4 || height < 4 )
{
realWidth = width;
realHeight = height;
// round up to the nearest four
width = ( width + 3 ) & ~3;
height = ( height + 3 ) & ~3;
realDst = dst;
dst = ( CDestPixel * )_alloca( width * height * sizeof( CDestPixel ) );
Assert( dst );
}
Assert( !( width % 4 ) );
Assert( !( height % 4 ) );
int xblocks, yblocks;
xblocks = width >> 2;
yblocks = height >> 2;
CDestPixel *pDstScan = dst;
DWORD *pSrcScan = ( DWORD * )src;
DXTColBlock *pBlock;
DXTAlphaBlock3BitLinear *pAlphaBlock;
BGRA8888_t col_0, col_1, col_2, col_3;
WORD wrd;
int i,j;
for ( j=0; j < yblocks; j++ )
{
// 8 bytes per block
// 1 block for alpha, 1 block for color
pBlock = (DXTColBlock*) ( (uint8 *)pSrcScan + j * xblocks * 16 );
for ( i=0; i < xblocks; i++, pBlock ++ )
{
// inline
// Get alpha block
pAlphaBlock = (DXTAlphaBlock3BitLinear*) pBlock;
// inline func:
// Get color block & colors
pBlock++;
GetColorBlockColorsBGRA8888( pBlock, &col_0, &col_1, &col_2, &col_3, wrd );
pDstScan = dst + i*4 + j*4*width;
// Decode the color block into the bitmap bits
// inline func:
DecodeColorBlock<CDestPixel>( pDstScan, pBlock, width, &col_0, &col_1, &col_2, &col_3 );
// Overwrite the previous alpha bits with the alpha block
// info
DecodeAlpha3BitLinear( pDstScan, pAlphaBlock, width );
}
}
// Deal with the case where we have a dimension smaller than 4.
if ( realDst )
{
int x, y;
for( y = 0; y < realHeight; y++ )
{
for( x = 0; x < realWidth; x++ )
{
realDst[x+(y*realWidth)] = dst[x+(y*width)];
}
}
}
}
template <class CDestPixel>
static void ConvertFromDXT5IgnoreAlpha( const uint8 *src, CDestPixel *dst, int width, int height )
{
int realWidth = 0;
int realHeight = 0;
CDestPixel *realDst = NULL;
// Deal with the case where we have a dimension smaller than 4.
if ( width < 4 || height < 4 )
{
realWidth = width;
realHeight = height;
// round up to the nearest four
width = ( width + 3 ) & ~3;
height = ( height + 3 ) & ~3;
realDst = dst;
dst = ( CDestPixel * )_alloca( width * height * sizeof( CDestPixel ) );
Assert( dst );
}
Assert( !( width % 4 ) );
Assert( !( height % 4 ) );
int xblocks, yblocks;
xblocks = width >> 2;
yblocks = height >> 2;
CDestPixel *pDstScan = dst;
DWORD *pSrcScan = ( DWORD * )src;
DXTColBlock *pBlock;
BGRA8888_t col_0, col_1, col_2, col_3;
WORD wrd;
int i,j;
for ( j=0; j < yblocks; j++ )
{
// 8 bytes per block
// 1 block for alpha, 1 block for color
pBlock = (DXTColBlock*) ( (uint8 *)pSrcScan + j * xblocks * 16 );
for( i=0; i < xblocks; i++, pBlock ++ )
{
// inline func:
// Get color block & colors
pBlock++;
GetColorBlockColorsBGRA8888( pBlock, &col_0, &col_1, &col_2, &col_3, wrd );
pDstScan = dst + i*4 + j*4*width;
// Decode the color block into the bitmap bits
// inline func:
DecodeColorBlock<CDestPixel>( pDstScan, pBlock, width, &col_0, &col_1, &col_2, &col_3 );
}
}
// Deal with the case where we have a dimension smaller than 4.
if( realDst )
{
int x, y;
for( y = 0; y < realHeight; y++ )
{
for( x = 0; x < realWidth; x++ )
{
realDst[x+(y*realWidth)] = dst[x+(y*width)];
}
}
}
}
template <class CDestPixel>
static void ConvertFromATIxN( const uint8 *src, CDestPixel *dst, int width, int height, bool bATI2N )
{
int realWidth = 0;
int realHeight = 0;
CDestPixel *realDst = NULL;
// Deal with the case where we have a dimension smaller than 4.
if ( width < 4 || height < 4 )
{
realWidth = width;
realHeight = height;
// round up to the nearest four
width = ( width + 3 ) & ~3;
height = ( height + 3 ) & ~3;
realDst = dst;
dst = ( CDestPixel * )_alloca( width * height * sizeof( CDestPixel ) );
Assert( dst );
}
Assert( !( width % 4 ) );
Assert( !( height % 4 ) );
int xblocks, yblocks;
xblocks = width >> 2;
yblocks = height >> 2;
CDestPixel *pDstScan = dst;
DWORD *pSrcScan = ( DWORD * )src;
DXTAlphaBlock3BitLinear *pBlock;
int nBytesPerBlock = bATI2N ? 16 : 8;
int i,j;
for ( j=0; j < yblocks; j++ )
{
// 8 bytes per block
// 1 block for x, 1 block for y
pBlock = (DXTAlphaBlock3BitLinear*) ( (uint8 *)pSrcScan + j * xblocks * nBytesPerBlock );
for ( i=0; i < xblocks; i++, pBlock++ )
{
pDstScan = dst + i*4 + j*4*width;
DecodeAlpha3BitLinear( pDstScan, pBlock, width, 0 );
if ( bATI2N )
{
pBlock++;
DecodeAlpha3BitLinear( pDstScan, pBlock, width, 1 );
}
}
}
// Deal with the case where we have a dimension smaller than 4.
if ( realDst )
{
int x, y;
for( y = 0; y < realHeight; y++ )
{
for( x = 0; x < realWidth; x++ )
{
realDst[x+(y*realWidth)] = dst[x+(y*width)];
}
}
}
}
static DWORD GetDXTCEncodeType( ImageFormat imageFormat )
{
switch ( imageFormat )
{
case IMAGE_FORMAT_DXT1:
return S3TC_ENCODE_RGB_FULL;
case IMAGE_FORMAT_DXT1_ONEBITALPHA:
return S3TC_ENCODE_RGB_FULL | S3TC_ENCODE_RGB_ALPHA_COMPARE;
case IMAGE_FORMAT_DXT3:
return S3TC_ENCODE_RGB_FULL | S3TC_ENCODE_ALPHA_EXPLICIT;
case IMAGE_FORMAT_DXT5:
return S3TC_ENCODE_RGB_FULL | S3TC_ENCODE_ALPHA_INTERPOLATED;
default:
return 0;
}
}
// Convert RGBA input to ATI1N or ATI2N format
bool ConvertToATIxN( const uint8 *src, ImageFormat srcImageFormat,
uint8 *dst, ImageFormat dstImageFormat,
int width, int height, int srcStride, int dstStride )
{
#if 0
// from rgb(a) to ATIxN
if( srcStride != 0 || dstStride != 0 )
return false;
// If we're not the right format for the ATI compressor, we bail
if ( srcImageFormat != IMAGE_FORMAT_ARGB8888 )
return false;
// Define source image parameters and copy the bits into buffer
ATI_TC_Texture srcTexture;
srcTexture.dwSize = sizeof( srcTexture );
srcTexture.dwWidth = width;
srcTexture.dwHeight = height;
srcTexture.dwPitch = srcStride;
srcTexture.format = ATI_TC_FORMAT_ARGB_8888;
srcTexture.dwDataSize = ATI_TC_CalculateBufferSize( &srcTexture );
srcTexture.pData = (ATI_TC_BYTE*) malloc( srcTexture.dwDataSize );
memcpy( srcTexture.pData, src, srcTexture.dwDataSize );
ATI_TC_Texture destTexture;
destTexture.dwSize = sizeof( destTexture );
destTexture.dwWidth = width;
destTexture.dwHeight = height;
destTexture.dwPitch = 0;
destTexture.format = dstImageFormat == IMAGE_FORMAT_ATI2N ? ATI_TC_FORMAT_ATI2N : ATI_TC_FORMAT_ATI1N; // Assume it can only be one of these two...
destTexture.dwDataSize = ATI_TC_CalculateBufferSize( &destTexture );
destTexture.pData = (ATI_TC_BYTE*) dst;
ATI_TC_ERROR errATI = ATI_TC_ConvertTexture( &srcTexture, &destTexture, NULL, NULL, NULL, NULL ); // Convert it!
free( srcTexture.pData ); // Free temporary buffers
if ( errATI != ATI_TC_OK )
return false;
return true;
#else
Assert( 0 );
return false;
#endif
}
bool ConvertToDXTLegacy( const uint8 *src, ImageFormat srcImageFormat,
uint8 *dst, ImageFormat dstImageFormat,
int width, int height, int srcStride, int dstStride )
{
#if 0
// from rgb(a) to dxtN
if( srcStride != 0 || dstStride != 0 )
return false;
DDSURFACEDESC descIn;
DDSURFACEDESC descOut;
memset( &descIn, 0, sizeof(descIn) );
memset( &descOut, 0, sizeof(descOut) );
float weight[3] = {0.3086f, 0.6094f, 0.0820f};
DWORD dwEncodeType = GetDXTCEncodeType( dstImageFormat );
// Setup descIn
descIn.dwSize = sizeof(descIn);
descIn.dwFlags = DDSD_WIDTH | DDSD_HEIGHT | DDSD_LPSURFACE |
/*DDSD_PITCH | */ DDSD_PIXELFORMAT;
descIn.dwWidth = width;
descIn.dwHeight = height;
descIn.lPitch = width * ImageLoader::SizeInBytes( srcImageFormat );
descIn.lpSurface = ( LPVOID *) src;
descIn.ddpfPixelFormat.dwSize = sizeof( DDPIXELFORMAT );
switch ( srcImageFormat )
{
case IMAGE_FORMAT_RGBA8888:
descIn.ddpfPixelFormat.dwFlags = DDPF_RGB | DDPF_ALPHAPIXELS;
descIn.ddpfPixelFormat.dwRGBBitCount = 32;
descIn.ddpfPixelFormat.dwRBitMask = 0x0000ff;
descIn.ddpfPixelFormat.dwGBitMask = 0x00ff00;
descIn.ddpfPixelFormat.dwBBitMask = 0xff0000;
// must set this anyway or S3TC will lock up!!!
descIn.ddpfPixelFormat.dwRGBAlphaBitMask = 0xff000000;
break;
case IMAGE_FORMAT_BGRA8888:
descIn.ddpfPixelFormat.dwFlags = DDPF_RGB | DDPF_ALPHAPIXELS;
descIn.ddpfPixelFormat.dwRGBBitCount = 32;
descIn.ddpfPixelFormat.dwRBitMask = 0xFF0000;
descIn.ddpfPixelFormat.dwGBitMask = 0x00ff00;
descIn.ddpfPixelFormat.dwBBitMask = 0x0000FF;
// must set this anyway or S3TC will lock up!!!
descIn.ddpfPixelFormat.dwRGBAlphaBitMask = 0xff000000;
break;
case IMAGE_FORMAT_BGRX8888:
descIn.ddpfPixelFormat.dwFlags = DDPF_RGB;
descIn.ddpfPixelFormat.dwRGBBitCount = 32;
descIn.ddpfPixelFormat.dwRBitMask = 0xFF0000;
descIn.ddpfPixelFormat.dwGBitMask = 0x00ff00;
descIn.ddpfPixelFormat.dwBBitMask = 0x0000FF;
// must set this anyway or S3TC will lock up!!!
descIn.ddpfPixelFormat.dwRGBAlphaBitMask = 0xff000000;
break;
case IMAGE_FORMAT_RGB888:
descIn.ddpfPixelFormat.dwFlags = DDPF_RGB;
descIn.ddpfPixelFormat.dwRGBBitCount = 24;
descIn.ddpfPixelFormat.dwRBitMask = 0x0000ff;
descIn.ddpfPixelFormat.dwGBitMask = 0x00ff00;
descIn.ddpfPixelFormat.dwBBitMask = 0xff0000;
descIn.ddpfPixelFormat.dwRGBAlphaBitMask = 0xff000000;
break;
default:
return false;
}
// Setup descOut
descOut.dwSize = sizeof( descOut );
// Encode the texture
S3TCencode( &descIn, NULL, &descOut, dst, dwEncodeType, weight );
return true;
#else
Assert( 0 );
return false;
#endif
}
template < typename SrcPixel_t >
void CompressSTB( uint8 *pDstBytes, ImageFormat dstFmt, const uint8 *pSrcBytes, int nWidth, int nHeight )
{
const bool cbWriteAlpha = ( dstFmt == IMAGE_FORMAT_DXT5 );
const uint32 cDstStride = ( dstFmt == IMAGE_FORMAT_DXT1 ) ? 8 : 16;
const uint32 cPixX = (uint32) nWidth;
const uint32 cPixY = (uint32) nHeight;
const uint32 cSrcPitch = cPixX * sizeof( SrcPixel_t );
const uint32 cLastX = cPixX - 1;
const uint32 cLastY = cPixY - 1;
// STB always takes blocks as 4x4 of RGBA8888_t
RGBA8888_t srcBlock[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
SrcPixel_t* pSrcs[4] = { 0, 0, 0, 0 };
for ( uint32 y = 0; y < cPixY; y += 4 )
{
// This handles clamping for cPixY % 4 != 0
pSrcs[ 0 ] = ( SrcPixel_t* ) ( pSrcBytes + cSrcPitch * Min( y + 0, cLastY ) );
pSrcs[ 1 ] = ( SrcPixel_t* ) ( pSrcBytes + cSrcPitch * Min( y + 1, cLastY ) );
pSrcs[ 2 ] = ( SrcPixel_t* ) ( pSrcBytes + cSrcPitch * Min( y + 2, cLastY ) );
pSrcs[ 3 ] = ( SrcPixel_t* ) ( pSrcBytes + cSrcPitch * Min( y + 3, cLastY ) );
for ( uint x = 0; x < cPixX; x += 4 )
{
for ( uint i = 0; i < 4; ++i )
{
uint32 offsetX = Min( x + i, cLastX );
srcBlock[ 0 + i ] = pSrcs[ 0 ][ offsetX ];
srcBlock[ 4 + i ] = pSrcs[ 1 ][ offsetX ];
srcBlock[ 8 + i ] = pSrcs[ 2 ][ offsetX ];
srcBlock[ 12 + i ] = pSrcs[ 3 ][ offsetX ];
}
stb_compress_dxt_block( pDstBytes, ( const uint8* ) srcBlock, cbWriteAlpha, STB_DXT_NORMAL );
pDstBytes += cDstStride;
}
}
}
inline ImageFormat GetTrueImageFormat( ImageFormat fmt )
{
switch ( fmt )
{
case IMAGE_FORMAT_DXT1_RUNTIME:
return IMAGE_FORMAT_DXT1;
case IMAGE_FORMAT_DXT5_RUNTIME:
return IMAGE_FORMAT_DXT5;
default: /* expected */
break;
}
return fmt;
}
bool ConvertToDXTRuntime( const uint8 *src, ImageFormat srcImageFormat,
uint8 *dst, ImageFormat dstImageFormat,
int width, int height, int srcStride, int dstStride )
{
if ( srcStride != 0 || dstStride != 0 )
return false;
dstImageFormat = GetTrueImageFormat( dstImageFormat );
switch ( srcImageFormat )
{
case IMAGE_FORMAT_RGBA8888: CompressSTB<RGBA8888_t>( dst, dstImageFormat, src, width, height ); return true;
case IMAGE_FORMAT_RGB888: CompressSTB<RGB888_t> ( dst, dstImageFormat, src, width, height ); return true;
case IMAGE_FORMAT_BGRA8888: CompressSTB<BGRA8888_t>( dst, dstImageFormat, src, width, height ); return true;
case IMAGE_FORMAT_BGRX8888: CompressSTB<BGRX8888_t>( dst, dstImageFormat, src, width, height ); return true;
default:
Assert( !"Unexpected format here, wtf." );
break;
};
return false;
}
bool ConvertToDXT( const uint8 *src, ImageFormat srcImageFormat,
uint8 *dst, ImageFormat dstImageFormat,
int width, int height, int srcStride, int dstStride )
{
// The STB compressor (the new compressor) is faster and higher quality in most cases, and has less error overall
// than the S3TC compressor. So use it by default, unless we're working with a format that STB doesn't support.
bool bUseNewCompressor = dstImageFormat != IMAGE_FORMAT_DXT1_ONEBITALPHA
&& dstImageFormat != IMAGE_FORMAT_DXT3;
// bool bUseNewCompressor = dstImageFormat == IMAGE_FORMAT_DXT1_RUNTIME
// || dstImageFormat == IMAGE_FORMAT_DXT5_RUNTIME;
if ( bUseNewCompressor )
return ConvertToDXTRuntime( src, srcImageFormat, dst, dstImageFormat, width, height, srcStride, dstStride );
return ConvertToDXTLegacy( src, srcImageFormat, dst, dstImageFormat, width, height, srcStride, dstStride );
}
// HDRFIXME: This assumes that the 16-bit integer values are 4.12 fixed-point.
void ConvertImageFormat_RGBA16161616_To_RGB323232F( unsigned short *pSrcImage, float *pDstImage, int width, int height )
{
int srcSize = width * height * 4;
unsigned short *pSrcEnd = pSrcImage + srcSize;
unsigned short *pSrcScan = pSrcImage;
float *pDstScan = pDstImage;
for ( ; pSrcScan < pSrcEnd; pSrcScan += 4, pDstScan += 3 )
{
pDstScan[0] = ( ( float )pSrcScan[0] ) * ( 1.0f / ( ( float )( 1 << 12 ) ) );
pDstScan[1] = ( ( float )pSrcScan[1] ) * ( 1.0f / ( ( float )( 1 << 12 ) ) );
pDstScan[2] = ( ( float )pSrcScan[2] ) * ( 1.0f / ( ( float )( 1 << 12 ) ) );
}
}
// HDRFIXME: This assumes that the 16-bit integer values are 4.12 fixed-point.
void ConvertImageFormat_RGB323232F_To_RGBA16161616( float *pSrcImage, unsigned short *pDstImage, int width, int height )
{
int srcSize = width * height * 3;
float *pSrcEnd = pSrcImage + srcSize;
float *pSrcScan = pSrcImage;
unsigned short *pDstScan = pDstImage;
for ( ; pSrcScan < pSrcEnd; pSrcScan += 3, pDstScan += 4 )
{
pDstScan[0] = ( unsigned short )min( 65535.0f, ( pSrcScan[0] * ( ( ( float )( 1 << 12 ) ) ) ) );
pDstScan[1] = ( unsigned short )min( 65535.0f, ( pSrcScan[1] * ( ( ( float )( 1 << 12 ) ) ) ) );
pDstScan[2] = ( unsigned short )min( 65535.0f, ( pSrcScan[2] * ( ( ( float )( 1 << 12 ) ) ) ) );
pDstScan[3] = 65535;
}
}
void ConvertImageFormat_RGBA16161616F_To_RGB323232F( float16 *pSrcImage, float *pDstImage, int width, int height )
{
int srcSize = width * height * 4;
float16 *pSrcEnd = pSrcImage + srcSize;
float16 *pSrcScan = pSrcImage;
float *pDstScan = pDstImage;
for( ; pSrcScan < pSrcEnd; pSrcScan += 4, pDstScan += 3 )
{
pDstScan[0] = pSrcScan[0].GetFloat();
pDstScan[1] = pSrcScan[1].GetFloat();
pDstScan[2] = pSrcScan[2].GetFloat();
}
}
void ConvertImageFormat_RGBA16161616F_To_RGBA323232F( float16 *pSrcImage, float *pDstImage, int width, int height , size_t src_stride)
{
size_t s_stride=src_stride/2;
for(int y=0; y<height; y++)
{
float16 const *pSrcScan=pSrcImage;
float *pDstScan = pDstImage;
for(int x=0; x<width; x++)
{
pDstScan[0] = pSrcScan[0].GetFloat();
pDstScan[1] = pSrcScan[1].GetFloat();
pDstScan[2] = pSrcScan[2].GetFloat();
pDstScan[3] = pSrcScan[3].GetFloat();
pDstScan+=4;
pSrcScan+=4;
}
pSrcImage += s_stride;
pDstImage+=4*width;
}
}
void ConvertImageFormat_RGB323232F_To_RGBA16161616F( float *pSrcImage, float16 *pDstImage, int width, int height )
{
int srcSize = width * height * 3;
float *pSrcEnd = pSrcImage + srcSize;
float *pSrcScan = pSrcImage;
float16 *pDstScan = pDstImage;
for( ; pSrcScan < pSrcEnd; pSrcScan += 3, pDstScan += 4 )
{
pDstScan[0].SetFloat( pSrcScan[0] );
pDstScan[1].SetFloat( pSrcScan[1] );
pDstScan[2].SetFloat( pSrcScan[2] );
}
}
void ConvertImageFormat_RGB323232F_To_RGBA8888( float *pSrcImage, uint8 *dst, int width, int height )
{
FloatBitMap_t flbm;
flbm.AllocateRGB( width, height );
// Set the pixels
for ( int y = 0; y < height; ++ y )
{
for ( int x = 0; x < width; ++ x )
{
float *pf = &pSrcImage[ 3 * ( x + width * y ) ];
PixRGBAF fpix;
fpix.Red = pf[0];
fpix.Green = pf[1];
fpix.Blue = pf[2];
fpix.Alpha = 0.f;
flbm.WritePixelRGBAF( x, y, fpix );
}
}
// memcpy( flbm.RGBAData, pSrcImage, width * height * 4 );
flbm.CompressTo8Bits( 8.0 );
// Now, get the pixels
for ( int y = 0; y < height; ++ y )
{
for ( int x = 0; x < width; ++ x )
{
PixRGBAF fpix = flbm.PixelRGBAF( x, y );
PixRGBA8 pix8 = PixRGBAF_to_8( fpix );
uint8 *pch = &dst[ 4 * ( x + width * y ) ];
pch[0] = pix8.Red;
pch[1] = pix8.Green;
pch[2] = pix8.Blue;
pch[3] = pix8.Alpha;
}
}
}
void ConvertImageFormat_RGB323232F_To_BGRA8888( float *pSrcImage, uint8 *dst, int width, int height )
{
FloatBitMap_t flbm;
flbm.AllocateRGB( width, height );
// Set the pixels
for ( int y = 0; y < height; ++ y )
{
for ( int x = 0; x < width; ++ x )
{
float *pf = &pSrcImage[ 3 * ( x + width * y ) ];
PixRGBAF fpix;
fpix.Red = pf[0];
fpix.Green = pf[1];
fpix.Blue = pf[2];
fpix.Alpha = 0.f;
flbm.WritePixelRGBAF( x, y, fpix );
}
}
// memcpy( flbm.RGBAData, pSrcImage, width * height * 4 );
flbm.CompressTo8Bits( 8.0 );
// Now, get the pixels
for ( int y = 0; y < height; ++ y )
{
for ( int x = 0; x < width; ++ x )
{
PixRGBAF fpix = flbm.PixelRGBAF( x, y );
PixRGBA8 pix8 = PixRGBAF_to_8( fpix );
uint8 *pch = &dst[ 4 * ( x + width * y ) ];
pch[0] = pix8.Blue;
pch[1] = pix8.Green;
pch[2] = pix8.Red;
pch[3] = pix8.Alpha;
}
}
}
// HDRFIXME: This assumes that the 16-bit integer values are 4.12 fixed-point.
void ConvertImageFormat_RGBA16161616_To_RGBA16161616F( unsigned short *pSrcImage, float *pDstImage, int width, int height )
{
int srcSize = width * height * 4;
unsigned short *pSrcEnd = pSrcImage + srcSize;
unsigned short *pSrcScan = pSrcImage;
float16 *pDstScan = ( float16 * )pDstImage;
for( ; pSrcScan < pSrcEnd; pSrcScan += 4, pDstScan += 4 )
{
pDstScan[0].SetFloat( pSrcScan[0] * ( 1.0f / ( float )( 1 << 16 ) ) );
pDstScan[1].SetFloat( pSrcScan[1] * ( 1.0f / ( float )( 1 << 16 ) ) );
pDstScan[2].SetFloat( pSrcScan[2] * ( 1.0f / ( float )( 1 << 16 ) ) );
pDstScan[3].SetFloat( pSrcScan[3] * ( 1.0f / ( float )( 1 << 16 ) ) );
}
}
void ConvertImageFormat_RGBA16161616F_To_RGBA16161616( float16 *pSrcImage, unsigned short *pDstImage, int width, int height )
{
int srcSize = width * height * 4;
float16 *pSrcEnd = pSrcImage + srcSize;
float16 *pSrcScan = pSrcImage;
unsigned short *pDstScan = pDstImage;
for( ; pSrcScan < pSrcEnd; pSrcScan += 4, pDstScan += 4 )
{
int i;
for( i = 0; i < 4; i++ )
{
float val;
val = pSrcScan[i].GetFloat();
val *= ( float )( 1 << 12 );
val = max( val, 0.f );
val = min( val, 65535.0f );
pDstScan[i] = ( unsigned short )val;
}
}
}
bool ConvertImageFormat( const uint8 *src, ImageFormat srcImageFormat,
uint8 *dst, ImageFormat dstImageFormat,
int width, int height, int srcStride, int dstStride )
{
// HDRFIXME: WE NEED A BIGGER INTERMEDIATE FORMAT!!!!!
if ( srcImageFormat == IMAGE_FORMAT_RGBA16161616 )
{
if ( dstImageFormat == IMAGE_FORMAT_RGB323232F )
{
Assert( srcStride == 0 && dstStride == 0 );
ConvertImageFormat_RGBA16161616_To_RGB323232F( ( unsigned short * )src, ( float * )dst, width, height );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_RGBA16161616F )
{
Assert( srcStride == 0 && dstStride == 0 );
ConvertImageFormat_RGBA16161616_To_RGBA16161616F( ( unsigned short * )src, ( float * )dst, width, height );
return true;
}
}
else if ( srcImageFormat == IMAGE_FORMAT_RGBA16161616F )
{
if ( dstImageFormat == IMAGE_FORMAT_RGB323232F )
{
Assert( srcStride == 0 && dstStride == 0 );
ConvertImageFormat_RGBA16161616F_To_RGB323232F( ( float16 * )src, ( float * )dst, width, height );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_RGBA32323232F )
{
Assert( dstStride == 0 );
ConvertImageFormat_RGBA16161616F_To_RGBA323232F( ( float16 * )src, ( float * )dst, width, height, srcStride );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_RGBA16161616 )
{
Assert( srcStride == 0 && dstStride == 0 );
ConvertImageFormat_RGBA16161616F_To_RGBA16161616( ( float16 * )src, ( unsigned short * )dst, width, height );
return true;
}
}
else if ( srcImageFormat == IMAGE_FORMAT_RGB323232F )
{
if ( dstImageFormat == IMAGE_FORMAT_RGBA16161616 )
{
Assert( srcStride == 0 && dstStride == 0 );
ConvertImageFormat_RGB323232F_To_RGBA16161616( ( float * )src, ( unsigned short * )dst, width, height );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_RGBA16161616F )
{
Assert( srcStride == 0 && dstStride == 0 );
ConvertImageFormat_RGB323232F_To_RGBA16161616F( ( float * )src, ( float16 * )dst, width, height );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_RGBA8888 )
{
Assert( srcStride == 0 );
ConvertImageFormat_RGB323232F_To_RGBA8888( ( float * )src, dst, width, height );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_BGRA8888 )
{
Assert( srcStride == 0 );
ConvertImageFormat_RGB323232F_To_BGRA8888( ( float * )src, dst, width, height );
return true;
}
}
// Fast path for just copying a compressed texture
if ( ( ( dstImageFormat == IMAGE_FORMAT_DXT1 || dstImageFormat == IMAGE_FORMAT_DXT1_RUNTIME ||
dstImageFormat == IMAGE_FORMAT_DXT3 ||
dstImageFormat == IMAGE_FORMAT_DXT5 || dstImageFormat == IMAGE_FORMAT_DXT5_RUNTIME ||
dstImageFormat == IMAGE_FORMAT_ATI1N ||
dstImageFormat == IMAGE_FORMAT_ATI2N ) && ( srcImageFormat == dstImageFormat ) ) ||
( dstImageFormat == IMAGE_FORMAT_DXT5 && srcImageFormat == IMAGE_FORMAT_DXT5_RUNTIME ) ||
( dstImageFormat == IMAGE_FORMAT_DXT1 && srcImageFormat == IMAGE_FORMAT_DXT1_RUNTIME ) ||
( dstImageFormat == IMAGE_FORMAT_DXT5_RUNTIME && srcImageFormat == IMAGE_FORMAT_DXT5 ) ||
( dstImageFormat == IMAGE_FORMAT_DXT1_RUNTIME && srcImageFormat == IMAGE_FORMAT_DXT1 ) )
{
// Fast path for compressed textures . . stride doesn't make as much sense.
// Assert( srcStride == 0 && dstStride == 0 );
int memRequired;
memRequired = GetMemRequired( width, height, 1, srcImageFormat, false );
memcpy( dst, src, memRequired );
return true;
}
else if ( ( srcImageFormat == IMAGE_FORMAT_RGBA8888 ||
srcImageFormat == IMAGE_FORMAT_RGB888 || // RGBA source
srcImageFormat == IMAGE_FORMAT_BGRA8888 || //
srcImageFormat == IMAGE_FORMAT_BGRX8888 ) && // and
( dstImageFormat == IMAGE_FORMAT_DXT1 || //
dstImageFormat == IMAGE_FORMAT_DXT3 || // DXT compressed dest
dstImageFormat == IMAGE_FORMAT_DXT5 ||
dstImageFormat == IMAGE_FORMAT_DXT1_RUNTIME ||
dstImageFormat == IMAGE_FORMAT_DXT5_RUNTIME ) )
{
return ConvertToDXT( src, srcImageFormat, dst, dstImageFormat, width, height, srcStride, dstStride );
}
else if ( ( srcImageFormat == IMAGE_FORMAT_ARGB8888 ) && // RGBA source and
( dstImageFormat == IMAGE_FORMAT_ATI1N || dstImageFormat == IMAGE_FORMAT_ATI2N ) ) // ATI compressed dest
{
return ConvertToATIxN( src, srcImageFormat, dst, dstImageFormat, width, height, srcStride, dstStride );
}
else if ( ( dstImageFormat == IMAGE_FORMAT_RGBA8888 ||
dstImageFormat == IMAGE_FORMAT_BGRX8888 ||
dstImageFormat == IMAGE_FORMAT_BGRA8888 ||
dstImageFormat == IMAGE_FORMAT_BGRA4444 ||
dstImageFormat == IMAGE_FORMAT_BGRA5551 ||
dstImageFormat == IMAGE_FORMAT_BGRX5551 ||
dstImageFormat == IMAGE_FORMAT_BGR565 ||
dstImageFormat == IMAGE_FORMAT_BGR888 ||
dstImageFormat == IMAGE_FORMAT_RGB888 ) &&
( srcImageFormat == IMAGE_FORMAT_DXT1 ||
srcImageFormat == IMAGE_FORMAT_DXT3 ||
srcImageFormat == IMAGE_FORMAT_DXT5 ||
srcImageFormat == IMAGE_FORMAT_ATI1N ||
srcImageFormat == IMAGE_FORMAT_ATI2N ) )
{
// from dxtN to rgb(a)
if ( srcStride != 0 || dstStride != 0 )
{
return false;
}
if ( srcImageFormat == IMAGE_FORMAT_DXT1 )
{
if ( dstImageFormat == IMAGE_FORMAT_RGBA8888 )
{
ConvertFromDXT1( src, ( RGBA8888_t * )dst, width, height );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_BGRA8888 ||
dstImageFormat == IMAGE_FORMAT_BGRX8888 )
{
ConvertFromDXT1( src, ( BGRA8888_t * )dst, width, height );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_RGB888 )
{
ConvertFromDXT1( src, ( RGB888_t * )dst, width, height );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_BGR888 )
{
ConvertFromDXT1( src, ( BGR888_t * )dst, width, height );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_BGR565 )
{
ConvertFromDXT1( src, ( BGR565_t * )dst, width, height );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_BGRA5551 ||
dstImageFormat == IMAGE_FORMAT_BGRX5551 )
{
ConvertFromDXT1( src, ( BGRA5551_t * )dst, width, height );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_BGRA4444 )
{
ConvertFromDXT1( src, ( BGRA4444_t * )dst, width, height );
return true;
}
}
else if ( srcImageFormat == IMAGE_FORMAT_ATI2N )
{
if ( dstImageFormat == IMAGE_FORMAT_BGRA8888 )
{
ConvertFromATIxN( src, ( BGRA8888_t * )dst, width, height, true );
return true;
}
}
else if ( srcImageFormat == IMAGE_FORMAT_ATI1N )
{
if ( dstImageFormat == IMAGE_FORMAT_BGRA8888 )
{
ConvertFromATIxN( src, ( BGRA8888_t * )dst, width, height, false );
return true;
}
}
else if ( srcImageFormat == IMAGE_FORMAT_DXT5 )
{
if ( dstImageFormat == IMAGE_FORMAT_RGBA8888 )
{
ConvertFromDXT5( src, ( RGBA8888_t * )dst, width, height );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_BGRA8888 ||
dstImageFormat == IMAGE_FORMAT_BGRX8888 )
{
ConvertFromDXT5( src, ( BGRA8888_t * )dst, width, height );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_RGB888 )
{
ConvertFromDXT5IgnoreAlpha( src, ( RGB888_t * )dst, width, height );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_BGR888 )
{
ConvertFromDXT5IgnoreAlpha( src, ( BGR888_t * )dst, width, height );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_BGR565 )
{
ConvertFromDXT5IgnoreAlpha( src, ( BGR565_t * )dst, width, height );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_BGRA5551 ||
dstImageFormat == IMAGE_FORMAT_BGRX5551 )
{
ConvertFromDXT5( src, ( BGRA5551_t * )dst, width, height );
return true;
}
if ( dstImageFormat == IMAGE_FORMAT_BGRA4444 )
{
ConvertFromDXT5( src, ( BGRA4444_t * )dst, width, height );
return true;
}
}
return false;
}
else if ( dstImageFormat == IMAGE_FORMAT_DXT1 ||
dstImageFormat == IMAGE_FORMAT_DXT3 ||
dstImageFormat == IMAGE_FORMAT_DXT5 ||
dstImageFormat == IMAGE_FORMAT_ATI1N ||
dstImageFormat == IMAGE_FORMAT_ATI2N ||
srcImageFormat == IMAGE_FORMAT_DXT1 ||
srcImageFormat == IMAGE_FORMAT_DXT3 ||
srcImageFormat == IMAGE_FORMAT_DXT5 ||
srcImageFormat == IMAGE_FORMAT_ATI1N ||
srcImageFormat == IMAGE_FORMAT_ATI2N )
{
// DxtN to DxtN
Assert( IsPC() );
return false;
}
else
{
// uncompressed textures
int line;
int srcPixelSize = SizeInBytes(srcImageFormat);
int dstPixelSize = SizeInBytes(dstImageFormat);
if ( srcStride == 0 )
{
srcStride = srcPixelSize * width;
}
if ( dstStride == 0 )
{
dstStride = dstPixelSize * width;
}
// Fast path...
if( ( srcImageFormat == dstImageFormat ) ||
((srcImageFormat == IMAGE_FORMAT_BGRA8888) && (dstImageFormat == IMAGE_FORMAT_BGRX8888)) )
{
if ( IsX360() && ( srcStride == dstStride ) && ( width*srcPixelSize == srcStride ) )
{
// fastest path
memcpy( dst, src, height*srcStride );
return true;
}
for ( line = 0; line < height; ++line )
{
memcpy( dst, src, width*srcPixelSize );
dst += dstStride;
src += srcStride;
}
return true;
}
// format conversion
uint8 *lineBufRGBA8888 = (uint8 *)_alloca(width*4);
UserFormatToRGBA8888Func_t userFormatToRGBA8888Func;
RGBA8888ToUserFormatFunc_t RGBA8888ToUserFormatFunc;
userFormatToRGBA8888Func = GetUserFormatToRGBA8888Func_t( srcImageFormat );
RGBA8888ToUserFormatFunc = GetRGBA8888ToUserFormatFunc_t( dstImageFormat );
if ( !userFormatToRGBA8888Func || !RGBA8888ToUserFormatFunc )
{
return false;
}
for ( line = 0; line < height; line++ )
{
userFormatToRGBA8888Func( src + line * srcStride, lineBufRGBA8888, width );
RGBA8888ToUserFormatFunc( lineBufRGBA8888, dst + line * dstStride, width );
}
return true;
}
}
//-----------------------------------------------------------------------------
// Color conversion routines
//-----------------------------------------------------------------------------
void ConvertIA88ImageToNormalMapRGBA8888( const uint8 *src, int width,
int height, uint8 *dst,
float bumpScale )
{
float heightScale = ( 1.0f / 255.0f ) * bumpScale;
float c, cx, cy;
float maxDim = ( width > height ) ? width : height;
float ooMaxDim = 1.0f / maxDim;
int s, t;
for( t = 0; t < height; t++ )
{
uint8 *dstPixel = &dst[t * width * 4];
for( s = 0; s < width; s++ )
{
c = src[( t * width + s ) * 2];
cx = src[( t * width + ((s+1)%width) ) * 2];
cy = src[( ((t+1)%height) * width + s ) * 2];
/*
// \Z (out of screen)
// \
// \
// \
// \----------- X
// |
// |
// |
// |
// |
// Y
*/
Vector xVect, yVect, normal;
xVect[0] = ooMaxDim;
xVect[1] = 0.0f;
xVect[2] = (cx - c) * heightScale;
yVect[0] = 0.0f;
yVect[1] = ooMaxDim;
yVect[2] = (cy - c) * heightScale;
CrossProduct( xVect, yVect, normal );
VectorNormalize( normal );
/* Repack the normalized vector into an RGB unsigned byte
vector in the normal map image. */
dstPixel[0] = ( uint8 )( 128 + 127*normal[0] );
dstPixel[1] = ( uint8 )( 128 + 127*normal[1] );
dstPixel[2] = ( uint8 )( 128 + 127*normal[2] );
dstPixel[3] = src[( ( t * width + s ) * 2 ) + 1];
dstPixel += 4;
}
}
}
void ConvertNormalMapRGBA8888ToDUDVMapUVWQ8888( const uint8 *src, int width, int height,
uint8 *dst_ )
{
unsigned const char *lastPixel = src + width * height * 4;
char *dst = ( char * )dst_; // NOTE: this is signed!!!!
for( ; src < lastPixel; src += 4, dst += 4 )
{
dst[0] = ( char )( ( ( int )src[0] ) - 127 );
dst[1] = ( char )( ( ( int )src[1] ) - 127 );
dst[2] = ( char )( ( ( int )src[2] ) - 127 );
dst[3] = ( char )( ( ( int )src[3] ) - 127 );
}
}
void ConvertNormalMapRGBA8888ToDUDVMapUVLX8888( const uint8 *src, int width, int height,
uint8 *dst_ )
{
unsigned const char *lastPixel = src + width * height * 4;
char *dst = ( char * )dst_; // NOTE: this is signed!!!!
for( ; src < lastPixel; src += 4, dst += 4 )
{
dst[0] = ( char )( ( ( int )src[0] ) - 127 );
dst[1] = ( char )( ( ( int )src[1] ) - 127 );
uint8 *pUDst = (uint8 *)dst;
pUDst[2] = src[3];
pUDst[3] = 0xFF;
}
}
void ConvertNormalMapRGBA8888ToDUDVMapUV88( const uint8 *src, int width, int height,
uint8 *dst_ )
{
unsigned const char *lastPixel = src + width * height * 4;
char *dst = ( char * )dst_; // NOTE: this is signed!!!!
for( ; src < lastPixel; src += 4, dst += 2 )
{
dst[0] = ( char )( ( ( int )src[0] ) - 127 );
dst[1] = ( char )( ( ( int )src[1] ) - 127 );
}
}
void NormalizeNormalMapRGBA8888( uint8 *src, int numTexels )
{
uint8 *lastPixel = src + numTexels * 4;
for( uint8 *pixel = src; pixel < lastPixel; pixel += 4 )
{
Vector tmpVect;
tmpVect[0] = ( ( float )pixel[0] - 128.0f ) * ( 1.0f / 127.0f );
tmpVect[1] = ( ( float )pixel[1] - 128.0f ) * ( 1.0f / 127.0f );
tmpVect[2] = ( ( float )pixel[2] - 128.0f ) * ( 1.0f / 127.0f );
VectorNormalize( tmpVect );
pixel[0] = ( uint8 )( 128 + 127 * tmpVect[0] );
pixel[1] = ( uint8 )( 128 + 127 * tmpVect[1] );
pixel[2] = ( uint8 )( 128 + 127 * tmpVect[2] );
}
}
//-----------------------------------------------------------------------------
// Image rotation
//-----------------------------------------------------------------------------
bool RotateImageLeft( const uint8 *src, uint8 *dst,
int widthHeight, ImageFormat imageFormat )
{
#define SRC(x,y) src[((x)+(y)*widthHeight)*sizeInBytes]
#define DST(x,y) dst[((x)+(y)*widthHeight)*sizeInBytes]
if( IsCompressed( imageFormat ) )
{
return false;
}
int x, y;
uint8 tmp[4][16];
int halfWidthHeight = widthHeight >> 1;
int sizeInBytes = SizeInBytes( imageFormat );
Assert( sizeInBytes <= 16 && sizeInBytes > 0 );
for( y = 0; y < halfWidthHeight; y++ )
{
for( x = 0; x < halfWidthHeight; x++ )
{
memcpy( tmp[0], &SRC( x, y ), sizeInBytes );
memcpy( tmp[1], &SRC( y, widthHeight-x-1 ), sizeInBytes );
memcpy( tmp[2], &SRC( widthHeight-x-1, widthHeight-y-1 ), sizeInBytes );
memcpy( tmp[3], &SRC( widthHeight-y-1, x ), sizeInBytes );
memcpy( &DST( x, y ), tmp[3], sizeInBytes );
memcpy( &DST( y, widthHeight-x-1 ), tmp[0], sizeInBytes );
memcpy( &DST( widthHeight-x-1, widthHeight-y-1 ), tmp[1], sizeInBytes );
memcpy( &DST( widthHeight-y-1, x ), tmp[2], sizeInBytes );
}
}
#undef SRC
#undef DST
return true;
}
bool RotateImage180( const uint8 *src, uint8 *dst,
int widthHeight, ImageFormat imageFormat )
{
// OPTIMIZE: do this transformation directly.
if( RotateImageLeft( src, dst, widthHeight, imageFormat ) )
{
return RotateImageLeft( dst, dst, widthHeight, imageFormat );
}
return false;
}
bool FlipImageVertically( void *pSrc, void *pDst, int nWidth, int nHeight, ImageFormat imageFormat, int nDstStride )
{
if( IsCompressed( imageFormat ) )
return false;
int nSizeInBytes = SizeInBytes( imageFormat );
int nRowBytes = nSizeInBytes * nWidth;
int nSrcStride = nRowBytes;
if ( nDstStride == 0 )
{
nDstStride = nRowBytes;
}
uint8 *pSrcRow = (uint8*)pSrc;
uint8 *pDstRow = (uint8*)pDst + ((nHeight-1) * nDstStride);
if ( pSrc == pDst )
{
uint8* pTemp = (uint8*)_alloca( nRowBytes );
int nHalfHeight = nHeight >> 1;
for ( int i = 0; i < nHalfHeight; i++ )
{
memcpy( pTemp, pSrcRow, nRowBytes );
memcpy( pSrcRow, pDstRow, nRowBytes );
memcpy( pDstRow, pTemp, nRowBytes );
pSrcRow += nSrcStride;
pDstRow -= nDstStride;
}
}
else
{
for ( int i = 0; i < nHeight; i++ )
{
memcpy( pDstRow, pSrcRow, nRowBytes );
pSrcRow += nSrcStride;
pDstRow -= nDstStride;
}
}
return true;
}
bool FlipImageHorizontally( void *pSrc, void *pDst, int nWidth, int nHeight, ImageFormat imageFormat, int nDstStride )
{
if( IsCompressed( imageFormat ) )
return false;
uint8 tmp[16];
int nSizeInBytes = SizeInBytes( imageFormat );
int nRowBytes = nSizeInBytes * nWidth;
Assert( nSizeInBytes <= 16 && nSizeInBytes > 0 );
int nSrcStride = nRowBytes;
if ( nDstStride == 0 )
{
nDstStride = nRowBytes;
}
int x, y;
uint8 *pSrcRow = (uint8*)pSrc;
uint8 *pDstRow = (uint8*)pDst;
if ( pSrc == pDst )
{
int nHalfWidth = nWidth >> 1;
for( y = 0; y < nHeight; y++ )
{
uint8 *pSrcPixel = pSrcRow;
uint8 *pDstPixel = pDstRow + nRowBytes - nSizeInBytes;
for( x = 0; x < nHalfWidth; x++ )
{
memcpy( tmp, pSrcPixel, nSizeInBytes );
memcpy( pSrcPixel, pDstPixel, nSizeInBytes );
memcpy( pDstPixel, tmp, nSizeInBytes );
pSrcPixel += nSizeInBytes;
pDstPixel -= nSizeInBytes;
}
pSrcRow += nSrcStride;
pDstRow += nDstStride;
}
}
else
{
for( y = 0; y < nHeight; y++ )
{
uint8 *pSrcPixel = pSrcRow;
uint8 *pDstPixel = pDstRow + nRowBytes - nSizeInBytes;
for( x = 0; x < nWidth; x++ )
{
memcpy( pDstPixel, pSrcPixel, nSizeInBytes );
pSrcPixel += nSizeInBytes;
pDstPixel -= nSizeInBytes;
}
pSrcRow += nSrcStride;
pDstRow += nDstStride;
}
}
return true;
}
//-----------------------------------------------------------------------------
// Image rotation
//-----------------------------------------------------------------------------
bool SwapAxes( uint8 *src, int widthHeight, ImageFormat imageFormat )
{
#define SRC(x,y) src[((x)+(y)*widthHeight)*sizeInBytes]
if( IsCompressed( imageFormat ) )
{
return false;
}
int x, y;
uint8 tmp[4];
int sizeInBytes = SizeInBytes( imageFormat );
Assert( sizeInBytes <= 4 && sizeInBytes > 0 );
for( y = 0; y < widthHeight; y++ )
{
for( x = 0; x < y; x++ )
{
memcpy( tmp, &SRC( x, y ), sizeInBytes );
memcpy( &SRC( x, y ), &SRC( y, x ), sizeInBytes );
memcpy( &SRC( y, x ), tmp, sizeInBytes );
}
}
#undef SRC
return true;
}
void RGBA8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
memcpy( dst, src, 4 * numPixels );
}
void RGBA8888ToABGR8888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, dst += 4 )
{
dst[0] = src[3];
dst[1] = src[2];
dst[2] = src[1];
dst[3] = src[0];
}
}
void RGBA8888ToRGB888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, dst += 3 )
{
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
}
}
void RGBA8888ToBGR888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, dst += 3 )
{
dst[0] = src[2];
dst[1] = src[1];
dst[2] = src[0];
}
}
void RGBA8888ToRGB565( const uint8 *src, uint8 *dst, int numPixels )
{
Assert( 0 );
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, dst += 2 )
{
}
}
void RGBA8888ToI8( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, dst += 1 )
{
dst[0] = ( uint8 )( 0.299f * src[0] + 0.587f * src[1] + 0.114f * src[2] );
}
}
void RGBA8888ToIA88( const uint8 *src, uint8 *dst, int numPixels )
{
// fixme: need to find the proper rgb weighting
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, dst += 2 )
{
dst[0] = ( uint8 )( 0.299f * src[0] + 0.587f * src[1] + 0.114f * src[2] );
dst[1] = src[3];
}
}
void RGBA8888ToP8( const uint8 *src, uint8 *dst, int numPixels )
{
Assert( 0 );
}
void RGBA8888ToA8( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, dst += 1 )
{
dst[0] = src[3];
}
}
void RGBA8888ToRGB888_BLUESCREEN( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, dst += 3 )
{
if( src[3] == 0 )
{
dst[0] = 0;
dst[1] = 0;
dst[2] = 255;
}
else
{
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
}
}
}
void RGBA8888ToBGR888_BLUESCREEN( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, dst += 3 )
{
if( src[3] == 0 )
{
dst[2] = 0;
dst[1] = 0;
dst[0] = 255;
}
else
{
dst[2] = src[0];
dst[1] = src[1];
dst[0] = src[2];
}
}
}
void RGBA8888ToARGB8888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, dst += 4 )
{
dst[0] = src[3];
dst[1] = src[0];
dst[2] = src[1];
dst[3] = src[2];
}
}
void RGBA8888ToBGRA8888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, dst += 4 )
{
dst[0] = src[2];
dst[1] = src[1];
dst[2] = src[0];
dst[3] = src[3];
}
}
void RGBA8888ToBGRX8888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, dst += 4 )
{
dst[0] = src[2];
dst[1] = src[1];
dst[2] = src[0];
}
}
void RGBA8888ToBGR565( const uint8 *src, uint8 *dst, int numPixels )
{
unsigned short* pDstShort = (unsigned short*)dst;
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, pDstShort ++ )
{
*pDstShort = ((src[0] >> 3) << 11) |
((src[1] >> 2) << 5) |
(src[2] >> 3);
}
}
void RGBA8888ToBGRX5551( const uint8 *src, uint8 *dst, int numPixels )
{
unsigned short* pDstShort = (unsigned short*)dst;
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, pDstShort ++ )
{
*pDstShort = ((src[0] >> 3) << 10) |
((src[1] >> 3) << 5) |
(src[2] >> 3);
}
}
void RGBA8888ToBGRA5551( const uint8 *src, uint8 *dst, int numPixels )
{
unsigned short* pDstShort = (unsigned short*)dst;
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, pDstShort ++ )
{
*pDstShort = ((src[0] >> 3) << 10) |
((src[1] >> 3) << 5) |
(src[2] >> 3) |
(src[3] >> 7) << 15;
}
}
void RGBA8888ToBGRA4444( const uint8 *src, uint8 *dst, int numPixels )
{
unsigned short* pDstShort = (unsigned short*)dst;
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, pDstShort ++ )
{
*pDstShort = ((src[0] >> 4) << 8) |
((src[1] >> 4) << 4) |
(src[2] >> 4) |
((src[3] >> 4) << 12);
}
}
void RGBA8888ToUV88( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, dst += 2 )
{
dst[0] = src[0];
dst[1] = src[1];
}
}
void RGBA8888ToUVWQ8888( const uint8 *src, uint8 *dst, int numPixels )
{
RGBA8888ToRGBA8888( src, dst, numPixels );
}
void RGBA8888ToUVLX8888( const uint8 *src, uint8 *dst, int numPixels )
{
RGBA8888ToRGBA8888( src, dst, numPixels );
}
void ABGR8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, dst += 4 )
{
dst[0] = src[3];
dst[1] = src[2];
dst[2] = src[1];
dst[3] = src[0];
}
}
void RGB888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 3;
for ( ; src < endSrc; src += 3, dst += 4 )
{
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = 255;
}
}
void BGR888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 3;
for ( ; src < endSrc; src += 3, dst += 4 )
{
dst[0] = src[2];
dst[1] = src[1];
dst[2] = src[0];
dst[3] = 255;
}
}
void RGB565ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
Assert( 0 );
const uint8 *endSrc = src + numPixels * 2;
for ( ; src < endSrc; src += 2, dst += 4 )
{
}
}
void I8ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels;
for ( ; src < endSrc; src += 1, dst += 4 )
{
dst[0] = src[0];
dst[1] = src[0];
dst[2] = src[0];
dst[3] = 255;
}
}
void IA88ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 2;
for ( ; src < endSrc; src += 2, dst += 4 )
{
dst[0] = src[0];
dst[1] = src[0];
dst[2] = src[0];
dst[3] = src[1];
}
}
void P8ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
Assert( 0 );
}
void A8ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels;
for ( ; src < endSrc; src += 1, dst += 4 )
{
dst[0] = src[0];
dst[1] = src[0];
dst[2] = src[0];
dst[3] = src[0];
}
}
void RGB888_BLUESCREENToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 3;
for ( ; src < endSrc; src += 3, dst += 4 )
{
if( src[0] == 0 && src[1] == 0 && src[2] == 255 )
{
dst[0] = 0;
dst[1] = 0;
dst[2] = 0;
dst[3] = 0;
}
else
{
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = 255;
}
}
}
void BGR888_BLUESCREENToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 3;
for ( ; src < endSrc; src += 3, dst += 4 )
{
if( src[2] == 0 && src[1] == 0 && src[0] == 255 )
{
dst[0] = 0;
dst[1] = 0;
dst[2] = 0;
dst[3] = 0;
}
else
{
dst[2] = src[0];
dst[1] = src[1];
dst[0] = src[2];
dst[3] = 255;
}
}
}
void ARGB8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, dst += 4 )
{
dst[0] = src[1];
dst[1] = src[2];
dst[2] = src[3];
dst[3] = src[0];
}
}
void BGRA8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, dst += 4 )
{
dst[0] = src[2];
dst[1] = src[1];
dst[2] = src[0];
dst[3] = src[3];
}
}
void BGRX8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8 *endSrc = src + numPixels * 4;
for ( ; src < endSrc; src += 4, dst += 4 )
{
dst[0] = src[2];
dst[1] = src[1];
dst[2] = src[0];
dst[3] = 255;
}
}
void BGR565ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
unsigned short* pSrcShort = (unsigned short*)src;
unsigned short* pEndSrc = pSrcShort + numPixels;
for ( ; pSrcShort < pEndSrc; pSrcShort++, dst += 4 )
{
int blue = (*pSrcShort & 0x1F);
int green = (*pSrcShort >> 5) & 0x3F;
int red = (*pSrcShort >> 11) & 0x1F;
// Expand to 8 bits
dst[0] = (red << 3) | (red >> 2);
dst[1] = (green << 2) | (green >> 4);
dst[2] = (blue << 3) | (blue >> 2);
dst[3] = 255;
}
}
void BGRX5551ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
unsigned short* pSrcShort = (unsigned short*)src;
unsigned short* pEndSrc = pSrcShort + numPixels;
for ( ; pSrcShort < pEndSrc; pSrcShort++, dst += 4 )
{
int blue = (*pSrcShort & 0x1F);
int green = (*pSrcShort >> 5) & 0x1F;
int red = (*pSrcShort >> 10) & 0x1F;
// Expand to 8 bits
dst[0] = (red << 3) | (red >> 2);
dst[1] = (green << 3) | (green >> 2);
dst[2] = (blue << 3) | (blue >> 2);
dst[3] = 255;
}
}
void BGRA5551ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
unsigned short* pSrcShort = (unsigned short*)src;
unsigned short* pEndSrc = pSrcShort + numPixels;
for ( ; pSrcShort < pEndSrc; pSrcShort++, dst += 4 )
{
int blue = (*pSrcShort & 0x1F);
int green = (*pSrcShort >> 5) & 0x1F;
int red = (*pSrcShort >> 10) & 0x1F;
int alpha = *pSrcShort & ( 1 << 15 );
// Expand to 8 bits
dst[0] = (red << 3) | (red >> 2);
dst[1] = (green << 3) | (green >> 2);
dst[2] = (blue << 3) | (blue >> 2);
// garymcthack
if( alpha )
{
dst[3] = 255;
}
else
{
dst[3] = 0;
}
}
}
void BGRA4444ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
unsigned short* pSrcShort = (unsigned short*)src;
unsigned short* pEndSrc = pSrcShort + numPixels;
for ( ; pSrcShort < pEndSrc; pSrcShort++, dst += 4 )
{
int blue = (*pSrcShort & 0xF);
int green = (*pSrcShort >> 4) & 0xF;
int red = (*pSrcShort >> 8) & 0xF;
int alpha = (*pSrcShort >> 12) & 0xF;
// Expand to 8 bits
// FIXME: shouldn't this be (red << 4) | red?
dst[0] = (red << 4) | (red >> 4);
dst[1] = (green << 4) | (green >> 4);
dst[2] = (blue << 4) | (blue >> 4);
dst[3] = (alpha << 4) | (alpha >> 4);
}
}
void UV88ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
const uint8* pEndSrc = src + numPixels * 2;
for ( ; src < pEndSrc; src += 2, dst += 4 )
{
dst[0] = src[0];
dst[1] = src[1];
dst[2] = 0;
dst[3] = 0;
}
}
void UVWQ8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
RGBA8888ToRGBA8888( src, dst, numPixels );
}
void UVLX8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels )
{
RGBA8888ToRGBA8888( src, dst, numPixels );
}
// HDRFIXME: This assumes that the 16-bit integer values are 4.12 fixed-point.
void RGBA16161616ToRGBA8888( const uint8 *src_, uint8 *dst, int numPixels )
{
unsigned short *src = ( unsigned short * )src_;
unsigned short *pEndSrc = src + numPixels * 4;
for ( ; src < pEndSrc; src += 4, dst += 4 )
{
dst[0] = min( 255, src[0] >> 4 );
dst[1] = min( 255, src[1] >> 4 );
dst[2] = min( 255, src[2] >> 4 );
dst[3] = min( 255, src[3] >> 8 );
}
}
} // ImageLoader namespace ends