mirror of
https://github.com/nillerusr/source-engine.git
synced 2024-12-23 14:46:53 +00:00
368 lines
11 KiB
C
368 lines
11 KiB
C
|
//========= Copyright Valve Corporation, All rights reserved. ============//
|
||
|
//
|
||
|
// Purpose: - defines SIMD "structure of arrays" classes and functions.
|
||
|
//
|
||
|
//===========================================================================//
|
||
|
#ifndef SSEQUATMATH_H
|
||
|
#define SSEQUATMATH_H
|
||
|
|
||
|
#ifdef _WIN32
|
||
|
#pragma once
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#include "mathlib/ssemath.h"
|
||
|
|
||
|
// Use this #define to allow SSE versions of Quaternion math
|
||
|
// to exist on PC.
|
||
|
// On PC, certain horizontal vector operations are not supported.
|
||
|
// This causes the SSE implementation of quaternion math to mix the
|
||
|
// vector and scalar floating point units, which is extremely
|
||
|
// performance negative if you don't compile to native SSE2 (which
|
||
|
// we don't as of Sept 1, 2007). So, it's best not to allow these
|
||
|
// functions to exist at all. It's not good enough to simply replace
|
||
|
// the contents of the functions with scalar math, because each call
|
||
|
// to LoadAligned and StoreAligned will result in an unnecssary copy
|
||
|
// of the quaternion, and several moves to and from the XMM registers.
|
||
|
//
|
||
|
// Basically, the problem you run into is that for efficient SIMD code,
|
||
|
// you need to load the quaternions and vectors into SIMD registers and
|
||
|
// keep them there as long as possible while doing only SIMD math,
|
||
|
// whereas for efficient scalar code, each time you copy onto or ever
|
||
|
// use a fltx4, it hoses your pipeline. So the difference has to be
|
||
|
// in the management of temporary variables in the calling function,
|
||
|
// not inside the math functions.
|
||
|
//
|
||
|
// If you compile assuming the presence of SSE2, the MSVC will abandon
|
||
|
// the traditional x87 FPU operations altogether and make everything use
|
||
|
// the SSE2 registers, which lessens this problem a little.
|
||
|
|
||
|
// permitted only on 360, as we've done careful tuning on its Altivec math:
|
||
|
#ifdef _X360
|
||
|
#define ALLOW_SIMD_QUATERNION_MATH 1 // not on PC!
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
//---------------------------------------------------------------------
|
||
|
// Load/store quaternions
|
||
|
//---------------------------------------------------------------------
|
||
|
#ifndef _X360
|
||
|
#if ALLOW_SIMD_QUATERNION_MATH
|
||
|
// Using STDC or SSE
|
||
|
FORCEINLINE fltx4 LoadAlignedSIMD( const QuaternionAligned & pSIMD )
|
||
|
{
|
||
|
fltx4 retval = LoadAlignedSIMD( pSIMD.Base() );
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
FORCEINLINE fltx4 LoadAlignedSIMD( const QuaternionAligned * RESTRICT pSIMD )
|
||
|
{
|
||
|
fltx4 retval = LoadAlignedSIMD( pSIMD );
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
FORCEINLINE void StoreAlignedSIMD( QuaternionAligned * RESTRICT pSIMD, const fltx4 & a )
|
||
|
{
|
||
|
StoreAlignedSIMD( pSIMD->Base(), a );
|
||
|
}
|
||
|
#endif
|
||
|
#else
|
||
|
|
||
|
// for the transitional class -- load a QuaternionAligned
|
||
|
FORCEINLINE fltx4 LoadAlignedSIMD( const QuaternionAligned & pSIMD )
|
||
|
{
|
||
|
fltx4 retval = XMLoadVector4A( pSIMD.Base() );
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
FORCEINLINE fltx4 LoadAlignedSIMD( const QuaternionAligned * RESTRICT pSIMD )
|
||
|
{
|
||
|
fltx4 retval = XMLoadVector4A( pSIMD );
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
FORCEINLINE void StoreAlignedSIMD( QuaternionAligned * RESTRICT pSIMD, const fltx4 & a )
|
||
|
{
|
||
|
XMStoreVector4A( pSIMD->Base(), a );
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#if ALLOW_SIMD_QUATERNION_MATH
|
||
|
//---------------------------------------------------------------------
|
||
|
// Make sure quaternions are within 180 degrees of one another, if not, reverse q
|
||
|
//---------------------------------------------------------------------
|
||
|
FORCEINLINE fltx4 QuaternionAlignSIMD( const fltx4 &p, const fltx4 &q )
|
||
|
{
|
||
|
// decide if one of the quaternions is backwards
|
||
|
fltx4 a = SubSIMD( p, q );
|
||
|
fltx4 b = AddSIMD( p, q );
|
||
|
a = Dot4SIMD( a, a );
|
||
|
b = Dot4SIMD( b, b );
|
||
|
fltx4 cmp = CmpGtSIMD( a, b );
|
||
|
fltx4 result = MaskedAssign( cmp, NegSIMD(q), q );
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
//---------------------------------------------------------------------
|
||
|
// Normalize Quaternion
|
||
|
//---------------------------------------------------------------------
|
||
|
#if USE_STDC_FOR_SIMD
|
||
|
|
||
|
FORCEINLINE fltx4 QuaternionNormalizeSIMD( const fltx4 &q )
|
||
|
{
|
||
|
fltx4 radius, result;
|
||
|
radius = Dot4SIMD( q, q );
|
||
|
|
||
|
if ( SubFloat( radius, 0 ) ) // > FLT_EPSILON && ((radius < 1.0f - 4*FLT_EPSILON) || (radius > 1.0f + 4*FLT_EPSILON))
|
||
|
{
|
||
|
float iradius = 1.0f / sqrt( SubFloat( radius, 0 ) );
|
||
|
result = ReplicateX4( iradius );
|
||
|
result = MulSIMD( result, q );
|
||
|
return result;
|
||
|
}
|
||
|
return q;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
// SSE + X360 implementation
|
||
|
FORCEINLINE fltx4 QuaternionNormalizeSIMD( const fltx4 &q )
|
||
|
{
|
||
|
fltx4 radius, result, mask;
|
||
|
radius = Dot4SIMD( q, q );
|
||
|
mask = CmpEqSIMD( radius, Four_Zeros ); // all ones iff radius = 0
|
||
|
result = ReciprocalSqrtSIMD( radius );
|
||
|
result = MulSIMD( result, q );
|
||
|
return MaskedAssign( mask, q, result ); // if radius was 0, just return q
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
//---------------------------------------------------------------------
|
||
|
// 0.0 returns p, 1.0 return q.
|
||
|
//---------------------------------------------------------------------
|
||
|
FORCEINLINE fltx4 QuaternionBlendNoAlignSIMD( const fltx4 &p, const fltx4 &q, float t )
|
||
|
{
|
||
|
fltx4 sclp, sclq, result;
|
||
|
sclq = ReplicateX4( t );
|
||
|
sclp = SubSIMD( Four_Ones, sclq );
|
||
|
result = MulSIMD( sclp, p );
|
||
|
result = MaddSIMD( sclq, q, result );
|
||
|
return QuaternionNormalizeSIMD( result );
|
||
|
}
|
||
|
|
||
|
|
||
|
//---------------------------------------------------------------------
|
||
|
// Blend Quaternions
|
||
|
//---------------------------------------------------------------------
|
||
|
FORCEINLINE fltx4 QuaternionBlendSIMD( const fltx4 &p, const fltx4 &q, float t )
|
||
|
{
|
||
|
// decide if one of the quaternions is backwards
|
||
|
fltx4 q2, result;
|
||
|
q2 = QuaternionAlignSIMD( p, q );
|
||
|
result = QuaternionBlendNoAlignSIMD( p, q2, t );
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
//---------------------------------------------------------------------
|
||
|
// Multiply Quaternions
|
||
|
//---------------------------------------------------------------------
|
||
|
#ifndef _X360
|
||
|
|
||
|
// SSE and STDC
|
||
|
FORCEINLINE fltx4 QuaternionMultSIMD( const fltx4 &p, const fltx4 &q )
|
||
|
{
|
||
|
// decide if one of the quaternions is backwards
|
||
|
fltx4 q2, result;
|
||
|
q2 = QuaternionAlignSIMD( p, q );
|
||
|
SubFloat( result, 0 ) = SubFloat( p, 0 ) * SubFloat( q2, 3 ) + SubFloat( p, 1 ) * SubFloat( q2, 2 ) - SubFloat( p, 2 ) * SubFloat( q2, 1 ) + SubFloat( p, 3 ) * SubFloat( q2, 0 );
|
||
|
SubFloat( result, 1 ) = -SubFloat( p, 0 ) * SubFloat( q2, 2 ) + SubFloat( p, 1 ) * SubFloat( q2, 3 ) + SubFloat( p, 2 ) * SubFloat( q2, 0 ) + SubFloat( p, 3 ) * SubFloat( q2, 1 );
|
||
|
SubFloat( result, 2 ) = SubFloat( p, 0 ) * SubFloat( q2, 1 ) - SubFloat( p, 1 ) * SubFloat( q2, 0 ) + SubFloat( p, 2 ) * SubFloat( q2, 3 ) + SubFloat( p, 3 ) * SubFloat( q2, 2 );
|
||
|
SubFloat( result, 3 ) = -SubFloat( p, 0 ) * SubFloat( q2, 0 ) - SubFloat( p, 1 ) * SubFloat( q2, 1 ) - SubFloat( p, 2 ) * SubFloat( q2, 2 ) + SubFloat( p, 3 ) * SubFloat( q2, 3 );
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
// X360
|
||
|
extern const fltx4 g_QuatMultRowSign[4];
|
||
|
FORCEINLINE fltx4 QuaternionMultSIMD( const fltx4 &p, const fltx4 &q )
|
||
|
{
|
||
|
fltx4 q2, row, result;
|
||
|
q2 = QuaternionAlignSIMD( p, q );
|
||
|
|
||
|
row = XMVectorSwizzle( q2, 3, 2, 1, 0 );
|
||
|
row = MulSIMD( row, g_QuatMultRowSign[0] );
|
||
|
result = Dot4SIMD( row, p );
|
||
|
|
||
|
row = XMVectorSwizzle( q2, 2, 3, 0, 1 );
|
||
|
row = MulSIMD( row, g_QuatMultRowSign[1] );
|
||
|
row = Dot4SIMD( row, p );
|
||
|
result = __vrlimi( result, row, 4, 0 );
|
||
|
|
||
|
row = XMVectorSwizzle( q2, 1, 0, 3, 2 );
|
||
|
row = MulSIMD( row, g_QuatMultRowSign[2] );
|
||
|
row = Dot4SIMD( row, p );
|
||
|
result = __vrlimi( result, row, 2, 0 );
|
||
|
|
||
|
row = MulSIMD( q2, g_QuatMultRowSign[3] );
|
||
|
row = Dot4SIMD( row, p );
|
||
|
result = __vrlimi( result, row, 1, 0 );
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
//---------------------------------------------------------------------
|
||
|
// Quaternion scale
|
||
|
//---------------------------------------------------------------------
|
||
|
#ifndef _X360
|
||
|
|
||
|
// SSE and STDC
|
||
|
FORCEINLINE fltx4 QuaternionScaleSIMD( const fltx4 &p, float t )
|
||
|
{
|
||
|
float r;
|
||
|
fltx4 q;
|
||
|
|
||
|
// FIXME: nick, this isn't overly sensitive to accuracy, and it may be faster to
|
||
|
// use the cos part (w) of the quaternion (sin(omega)*N,cos(omega)) to figure the new scale.
|
||
|
float sinom = sqrt( SubFloat( p, 0 ) * SubFloat( p, 0 ) + SubFloat( p, 1 ) * SubFloat( p, 1 ) + SubFloat( p, 2 ) * SubFloat( p, 2 ) );
|
||
|
sinom = min( sinom, 1.f );
|
||
|
|
||
|
float sinsom = sin( asin( sinom ) * t );
|
||
|
|
||
|
t = sinsom / (sinom + FLT_EPSILON);
|
||
|
SubFloat( q, 0 ) = t * SubFloat( p, 0 );
|
||
|
SubFloat( q, 1 ) = t * SubFloat( p, 1 );
|
||
|
SubFloat( q, 2 ) = t * SubFloat( p, 2 );
|
||
|
|
||
|
// rescale rotation
|
||
|
r = 1.0f - sinsom * sinsom;
|
||
|
|
||
|
// Assert( r >= 0 );
|
||
|
if (r < 0.0f)
|
||
|
r = 0.0f;
|
||
|
r = sqrt( r );
|
||
|
|
||
|
// keep sign of rotation
|
||
|
SubFloat( q, 3 ) = fsel( SubFloat( p, 3 ), r, -r );
|
||
|
return q;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
// X360
|
||
|
FORCEINLINE fltx4 QuaternionScaleSIMD( const fltx4 &p, float t )
|
||
|
{
|
||
|
fltx4 sinom = Dot3SIMD( p, p );
|
||
|
sinom = SqrtSIMD( sinom );
|
||
|
sinom = MinSIMD( sinom, Four_Ones );
|
||
|
fltx4 sinsom = ArcSinSIMD( sinom );
|
||
|
fltx4 t4 = ReplicateX4( t );
|
||
|
sinsom = MulSIMD( sinsom, t4 );
|
||
|
sinsom = SinSIMD( sinsom );
|
||
|
sinom = AddSIMD( sinom, Four_Epsilons );
|
||
|
sinom = ReciprocalSIMD( sinom );
|
||
|
t4 = MulSIMD( sinsom, sinom );
|
||
|
fltx4 result = MulSIMD( p, t4 );
|
||
|
|
||
|
// rescale rotation
|
||
|
sinsom = MulSIMD( sinsom, sinsom );
|
||
|
fltx4 r = SubSIMD( Four_Ones, sinsom );
|
||
|
r = MaxSIMD( r, Four_Zeros );
|
||
|
r = SqrtSIMD( r );
|
||
|
|
||
|
// keep sign of rotation
|
||
|
fltx4 cmp = CmpGeSIMD( p, Four_Zeros );
|
||
|
r = MaskedAssign( cmp, r, NegSIMD( r ) );
|
||
|
|
||
|
result = __vrlimi(result, r, 1, 0);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Quaternion sphereical linear interpolation
|
||
|
//-----------------------------------------------------------------------------
|
||
|
#ifndef _X360
|
||
|
|
||
|
// SSE and STDC
|
||
|
FORCEINLINE fltx4 QuaternionSlerpNoAlignSIMD( const fltx4 &p, const fltx4 &q, float t )
|
||
|
{
|
||
|
float omega, cosom, sinom, sclp, sclq;
|
||
|
|
||
|
fltx4 result;
|
||
|
|
||
|
// 0.0 returns p, 1.0 return q.
|
||
|
cosom = SubFloat( p, 0 ) * SubFloat( q, 0 ) + SubFloat( p, 1 ) * SubFloat( q, 1 ) +
|
||
|
SubFloat( p, 2 ) * SubFloat( q, 2 ) + SubFloat( p, 3 ) * SubFloat( q, 3 );
|
||
|
|
||
|
if ( (1.0f + cosom ) > 0.000001f )
|
||
|
{
|
||
|
if ( (1.0f - cosom ) > 0.000001f )
|
||
|
{
|
||
|
omega = acos( cosom );
|
||
|
sinom = sin( omega );
|
||
|
sclp = sin( (1.0f - t)*omega) / sinom;
|
||
|
sclq = sin( t*omega ) / sinom;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// TODO: add short circuit for cosom == 1.0f?
|
||
|
sclp = 1.0f - t;
|
||
|
sclq = t;
|
||
|
}
|
||
|
SubFloat( result, 0 ) = sclp * SubFloat( p, 0 ) + sclq * SubFloat( q, 0 );
|
||
|
SubFloat( result, 1 ) = sclp * SubFloat( p, 1 ) + sclq * SubFloat( q, 1 );
|
||
|
SubFloat( result, 2 ) = sclp * SubFloat( p, 2 ) + sclq * SubFloat( q, 2 );
|
||
|
SubFloat( result, 3 ) = sclp * SubFloat( p, 3 ) + sclq * SubFloat( q, 3 );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
SubFloat( result, 0 ) = -SubFloat( q, 1 );
|
||
|
SubFloat( result, 1 ) = SubFloat( q, 0 );
|
||
|
SubFloat( result, 2 ) = -SubFloat( q, 3 );
|
||
|
SubFloat( result, 3 ) = SubFloat( q, 2 );
|
||
|
sclp = sin( (1.0f - t) * (0.5f * M_PI));
|
||
|
sclq = sin( t * (0.5f * M_PI));
|
||
|
SubFloat( result, 0 ) = sclp * SubFloat( p, 0 ) + sclq * SubFloat( result, 0 );
|
||
|
SubFloat( result, 1 ) = sclp * SubFloat( p, 1 ) + sclq * SubFloat( result, 1 );
|
||
|
SubFloat( result, 2 ) = sclp * SubFloat( p, 2 ) + sclq * SubFloat( result, 2 );
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
// X360
|
||
|
FORCEINLINE fltx4 QuaternionSlerpNoAlignSIMD( const fltx4 &p, const fltx4 &q, float t )
|
||
|
{
|
||
|
return XMQuaternionSlerp( p, q, t );
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
FORCEINLINE fltx4 QuaternionSlerpSIMD( const fltx4 &p, const fltx4 &q, float t )
|
||
|
{
|
||
|
fltx4 q2, result;
|
||
|
q2 = QuaternionAlignSIMD( p, q );
|
||
|
result = QuaternionSlerpNoAlignSIMD( p, q2, t );
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif // ALLOW_SIMD_QUATERNION_MATH
|
||
|
|
||
|
#endif // SSEQUATMATH_H
|
||
|
|