source-engine/engine/shadowmgr.cpp

3775 lines
132 KiB
C++
Raw Normal View History

2020-04-22 16:56:21 +00:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//===========================================================================//
#include "render_pch.h"
#include "shadowmgr.h"
#include "utllinkedlist.h"
#include "utlvector.h"
#include "interface.h"
#include "mathlib/vmatrix.h"
#include "bsptreedata.h"
#include "materialsystem/itexture.h"
#include "filesystem.h"
#include "utlbidirectionalset.h"
#include "l_studio.h"
#include "istudiorender.h"
#include "engine/ivmodelrender.h"
#include "collisionutils.h"
#include "debugoverlay.h"
#include "tier0/vprof.h"
#include "disp.h"
#include "gl_rmain.h"
#include "MaterialBuckets.h"
#include "r_decal.h"
#include "cmodel_engine.h"
#include "iclientrenderable.h"
#include "cdll_engine_int.h"
#include "sys_dll.h"
#include "render.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
// Shadow-related functionality exported by the engine
//
// We have two shadow-related caches in this system
// 1) A surface cache. We keep track of which surfaces the shadows can
// potentially hit. The computation of the surface cache should be
// as fast as possible
// 2) A surface vertex cache. Once we know what surfaces the shadow
// hits, we caompute the actual polygons using a clip. This is only
// useful for shadows that we know don't change too frequently, so
// we pass in a flag when making the shadow to indicate whether the
// vertex cache should be used or not. The assumption is that the client
// of this system should know whether the shadows are always changing or not
//
// The first cache is generated when the shadow is initially projected, and
// the second cache is generated when the surfaces are actually being rendered.
//
// For rendering, I assign a sort order ID to all materials used by shadow
// decals. The sort order serves the identical purpose to the material's EnumID
// but I remap those IDs so I can keep a small list of decals to render with
// that enum ID (the other option would be to allocate an array with a number
// of elements == to the number of material enumeration IDs, which is pretty large).
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// forward decarations
//-----------------------------------------------------------------------------
extern int r_surfacevisframe;
extern IStudioRender *g_pStudioRender;
#define BACKFACE_EPSILON 0.01f
// Max number of vertices per shadow decal
enum
{
SHADOW_VERTEX_SMALL_CACHE_COUNT = 8,
SHADOW_VERTEX_LARGE_CACHE_COUNT = 32,
SHADOW_VERTEX_TEMP_COUNT = 48,
MAX_CLIP_PLANE_COUNT = 4,
SURFACE_BOUNDS_CACHE_COUNT = 1024,
//=============================================================================
// HPE_BEGIN:
// [smessick] Cache size for the shadow decals. This used to be on the stack.
//=============================================================================
SHADOW_DECAL_CACHE_COUNT = 16*1024,
MAX_SHADOW_DECAL_CACHE_COUNT = 64*1024,
//=============================================================================
// HPE_END
//=============================================================================
};
//-----------------------------------------------------------------------------
// Used to clip the shadow decals
//-----------------------------------------------------------------------------
struct ShadowClipState_t
{
int m_CurrVert;
int m_TempCount;
int m_ClipCount;
ShadowVertex_t m_pTempVertices[SHADOW_VERTEX_TEMP_COUNT];
ShadowVertex_t* RESTRICT m_ppClipVertices[2][SHADOW_VERTEX_TEMP_COUNT];
};
//-----------------------------------------------------------------------------
// ConVars (must be defined before CShadowMgr is instanced!)
//-----------------------------------------------------------------------------
ConVar r_shadows("r_shadows", "1");
ConVar r_shadows_gamecontrol("r_shadows_gamecontrol", "-1", FCVAR_CHEAT ); // Shadow override controlled by game entities (shadow_controller)
static ConVar r_shadowwireframe("r_shadowwireframe", "0", FCVAR_CHEAT );
static ConVar r_shadowids("r_shadowids", "0", FCVAR_CHEAT );
static ConVar r_flashlightdrawsweptbbox( "r_flashlightdrawsweptbbox", "0" );
static ConVar r_flashlightdrawfrustumbbox( "r_flashlightdrawfrustumbbox", "0" );
static ConVar r_flashlightnodraw( "r_flashlightnodraw", "0" );
static ConVar r_flashlightupdatedepth( "r_flashlightupdatedepth", "1" );
static ConVar r_flashlightdrawdepth( "r_flashlightdrawdepth", "0" );
static ConVar r_flashlightrenderworld( "r_flashlightrenderworld", "1" );
static ConVar r_flashlightrendermodels( "r_flashlightrendermodels", "1" );
static ConVar r_flashlightrender( "r_flashlightrender", "1" );
static ConVar r_flashlightculldepth( "r_flashlightculldepth", "1" );
ConVar r_flashlight_version2( "r_flashlight_version2", "0", FCVAR_CHEAT | FCVAR_DEVELOPMENTONLY );
//-----------------------------------------------------------------------------
// Implementation of IShadowMgr
//-----------------------------------------------------------------------------
class CShadowMgr : public IShadowMgrInternal, ISpatialLeafEnumerator
{
public:
// constructor
CShadowMgr();
// Methods inherited from IShadowMgr
virtual ShadowHandle_t CreateShadow( IMaterial* pMaterial, IMaterial* pModelMaterial, void* pBindProxy, int creationFlags );
virtual ShadowHandle_t CreateShadowEx( IMaterial* pMaterial, IMaterial* pModelMaterial, void* pBindProxy, int creationFlags );
virtual void DestroyShadow( ShadowHandle_t handle );
virtual void SetShadowMaterial( ShadowHandle_t handle, IMaterial* pMaterial, IMaterial* pModelMaterial, void* pBindProxy );
virtual void EnableShadow( ShadowHandle_t handle, bool bEnable );
virtual void ProjectFlashlight( ShadowHandle_t handle, const VMatrix& worldToShadow, int nLeafCount, const int *pLeafList );
virtual void ProjectShadow( ShadowHandle_t handle, const Vector &origin,
const Vector& projectionDir, const VMatrix& worldToShadow, const Vector2D& size,
int nLeafCount, const int *pLeafList,
float maxHeight, float falloffOffset, float falloffAmount, const Vector &vecCasterOrigin );
virtual const Frustum_t &GetFlashlightFrustum( ShadowHandle_t handle );
virtual const FlashlightState_t &GetFlashlightState( ShadowHandle_t handle );
virtual int ProjectAndClipVertices( ShadowHandle_t handle, int count,
Vector** ppPosition, ShadowVertex_t*** ppOutVertex );
virtual void AddShadowToBrushModel( ShadowHandle_t handle, model_t* pModel,
const Vector& origin, const QAngle& angles );
virtual void RemoveAllShadowsFromBrushModel( model_t* pModel );
virtual void AddShadowToModel( ShadowHandle_t shadow, ModelInstanceHandle_t handle );
virtual void RemoveAllShadowsFromModel( ModelInstanceHandle_t handle );
virtual const ShadowInfo_t& GetInfo( ShadowHandle_t handle );
virtual void SetFlashlightRenderState( ShadowHandle_t handle );
// Methods inherited from IShadowMgrInternal
virtual void LevelInit( int nSurfCount );
virtual void LevelShutdown();
virtual void AddShadowsOnSurfaceToRenderList( ShadowDecalHandle_t decalHandle );
virtual void ClearShadowRenderList();
virtual void ComputeRenderInfo( ShadowDecalRenderInfo_t* pInfo, ShadowHandle_t handle ) const;
virtual void SetModelShadowState( ModelInstanceHandle_t instance );
virtual unsigned short InvalidShadowIndex( );
// Methods of ISpatialLeafEnumerator
virtual bool EnumerateLeaf( int leaf, int context );
// Sets the texture coordinate range for a shadow...
virtual void SetShadowTexCoord( ShadowHandle_t handle, float x, float y, float w, float h );
// Set extra clip planes related to shadows...
// These are used to prevent pokethru and back-casting
virtual void ClearExtraClipPlanes( ShadowHandle_t shadow );
virtual void AddExtraClipPlane( ShadowHandle_t shadow, const Vector& normal, float dist );
// Gets the first model associated with a shadow
unsigned short& FirstModelInShadow( ShadowHandle_t h ) { return m_Shadows[h].m_FirstModel; }
// Set the darkness falloff bias
virtual void SetFalloffBias( ShadowHandle_t shadow, unsigned char ucBias );
// Set the number of world material buckets. This should happen exactly once per level load.
virtual void SetNumWorldMaterialBuckets( int numMaterialSortBins );
// Update the state for a flashlight.
virtual void UpdateFlashlightState( ShadowHandle_t shadowHandle, const FlashlightState_t &lightState );
virtual void DrawFlashlightDecals( int sortGroup, bool bDoMasking );
virtual void DrawFlashlightDecalsOnSingleSurface( SurfaceHandle_t surfID, bool bDoMasking );
virtual void DrawFlashlightOverlays( int sortGroup, bool bDoMasking );
virtual void DrawFlashlightDepthTexture( );
virtual void SetFlashlightDepthTexture( ShadowHandle_t shadowHandle, ITexture *pFlashlightDepthTexture, unsigned char ucShadowStencilBit );
virtual void AddFlashlightRenderable( ShadowHandle_t shadow, IClientRenderable *pRenderable );
virtual void DrawFlashlightDecalsOnDisplacements( int sortGroup, CDispInfo **visibleDisps, int nVisibleDisps, bool bDoMasking );
virtual bool ModelHasShadows( ModelInstanceHandle_t instance );
private:
enum
{
SHADOW_DISABLED = (SHADOW_LAST_FLAG << 1),
};
typedef CUtlFixedLinkedList< ShadowDecalHandle_t >::IndexType_t ShadowSurfaceIndex_t;
struct SurfaceBounds_t
{
fltx4 m_vecMins;
fltx4 m_vecMaxs;
Vector m_vecCenter;
float m_flRadius;
int m_nSurfaceIndex;
};
struct ShadowVertexSmallList_t
{
ShadowVertex_t m_Verts[SHADOW_VERTEX_SMALL_CACHE_COUNT];
};
struct ShadowVertexLargeList_t
{
ShadowVertex_t m_Verts[SHADOW_VERTEX_LARGE_CACHE_COUNT];
};
// A cache entries' worth of vertices....
struct ShadowVertexCache_t
{
unsigned short m_Count;
ShadowHandle_t m_Shadow;
unsigned short m_CachedVerts;
ShadowVertex_t* m_pVerts;
};
typedef unsigned short FlashlightHandle_t;
// Shadow state
struct Shadow_t : public ShadowInfo_t
{
Vector m_ProjectionDir;
IMaterial* m_pMaterial; // material for rendering surfaces
IMaterial* m_pModelMaterial; // material for rendering models
void* m_pBindProxy;
unsigned short m_Flags;
unsigned short m_SortOrder;
float m_flSphereRadius; // Radius of sphere surrounding the shadow
Ray_t m_Ray; // NOTE: Ray needs to be on 16-byte boundaries.
Vector m_vecSphereCenter; // Sphere surrounding the shadow
FlashlightHandle_t m_FlashlightHandle;
ITexture *m_pFlashlightDepthTexture;
// Extra clip planes
unsigned short m_ClipPlaneCount;
Vector m_ClipPlane[MAX_CLIP_PLANE_COUNT];
float m_ClipDist[MAX_CLIP_PLANE_COUNT];
// First shadow decal the shadow has
ShadowSurfaceIndex_t m_FirstDecal;
// First model the shadow is projected onto
unsigned short m_FirstModel;
// Stencil bit used to mask this shadow
unsigned char m_ucShadowStencilBit;
};
// Each surface has one of these, they reference the main shadow
// projector and cached off shadow decals.
struct ShadowDecal_t
{
SurfaceHandle_t m_SurfID;
ShadowSurfaceIndex_t m_ShadowListIndex;
ShadowHandle_t m_Shadow;
DispShadowHandle_t m_DispShadow;
unsigned short m_ShadowVerts;
// This is a handle of the next shadow decal to be rendered
ShadowDecalHandle_t m_NextRender;
};
// This structure is used when building new shadow information
struct ShadowBuildInfo_t
{
ShadowHandle_t m_Shadow;
Vector m_RayStart;
Vector m_ProjectionDirection;
Vector m_vecSphereCenter; // Sphere surrounding the shadow
float m_flSphereRadius; // Radius of sphere surrounding the shadow
const byte *m_pVis; // Vis from the ray start
};
// This structure contains rendering information
struct ShadowRenderInfo_t
{
int m_VertexCount;
int m_IndexCount;
int m_nMaxVertices;
int m_nMaxIndices;
int m_Count;
int* m_pCache;
int m_DispCount;
const VMatrix* m_pModelToWorld;
VMatrix m_WorldToModel;
DispShadowHandle_t* m_pDispCache;
};
// Structures used to assign sort order handles
struct SortOrderInfo_t
{
int m_MaterialEnum;
int m_RefCount;
};
typedef void (*ShadowDebugFunc_t)( ShadowHandle_t shadowHandle, const Vector &vecCentroid );
// m_FlashlightWorldMaterialBuckets is where surfaces are stored per flashlight each frame.
typedef CUtlVector<FlashlightHandle_t> WorldMaterialBuckets_t;
struct FlashlightInfo_t
{
FlashlightState_t m_FlashlightState;
unsigned short m_Shadow;
Frustum_t m_Frustum;
CMaterialsBuckets<SurfaceHandle_t> m_MaterialBuckets;
CMaterialsBuckets<SurfaceHandle_t> m_OccluderBuckets;
CUtlVector< IClientRenderable *> m_Renderables;
};
private:
// Applies a flashlight to all surfaces in the leaf
void ApplyFlashlightToLeaf( const Shadow_t &shadow, mleaf_t* pLeaf, ShadowBuildInfo_t* pBuild );
// Applies a shadow to all surfaces in the leaf
void ApplyShadowToLeaf( const Shadow_t &shadow, mleaf_t* RESTRICT pLeaf, ShadowBuildInfo_t* RESTRICT pBuild );
// These functions deal with creation of render sort ids
void SetMaterial( Shadow_t& shadow, IMaterial* pMaterial, IMaterial* pModelMaterial, void* pBindProxy );
void CleanupMaterial( Shadow_t& shadow );
// These functions add/remove shadow decals to surfaces
ShadowDecalHandle_t AddShadowDecalToSurface( SurfaceHandle_t surfID, ShadowHandle_t handle );
void RemoveShadowDecalFromSurface( SurfaceHandle_t surfID, ShadowDecalHandle_t decalHandle );
// Adds the surface to the list for this shadow
bool AddDecalToShadowList( ShadowHandle_t handle, ShadowDecalHandle_t decalHandle );
// Removes the shadow to the list of surfaces
void RemoveDecalFromShadowList( ShadowHandle_t handle, ShadowDecalHandle_t decalHandle );
// Actually projects + clips vertices
int ProjectAndClipVertices( const Shadow_t& shadow, const VMatrix& worldToShadow,
const VMatrix *pWorldToModel, int count, Vector** ppPosition, ShadowVertex_t*** ppOutVertex );
// These functions hook/unhook shadows up to surfaces + vice versa
void AddSurfaceToShadow( ShadowHandle_t handle, SurfaceHandle_t surfID );
void RemoveSurfaceFromShadow( ShadowHandle_t handle, SurfaceHandle_t surfID );
void RemoveAllSurfacesFromShadow( ShadowHandle_t handle );
void RemoveAllShadowsFromSurface( SurfaceHandle_t surfID );
// Deals with model shadow management
void RemoveAllModelsFromShadow( ShadowHandle_t handle );
// Applies the shadow to a surface
void ApplyShadowToSurface( ShadowBuildInfo_t& build, SurfaceHandle_t surfID );
// Applies the shadow to a displacement
void ApplyShadowToDisplacement( ShadowBuildInfo_t& build, IDispInfo *pDispInfo, bool bIsFlashlight );
// Renders shadows that all share a material enumeration
void RenderShadowList( IMatRenderContext *pRenderContext, ShadowDecalHandle_t decalHandle, const VMatrix* pModelToWorld );
// Should we cache vertices?
bool ShouldCacheVertices( const ShadowDecal_t& decal );
// Generates a list displacement shadow vertices to render
bool GenerateDispShadowRenderInfo( IMatRenderContext *pRenderContext, ShadowDecal_t& decal, ShadowRenderInfo_t& info );
// Generates a list shadow vertices to render
bool GenerateNormalShadowRenderInfo( IMatRenderContext *pRenderContext, ShadowDecal_t& decal, ShadowRenderInfo_t& info );
// Adds normal shadows to the mesh builder
int AddNormalShadowsToMeshBuilder( CMeshBuilder& meshBuilder, ShadowRenderInfo_t& info );
// Adds displacement shadows to the mesh builder
int AddDisplacementShadowsToMeshBuilder( CMeshBuilder& meshBuilder,
ShadowRenderInfo_t& info, int baseIndex );
// Does the actual work of computing shadow vertices
bool ComputeShadowVertices( ShadowDecal_t& decal, const VMatrix* pModelToWorld, const VMatrix* pWorldToModel, ShadowVertexCache_t* pVertexCache );
// Project vertices into shadow space
bool ProjectVerticesIntoShadowSpace( const VMatrix& modelToShadow,
float maxDist, int count, Vector** RESTRICT ppPosition, ShadowClipState_t& clip );
// Copies vertex info from the clipped vertices
void CopyClippedVertices( int count, ShadowVertex_t** ppSrcVert, ShadowVertex_t* pDstVert, const Vector &vToAdd );
// Allocate, free vertices
ShadowVertex_t* AllocateVertices( ShadowVertexCache_t& cache, int count );
void FreeVertices( ShadowVertexCache_t& cache );
// Gets at cache entry...
ShadowVertex_t* GetCachedVerts( const ShadowVertexCache_t& cache );
// Clears out vertices in the temporary cache
void ClearTempCache( );
// Renders debugging information
void RenderDebuggingInfo( const ShadowRenderInfo_t &info, ShadowDebugFunc_t func );
// Methods for dealing with world material buckets for flashlights.
void ClearAllFlashlightMaterialBuckets( void );
void AddSurfaceToFlashlightMaterialBuckets( ShadowHandle_t handle, SurfaceHandle_t surfID );
void AllocFlashlightMaterialBuckets( FlashlightHandle_t flashlightID );
// Render all projected textures (including shadows and flashlights)
void RenderProjectedTextures( const VMatrix* pModelToWorld );
void RenderFlashlights( bool bDoMasking, const VMatrix* pModelToWorld );
void SetFlashlightStencilMasks( bool bDoMasking );
void SetStencilAndScissor( IMatRenderContext *pRenderContext, FlashlightInfo_t &flashlightInfo, bool bUseStencil );
void EnableStencilAndScissorMasking( IMatRenderContext *pRenderContext, const FlashlightInfo_t &flashlightInfo, bool bDoMasking );
void DisableStencilAndScissorMasking( IMatRenderContext *pRenderContext );
void RenderShadows( const VMatrix* pModelToWorld );
// Generates a list shadow vertices to render
void GenerateShadowRenderInfo( IMatRenderContext *pRenderContext, ShadowDecalHandle_t decalHandle, ShadowRenderInfo_t& info );
// Methods related to the surface bounds cache
void ComputeSurfaceBounds( SurfaceBounds_t* pBounds, SurfaceHandle_t nSurfID );
const SurfaceBounds_t* GetSurfaceBounds( SurfaceHandle_t nSurfID );
bool IsShadowNearSurface( ShadowHandle_t h, SurfaceHandle_t nSurfID, const VMatrix* pModelToWorld, const VMatrix* pWorldToModel );
private:
// List of all shadows (one per cast shadow)
// Align it so the Ray in the Shadow_t is aligned
CUtlLinkedList< Shadow_t, ShadowHandle_t, false, int, CUtlMemoryAligned< UtlLinkedListElem_t< Shadow_t, ShadowHandle_t >, 16 > > m_Shadows;
// List of all shadow decals (one per surface hit by a shadow)
CUtlLinkedList< ShadowDecal_t, ShadowDecalHandle_t, true, int > m_ShadowDecals;
// List of all shadow decals associated with a particular shadow
CUtlFixedLinkedList< ShadowDecalHandle_t > m_ShadowSurfaces;
// List of queued decals waiting to be rendered....
CUtlVector<ShadowDecalHandle_t> m_RenderQueue;
// Used to assign sort order handles
CUtlLinkedList<SortOrderInfo_t, unsigned short> m_SortOrderIds;
// A cache of shadow vertex data...
CUtlLinkedList<ShadowVertexCache_t, unsigned short> m_VertexCache;
// This is temporary, not saved off....
CUtlVector<ShadowVertexCache_t> m_TempVertexCache;
// Vertex data
CUtlLinkedList<ShadowVertexSmallList_t, unsigned short> m_SmallVertexList;
CUtlLinkedList<ShadowVertexLargeList_t, unsigned short> m_LargeVertexList;
// Model-shadow association
CBidirectionalSet< ModelInstanceHandle_t, ShadowHandle_t, unsigned short > m_ShadowsOnModels;
// Cache of information for surface bounds
typedef CUtlLinkedList< SurfaceBounds_t, unsigned short, false, int, CUtlMemoryFixed< UtlLinkedListElem_t< SurfaceBounds_t, unsigned short >, SURFACE_BOUNDS_CACHE_COUNT, 16 > > SurfaceBoundsCache_t;
typedef SurfaceBoundsCache_t::IndexType_t SurfaceBoundsCacheIndex_t;
SurfaceBoundsCache_t m_SurfaceBoundsCache;
SurfaceBoundsCacheIndex_t *m_pSurfaceBounds;
// The number of decals we're gonna need to render
int m_DecalsToRender;
CUtlLinkedList<FlashlightInfo_t> m_FlashlightStates;
int m_NumWorldMaterialBuckets;
bool m_bInitialized;
//=============================================================================
// HPE_BEGIN:
// [smessick] These used to be dynamically allocated on the stack.
//=============================================================================
CUtlMemory<int> m_ShadowDecalCache;
CUtlMemory<DispShadowHandle_t> m_DispShadowDecalCache;
//=============================================================================
// HPE_END
//=============================================================================
};
//-----------------------------------------------------------------------------
// Singleton
//-----------------------------------------------------------------------------
static CShadowMgr s_ShadowMgr;
IShadowMgrInternal* g_pShadowMgr = &s_ShadowMgr;
EXPOSE_SINGLE_INTERFACE_GLOBALVAR(CShadowMgr, IShadowMgr,
ENGINE_SHADOWMGR_INTERFACE_VERSION, s_ShadowMgr);
//-----------------------------------------------------------------------------
// Shadows on model instances
//-----------------------------------------------------------------------------
unsigned short& FirstShadowOnModel( ModelInstanceHandle_t h )
{
// See l_studio.cpp
return FirstShadowOnModelInstance( h );
}
unsigned short& FirstModelInShadow( ShadowHandle_t h )
{
return s_ShadowMgr.FirstModelInShadow(h);
}
//-----------------------------------------------------------------------------
// Constructor, destructor
//-----------------------------------------------------------------------------
CShadowMgr::CShadowMgr()
{
m_ShadowSurfaces.SetGrowSize( 4096 );
m_ShadowDecals.SetGrowSize( 4096 );
m_ShadowsOnModels.Init( ::FirstShadowOnModel, ::FirstModelInShadow );
m_NumWorldMaterialBuckets = 0;
m_pSurfaceBounds = NULL;
m_bInitialized = false;
ClearShadowRenderList();
//=============================================================================
// HPE_BEGIN:
// [smessick] Initialize the shadow decal caches. These used to be dynamically
// allocated on the stack, but we were getting stack overflows.
//=============================================================================
m_ShadowDecalCache.SetGrowSize( 4096 );
m_DispShadowDecalCache.SetGrowSize( 4096 );
m_ShadowDecalCache.Grow( SHADOW_DECAL_CACHE_COUNT );
m_DispShadowDecalCache.Grow( SHADOW_DECAL_CACHE_COUNT );
//=============================================================================
// HPE_END
//=============================================================================
}
//-----------------------------------------------------------------------------
// Level init, shutdown
//-----------------------------------------------------------------------------
void CShadowMgr::LevelInit( int nSurfCount )
{
if ( m_bInitialized )
return;
m_bInitialized = true;
m_pSurfaceBounds = new SurfaceBoundsCacheIndex_t[nSurfCount];
// NOTE: Need to memset to 0 if we switch to integer SurfaceBoundsCacheIndex_t here
COMPILE_TIME_ASSERT( sizeof(SurfaceBoundsCacheIndex_t) == 2 );
memset( m_pSurfaceBounds, 0xFF, nSurfCount * sizeof(SurfaceBoundsCacheIndex_t) );
}
void CShadowMgr::LevelShutdown()
{
if ( !m_bInitialized )
return;
if ( m_pSurfaceBounds )
{
delete[] m_pSurfaceBounds;
m_pSurfaceBounds = NULL;
}
m_SurfaceBoundsCache.RemoveAll();
m_bInitialized = false;
}
//-----------------------------------------------------------------------------
// Create, destroy material sort order ids...
//-----------------------------------------------------------------------------
void CShadowMgr::SetMaterial( Shadow_t& shadow, IMaterial* pMaterial, IMaterial* pModelMaterial, void *pBindProxy )
{
shadow.m_pMaterial = pMaterial;
shadow.m_pModelMaterial = pModelMaterial;
shadow.m_pBindProxy = pBindProxy;
// We're holding onto this material
if ( pMaterial )
{
pMaterial->IncrementReferenceCount();
}
if ( pModelMaterial )
{
pModelMaterial->IncrementReferenceCount();
}
// Search the sort order handles for an enumeration id match
int materialEnum = (int)pMaterial;
for (unsigned short i = m_SortOrderIds.Head(); i != m_SortOrderIds.InvalidIndex();
i = m_SortOrderIds.Next(i) )
{
// Found a match, lets increment the refcount of this sort order id
if (m_SortOrderIds[i].m_MaterialEnum == materialEnum)
{
++m_SortOrderIds[i].m_RefCount;
shadow.m_SortOrder = i;
return;
}
}
// Didn't find it, lets assign a new sort order ID, with a refcount of 1
shadow.m_SortOrder = m_SortOrderIds.AddToTail();
m_SortOrderIds[shadow.m_SortOrder].m_MaterialEnum = materialEnum;
m_SortOrderIds[shadow.m_SortOrder].m_RefCount = 1;
// Make sure the render queue has as many entries as the max sort order id.
int count = m_RenderQueue.Count();
while( count < m_SortOrderIds.MaxElementIndex() )
{
MEM_ALLOC_CREDIT();
m_RenderQueue.AddToTail( SHADOW_DECAL_HANDLE_INVALID );
++count;
}
}
void CShadowMgr::CleanupMaterial( Shadow_t& shadow )
{
// Decrease the sort order reference count
if (--m_SortOrderIds[shadow.m_SortOrder].m_RefCount <= 0)
{
// No one referencing the sort order number?
// Then lets clean up the sort order id
m_SortOrderIds.Remove(shadow.m_SortOrder);
}
// We're done with this material
if ( shadow.m_pMaterial )
{
shadow.m_pMaterial->DecrementReferenceCount();
}
if ( shadow.m_pModelMaterial )
{
shadow.m_pModelMaterial->DecrementReferenceCount();
}
}
//-----------------------------------------------------------------------------
// For the model shadow list
//-----------------------------------------------------------------------------
unsigned short CShadowMgr::InvalidShadowIndex( )
{
return m_ShadowsOnModels.InvalidIndex();
}
//-----------------------------------------------------------------------------
// Create, destroy shadows
//-----------------------------------------------------------------------------
ShadowHandle_t CShadowMgr::CreateShadow( IMaterial* pMaterial, IMaterial* pModelMaterial, void* pBindProxy, int creationFlags )
{
return CreateShadowEx( pMaterial, pModelMaterial, pBindProxy, creationFlags );
}
ShadowHandle_t CShadowMgr::CreateShadowEx( IMaterial* pMaterial, IMaterial* pModelMaterial, void* pBindProxy, int creationFlags )
{
#ifndef SWDS
ShadowHandle_t h = m_Shadows.AddToTail();
//=============================================================================
// HPE_BEGIN:
// [smessick] Check for overflow.
//=============================================================================
if ( h == m_Shadows.InvalidIndex() )
{
ExecuteNTimes( 10, Warning( "CShadowMgr::CreateShadowEx - overflowed m_Shadows linked list!\n" ) );
return h;
}
//=============================================================================
// HPE_END
//=============================================================================
Shadow_t& shadow = m_Shadows[h];
SetMaterial( shadow, pMaterial, pModelMaterial, pBindProxy );
shadow.m_Flags = creationFlags;
shadow.m_FirstDecal = m_ShadowSurfaces.InvalidIndex();
shadow.m_FirstModel = m_ShadowsOnModels.InvalidIndex();
shadow.m_ProjectionDir.Init( 0, 0, 1 );
shadow.m_TexOrigin.Init( 0, 0 );
shadow.m_TexSize.Init( 1, 1 );
shadow.m_ClipPlaneCount = 0;
shadow.m_FalloffBias = 0;
shadow.m_pFlashlightDepthTexture = NULL;
shadow.m_FlashlightHandle = m_FlashlightStates.InvalidIndex();
if ( ( creationFlags & SHADOW_FLASHLIGHT ) != 0 )
{
shadow.m_FlashlightHandle = m_FlashlightStates.AddToTail();
m_FlashlightStates[shadow.m_FlashlightHandle].m_Shadow = h;
if ( !IsX360() && !r_flashlight_version2.GetInt() )
{
AllocFlashlightMaterialBuckets( shadow.m_FlashlightHandle );
}
}
MatrixSetIdentity( shadow.m_WorldToShadow );
return h;
#endif
}
void CShadowMgr::DestroyShadow( ShadowHandle_t handle )
{
CleanupMaterial( m_Shadows[handle] );
RemoveAllSurfacesFromShadow( handle );
RemoveAllModelsFromShadow( handle );
if( m_Shadows[handle].m_FlashlightHandle != m_FlashlightStates.InvalidIndex() )
{
m_FlashlightStates.Remove( m_Shadows[handle].m_FlashlightHandle );
}
m_Shadows.Remove(handle);
}
//-----------------------------------------------------------------------------
// Resets the shadow material (useful for shadow LOD.. doing blobby at distance)
//-----------------------------------------------------------------------------
void CShadowMgr::SetShadowMaterial( ShadowHandle_t handle, IMaterial* pMaterial, IMaterial* pModelMaterial, void* pBindProxy )
{
Shadow_t& shadow = m_Shadows[handle];
if ( (shadow.m_pMaterial != pMaterial) || (shadow.m_pModelMaterial != pModelMaterial) || (shadow.m_pBindProxy != pBindProxy) )
{
CleanupMaterial( shadow );
SetMaterial( shadow, pMaterial, pModelMaterial, pBindProxy );
}
}
//-----------------------------------------------------------------------------
// Sets the texture coordinate range for a shadow...
//-----------------------------------------------------------------------------
void CShadowMgr::SetShadowTexCoord( ShadowHandle_t handle, float x, float y, float w, float h )
{
Shadow_t& shadow = m_Shadows[handle];
shadow.m_TexOrigin.Init( x, y );
shadow.m_TexSize.Init( w, h );
}
//-----------------------------------------------------------------------------
// Set extra clip planes related to shadows...
//-----------------------------------------------------------------------------
void CShadowMgr::ClearExtraClipPlanes( ShadowHandle_t h )
{
m_Shadows[h].m_ClipPlaneCount = 0;
}
void CShadowMgr::AddExtraClipPlane( ShadowHandle_t h, const Vector& normal, float dist )
{
Shadow_t& shadow = m_Shadows[h];
Assert( shadow.m_ClipPlaneCount < MAX_CLIP_PLANE_COUNT );
VectorCopy( normal, shadow.m_ClipPlane[shadow.m_ClipPlaneCount] );
shadow.m_ClipDist[shadow.m_ClipPlaneCount] = dist;
++shadow.m_ClipPlaneCount;
}
//-----------------------------------------------------------------------------
// Gets at information about a particular shadow
//-----------------------------------------------------------------------------
const ShadowInfo_t& CShadowMgr::GetInfo( ShadowHandle_t handle )
{
return m_Shadows[handle];
}
//-----------------------------------------------------------------------------
// Gets at cache entry...
//-----------------------------------------------------------------------------
ShadowVertex_t* CShadowMgr::GetCachedVerts( const ShadowVertexCache_t& cache )
{
if (cache.m_Count == 0)
return 0 ;
if (cache.m_pVerts)
return cache.m_pVerts;
if (cache.m_Count <= SHADOW_VERTEX_SMALL_CACHE_COUNT)
return m_SmallVertexList[cache.m_CachedVerts].m_Verts;
return m_LargeVertexList[cache.m_CachedVerts].m_Verts;
}
//-----------------------------------------------------------------------------
// Allocates, cleans up vertex cache vertices
//-----------------------------------------------------------------------------
inline ShadowVertex_t* CShadowMgr::AllocateVertices( ShadowVertexCache_t& cache, int count )
{
cache.m_pVerts = 0;
if (count <= SHADOW_VERTEX_SMALL_CACHE_COUNT)
{
cache.m_Count = count;
cache.m_CachedVerts = m_SmallVertexList.AddToTail( );
return m_SmallVertexList[cache.m_CachedVerts].m_Verts;
}
else if (count <= SHADOW_VERTEX_LARGE_CACHE_COUNT)
{
cache.m_Count = count;
cache.m_CachedVerts = m_LargeVertexList.AddToTail( );
return m_LargeVertexList[cache.m_CachedVerts].m_Verts;
}
cache.m_Count = count;
if (count > 0)
{
cache.m_pVerts = new ShadowVertex_t[count];
}
cache.m_CachedVerts = m_LargeVertexList.InvalidIndex();
return cache.m_pVerts;
}
inline void CShadowMgr::FreeVertices( ShadowVertexCache_t& cache )
{
if (cache.m_Count == 0)
return;
if (cache.m_pVerts)
{
delete[] cache.m_pVerts;
}
else if (cache.m_Count <= SHADOW_VERTEX_SMALL_CACHE_COUNT)
{
m_SmallVertexList.Remove( cache.m_CachedVerts );
}
else
{
m_LargeVertexList.Remove( cache.m_CachedVerts );
}
}
//-----------------------------------------------------------------------------
// Clears out vertices in the temporary cache
//-----------------------------------------------------------------------------
void CShadowMgr::ClearTempCache( )
{
// Clear out the vertices
for (int i = m_TempVertexCache.Count(); --i >= 0; )
{
FreeVertices( m_TempVertexCache[i] );
}
m_TempVertexCache.RemoveAll();
}
//-----------------------------------------------------------------------------
// Adds the surface to the list for this shadow
//-----------------------------------------------------------------------------
bool CShadowMgr::AddDecalToShadowList( ShadowHandle_t handle, ShadowDecalHandle_t decalHandle )
{
// Add the shadow to the list of surfaces affected by this shadow
ShadowSurfaceIndex_t idx = m_ShadowSurfaces.Alloc( true );
if ( idx == m_ShadowSurfaces.InvalidIndex() )
{
ExecuteNTimes( 10, Warning( "CShadowMgr::AddDecalToShadowList - overflowed m_ShadowSurfaces linked list!\n" ) );
return false;
}
m_ShadowSurfaces[idx] = decalHandle;
if ( m_Shadows[handle].m_FirstDecal != m_ShadowSurfaces.InvalidIndex() )
{
m_ShadowSurfaces.LinkBefore( m_Shadows[handle].m_FirstDecal, idx );
}
m_Shadows[handle].m_FirstDecal = idx;
m_ShadowDecals[decalHandle].m_ShadowListIndex = idx;
return true;
}
//-----------------------------------------------------------------------------
// Removes the shadow to the list of surfaces
//-----------------------------------------------------------------------------
void CShadowMgr::RemoveDecalFromShadowList( ShadowHandle_t handle, ShadowDecalHandle_t decalHandle )
{
ShadowSurfaceIndex_t idx = m_ShadowDecals[decalHandle].m_ShadowListIndex;
// Make sure the list of shadow decals for a single shadow is ok
if ( m_Shadows[handle].m_FirstDecal == idx )
{
m_Shadows[handle].m_FirstDecal = m_ShadowSurfaces.Next(idx);
}
// Remove it from the shadow surfaces list
m_ShadowSurfaces.Free(idx);
// Blat out the decal index
m_ShadowDecals[decalHandle].m_ShadowListIndex = m_ShadowSurfaces.InvalidIndex();
}
//-----------------------------------------------------------------------------
// Computes spherical bounds for a surface
//-----------------------------------------------------------------------------
void CShadowMgr::ComputeSurfaceBounds( SurfaceBounds_t* pBounds, SurfaceHandle_t nSurfID )
{
pBounds->m_vecCenter.Init();
pBounds->m_vecMins = ReplicateX4( FLT_MAX );
pBounds->m_vecMaxs = ReplicateX4( -FLT_MAX );
int nCount = MSurf_VertCount( nSurfID );
for ( int i = 0; i < nCount; ++i )
{
int nVertIndex = host_state.worldbrush->vertindices[ MSurf_FirstVertIndex( nSurfID ) + i ];
const Vector &position = host_state.worldbrush->vertexes[ nVertIndex ].position;
pBounds->m_vecCenter += position;
fltx4 pos4 = LoadUnaligned3SIMD( position.Base() );
pBounds->m_vecMins = MinSIMD( pos4, pBounds->m_vecMins );
pBounds->m_vecMaxs = MaxSIMD( pos4, pBounds->m_vecMaxs );
}
fltx4 eps = ReplicateX4( 1e-3 );
pBounds->m_vecMins = SetWToZeroSIMD( SubSIMD( pBounds->m_vecMins, eps ) );
pBounds->m_vecMaxs = SetWToZeroSIMD( AddSIMD( pBounds->m_vecMaxs, eps ) );
pBounds->m_vecCenter /= nCount;
pBounds->m_flRadius = 0.0f;
for ( int i = 0; i < nCount; ++i )
{
int nVertIndex = host_state.worldbrush->vertindices[ MSurf_FirstVertIndex( nSurfID ) + i ];
const Vector &position = host_state.worldbrush->vertexes[ nVertIndex ].position;
float flDistSq = position.DistToSqr( pBounds->m_vecCenter );
if ( flDistSq > pBounds->m_flRadius )
{
pBounds->m_flRadius = flDistSq;
}
}
pBounds->m_flRadius = sqrt( pBounds->m_flRadius );
}
//-----------------------------------------------------------------------------
// Get spherical bounds for a surface
//-----------------------------------------------------------------------------
const CShadowMgr::SurfaceBounds_t* CShadowMgr::GetSurfaceBounds( SurfaceHandle_t surfID )
{
int nSurfaceIndex = MSurf_Index( surfID );
// NOTE: We're not bumping the surface index to the front of the LRU
// here, but I think if we did the cost doing that would exceed the cost
// of anything else in this path.
// If this turns out to not be true, then we should make this a true LRU
if ( m_pSurfaceBounds[nSurfaceIndex] != m_SurfaceBoundsCache.InvalidIndex() )
return &m_SurfaceBoundsCache[ m_pSurfaceBounds[nSurfaceIndex] ];
SurfaceBoundsCacheIndex_t nIndex;
if ( m_SurfaceBoundsCache.Count() >= SURFACE_BOUNDS_CACHE_COUNT )
{
// Retire existing cache entry if we're out of space,
// move it to the head of the LRU cache
nIndex = m_SurfaceBoundsCache.Tail( );
m_SurfaceBoundsCache.Unlink( nIndex );
m_SurfaceBoundsCache.LinkToHead( nIndex );
m_pSurfaceBounds[ m_SurfaceBoundsCache[nIndex].m_nSurfaceIndex ] = m_SurfaceBoundsCache.InvalidIndex();
}
else
{
// Allocate new cache entry if we have more room
nIndex = m_SurfaceBoundsCache.AddToHead( );
}
m_pSurfaceBounds[ nSurfaceIndex ] = nIndex;
// Computes the surface bounds
SurfaceBounds_t &bounds = m_SurfaceBoundsCache[nIndex];
bounds.m_nSurfaceIndex = nSurfaceIndex;
ComputeSurfaceBounds( &bounds, surfID );
return &bounds;
}
//-----------------------------------------------------------------------------
// Is the shadow near the surface?
//-----------------------------------------------------------------------------
bool CShadowMgr::IsShadowNearSurface( ShadowHandle_t h, SurfaceHandle_t nSurfID,
const VMatrix* pModelToWorld, const VMatrix* pWorldToModel )
{
const Shadow_t &shadow = m_Shadows[h];
const SurfaceBounds_t* pBounds = GetSurfaceBounds( nSurfID );
Vector vecSurfCenter;
if ( !pModelToWorld )
{
vecSurfCenter = pBounds->m_vecCenter;
}
else
{
Vector3DMultiplyPosition( *pModelToWorld, pBounds->m_vecCenter, vecSurfCenter );
}
// Sphere check
Vector vecDelta;
VectorSubtract( shadow.m_vecSphereCenter, vecSurfCenter, vecDelta );
float flDistSqr = vecDelta.LengthSqr();
float flMinDistSqr = pBounds->m_flRadius + shadow.m_flSphereRadius;
flMinDistSqr *= flMinDistSqr;
if ( flDistSqr >= flMinDistSqr )
return false;
if ( !pModelToWorld )
return IsBoxIntersectingRay( pBounds->m_vecMins, pBounds->m_vecMaxs, shadow.m_Ray );
Ray_t transformedRay;
Vector3DMultiplyPosition( *pWorldToModel, shadow.m_Ray.m_Start, transformedRay.m_Start );
Vector3DMultiply( *pWorldToModel, shadow.m_Ray.m_Delta, transformedRay.m_Delta );
transformedRay.m_StartOffset = shadow.m_Ray.m_StartOffset;
transformedRay.m_Extents = shadow.m_Ray.m_Extents;
transformedRay.m_IsRay = shadow.m_Ray.m_IsRay;
transformedRay.m_IsSwept = shadow.m_Ray.m_IsSwept;
return IsBoxIntersectingRay( pBounds->m_vecMins, pBounds->m_vecMaxs, transformedRay );
}
//-----------------------------------------------------------------------------
// Adds the shadow decal reference to the surface
//-----------------------------------------------------------------------------
inline ShadowDecalHandle_t CShadowMgr::AddShadowDecalToSurface( SurfaceHandle_t surfID, ShadowHandle_t handle )
{
ShadowDecalHandle_t decalHandle = m_ShadowDecals.Alloc( true );
if ( decalHandle == m_ShadowDecals.InvalidIndex() )
{
ExecuteNTimes( 10, Warning( "CShadowMgr::AddShadowDecalToSurface - overflowed m_ShadowDecals linked list!\n" ) );
return decalHandle;
}
ShadowDecal_t& decal = m_ShadowDecals[decalHandle];
decal.m_SurfID = surfID;
m_ShadowDecals.LinkBefore( MSurf_ShadowDecals( surfID ), decalHandle );
MSurf_ShadowDecals( surfID ) = decalHandle;
// Hook the shadow into the displacement system....
if ( !SurfaceHasDispInfo( surfID ) )
{
decal.m_DispShadow = DISP_SHADOW_HANDLE_INVALID;
}
else
{
decal.m_DispShadow = MSurf_DispInfo( surfID )->AddShadowDecal( handle );
}
decal.m_Shadow = handle;
decal.m_ShadowVerts = m_VertexCache.InvalidIndex();
decal.m_NextRender = SHADOW_DECAL_HANDLE_INVALID;
decal.m_ShadowListIndex = m_ShadowSurfaces.InvalidIndex();
//=============================================================================
// HPE_BEGIN:
// [smessick] Check the return value of AddDecalToShadowList and make sure
// to delete the newly created shadow decal if there is a failure.
//=============================================================================
if ( !AddDecalToShadowList( handle, decalHandle ) )
{
m_ShadowDecals.Free( decalHandle );
decalHandle = m_ShadowDecals.InvalidIndex();
}
//=============================================================================
// HPE_END
//=============================================================================
return decalHandle;
}
inline void CShadowMgr::RemoveShadowDecalFromSurface( SurfaceHandle_t surfID, ShadowDecalHandle_t decalHandle )
{
// Clean up its shadow verts if it has any
ShadowDecal_t& decal = m_ShadowDecals[decalHandle];
if (decal.m_ShadowVerts != m_VertexCache.InvalidIndex())
{
FreeVertices( m_VertexCache[decal.m_ShadowVerts] );
m_VertexCache.Remove(decal.m_ShadowVerts);
decal.m_ShadowVerts = m_VertexCache.InvalidIndex();
}
// Clean up displacement...
if ( decal.m_DispShadow != DISP_SHADOW_HANDLE_INVALID )
{
MSurf_DispInfo( decal.m_SurfID )->RemoveShadowDecal( decal.m_DispShadow );
}
// Make sure the list of shadow decals on a surface is set up correctly
if ( MSurf_ShadowDecals( surfID ) == decalHandle )
{
MSurf_ShadowDecals( surfID ) = m_ShadowDecals.Next(decalHandle);
}
RemoveDecalFromShadowList( decal.m_Shadow, decalHandle );
// Kill the shadow decal
m_ShadowDecals.Free( decalHandle );
}
void CShadowMgr::AddSurfaceToFlashlightMaterialBuckets( ShadowHandle_t handle, SurfaceHandle_t surfID )
{
// Make sure that this is a flashlight.
Assert( m_Shadows[handle].m_Flags & SHADOW_FLASHLIGHT );
// Get the flashlight id for this particular shadow handle and make sure that it's valid.
FlashlightHandle_t flashlightID = m_Shadows[handle].m_FlashlightHandle;
Assert( flashlightID != m_FlashlightStates.InvalidIndex() );
m_FlashlightStates[flashlightID].m_MaterialBuckets.AddElement( MSurf_MaterialSortID( surfID ), surfID );
}
//-----------------------------------------------------------------------------
// Adds the shadow decal reference to the surface
// This causes a shadow decal to be made
//-----------------------------------------------------------------------------
void CShadowMgr::AddSurfaceToShadow( ShadowHandle_t handle, SurfaceHandle_t surfID )
{
// FIXME: We could make this work, but there's a perf cost...
// Basically, we'd need to have a separate rendering batch for
// each translucent material the shadow is projected onto. The
// material alpha would have to be taken into account, so that
// no multiplication occurs where the alpha == 0
// FLASHLIGHTFIXME: get rid of some of these checks for the ones that will work just fine with the flashlight.
bool bIsFlashlight = ( ( m_Shadows[handle].m_Flags & SHADOW_FLASHLIGHT ) != 0 );
if ( !bIsFlashlight && MSurf_Flags(surfID) & (SURFDRAW_TRANS | SURFDRAW_ALPHATEST | SURFDRAW_NOSHADOWS) )
return;
#ifdef _XBOX
// Don't let the flashlight get on water on XBox
if ( bIsFlashlight && ( MSurf_Flags(surfID) & SURFDRAW_WATERSURFACE ) )
return;
#endif
#if 0
// Make sure the surface has the shadow on it exactly once...
ShadowDecalHandle_t dh = MSurf_ShadowDecals( surfID );
while (dh != m_ShadowDecals.InvalidIndex() )
{
Assert ( m_ShadowDecals[dh].m_Shadow != handle );
dh = m_ShadowDecals.Next(dh);
}
#endif
// Create a shadow decal for this surface and add it to the surface
AddShadowDecalToSurface( surfID, handle );
}
void CShadowMgr::RemoveSurfaceFromShadow( ShadowHandle_t handle, SurfaceHandle_t surfID )
{
// Find the decal associated with the handle that lies on the surface
// FIXME: Linear search; bleah.
// Luckily the search is probably over only a couple items at most
// Linear searching over the shadow surfaces so we can remove the entry
// in the shadow surface list if we find a match
ASSERT_SURF_VALID( surfID );
ShadowSurfaceIndex_t i = m_Shadows[handle].m_FirstDecal;
while ( i != m_ShadowSurfaces.InvalidIndex() )
{
ShadowDecalHandle_t decalHandle = m_ShadowSurfaces[i];
if ( m_ShadowDecals[decalHandle].m_SurfID == surfID )
{
// Found a match! There should be at most one shadow decal
// associated with a particular shadow per surface
RemoveShadowDecalFromSurface( surfID, decalHandle );
// FIXME: Could check the shadow doesn't appear again in the list
return;
}
i = m_ShadowSurfaces.Next(i);
}
#ifdef _DEBUG
// Here, the shadow didn't have the surface in its list
// let's make sure the surface doesn't think it's got the shadow in its list
ShadowDecalHandle_t dh = MSurf_ShadowDecals( surfID );
while (dh != m_ShadowDecals.InvalidIndex() )
{
Assert ( m_ShadowDecals[dh].m_Shadow != handle );
dh = m_ShadowDecals.Next(dh);
}
#endif
}
void CShadowMgr::RemoveAllSurfacesFromShadow( ShadowHandle_t handle )
{
// Iterate over all the decals associated with a particular shadow
// Remove the decals from the surfaces they are associated with
ShadowSurfaceIndex_t i = m_Shadows[handle].m_FirstDecal;
ShadowSurfaceIndex_t next;
while ( i != m_ShadowSurfaces.InvalidIndex() )
{
ShadowDecalHandle_t decalHandle = m_ShadowSurfaces[i];
next = m_ShadowSurfaces.Next(i);
RemoveShadowDecalFromSurface( m_ShadowDecals[decalHandle].m_SurfID, decalHandle );
i = next;
}
m_Shadows[handle].m_FirstDecal = m_ShadowSurfaces.InvalidIndex();
}
void CShadowMgr::RemoveAllShadowsFromSurface( SurfaceHandle_t surfID )
{
// Iterate over all the decals associated with a particular shadow
// Remove the decals from the surfaces they are associated with
ShadowDecalHandle_t dh = MSurf_ShadowDecals( surfID );
while (dh != m_ShadowDecals.InvalidIndex() )
{
// Remove this shadow from the surface
ShadowDecalHandle_t next = m_ShadowDecals.Next(dh);
// Remove the surface from the shadow
RemoveShadowDecalFromSurface( m_ShadowDecals[dh].m_SurfID, dh );
dh = next;
}
MSurf_ShadowDecals( surfID ) = m_ShadowDecals.InvalidIndex();
}
//-----------------------------------------------------------------------------
// Shadow/model association
//-----------------------------------------------------------------------------
void CShadowMgr::AddShadowToModel( ShadowHandle_t handle, ModelInstanceHandle_t model )
{
// FIXME: Add culling here based on the model bbox
// and the shadow bbox
// FIXME:
/*
// Trivial bbox reject.
Vector bbMin, bbMax;
pDisp->GetBoundingBox( bbMin, bbMax );
if( decalinfo->m_Position.x - decalinfo->m_Size < bbMax.x && decalinfo->m_Position.x + decalinfo->m_Size > bbMin.x &&
decalinfo->m_Position.y - decalinfo->m_Size < bbMax.y && decalinfo->m_Position.y + decalinfo->m_Size > bbMin.y &&
decalinfo->m_Position.z - decalinfo->m_Size < bbMax.z && decalinfo->m_Position.z + decalinfo->m_Size > bbMin.z )
*/
if ( model == MODEL_INSTANCE_INVALID )
{
// async data not loaded yet
return;
}
if( r_flashlightrender.GetBool()==false )
return;
m_ShadowsOnModels.AddElementToBucket( model, handle );
}
void CShadowMgr::RemoveAllShadowsFromModel( ModelInstanceHandle_t model )
{
if( model != MODEL_INSTANCE_INVALID )
{
m_ShadowsOnModels.RemoveBucket( model );
FOR_EACH_LL( m_FlashlightStates, i )
{
FlashlightInfo_t &info = m_FlashlightStates[i];
for( int j=0;j<info.m_Renderables.Count();j++ )
{
if( info.m_Renderables[j]->GetModelInstance() == model )
{
info.m_Renderables.Remove( j );
break;
}
}
}
}
}
void CShadowMgr::RemoveAllModelsFromShadow( ShadowHandle_t handle )
{
m_ShadowsOnModels.RemoveElement( handle );
FOR_EACH_LL( m_FlashlightStates, i )
{
FlashlightInfo_t &info = m_FlashlightStates[i];
if( info.m_Shadow==handle )
{
info.m_Renderables.RemoveAll();
}
}
}
//-----------------------------------------------------------------------------
// Shadow state...
//-----------------------------------------------------------------------------
void CShadowMgr::SetModelShadowState( ModelInstanceHandle_t instance )
{
#ifndef SWDS
g_pStudioRender->ClearAllShadows();
if (instance != MODEL_INSTANCE_INVALID && r_shadows.GetInt() )
{
bool bWireframe = r_shadowwireframe.GetBool();
unsigned short i = m_ShadowsOnModels.FirstElement( instance );
while ( i != m_ShadowsOnModels.InvalidIndex() )
{
Shadow_t& shadow = m_Shadows[m_ShadowsOnModels.Element(i)];
if( !bWireframe )
{
if( shadow.m_Flags & SHADOW_FLASHLIGHT )
{
// NULL means that the models material should be used.
// This is what we want in the case of the flashlight
// since we need to render the models material again with different lighting.
// Need to add something here to specify which flashlight.
g_pStudioRender->AddShadow( NULL, NULL, &m_FlashlightStates[shadow.m_FlashlightHandle].m_FlashlightState, &shadow.m_WorldToShadow, shadow.m_pFlashlightDepthTexture );
}
else if( r_shadows_gamecontrol.GetInt() != 0 )
{
g_pStudioRender->AddShadow( shadow.m_pModelMaterial, shadow.m_pBindProxy );
}
}
else if( ( shadow.m_Flags & SHADOW_FLASHLIGHT ) || r_shadows_gamecontrol.GetInt() != 0 )
{
g_pStudioRender->AddShadow( g_pMaterialMRMWireframe, NULL );
}
i = m_ShadowsOnModels.NextElement(i);
}
}
#endif
}
bool CShadowMgr::ModelHasShadows( ModelInstanceHandle_t instance )
{
if ( instance != MODEL_INSTANCE_INVALID )
{
if ( m_ShadowsOnModels.FirstElement(instance) != m_ShadowsOnModels.InvalidIndex() )
return true;
}
return false;
}
//-----------------------------------------------------------------------------
// Applies the shadow to a surface
//-----------------------------------------------------------------------------
void CShadowMgr::ApplyShadowToSurface( ShadowBuildInfo_t& build, SurfaceHandle_t surfID )
{
// We've found a potential surface to add to the shadow
// At this point, we want to do fast culling to see whether we actually
// should apply the shadow or not before actually adding it to any lists
// FIXME: implement
// Put the texture extents into shadow space; see if there's an intersection
// If not, we can early out
// To do this, we're gonna want to project the surface into the space of the decal
// Therefore, we want to produce a surface->world transformation, and a
// world->shadow/light space transformation
// Then we transform the surface points into shadow space and apply the projection
// in shadow space.
/*
// Get the texture associated with this surface
mtexinfo_t* tex = pSurface->texinfo;
Vector4D &textureU = tex->textureVecsTexelsPerWorldUnits[0];
Vector4D &textureV = tex->textureVecsTexelsPerWorldUnits[1];
// project decal center into the texture space of the surface
float s = DotProduct( decalinfo->m_Position, textureU.AsVector3D() ) +
textureU.w - surf->textureMins[0];
float t = DotProduct( decalinfo->m_Position, textureV.AsVector3D() ) +
textureV.w - surf->textureMins[1];
*/
// Don't do any more computation at the moment, only do it if
// we end up rendering the surface later on
AddSurfaceToShadow( build.m_Shadow, surfID );
}
//-----------------------------------------------------------------------------
// Applies the shadow to a displacement
//-----------------------------------------------------------------------------
void CShadowMgr::ApplyShadowToDisplacement( ShadowBuildInfo_t& build, IDispInfo *pDispInfo, bool bIsFlashlight )
{
// Avoid noshadow displacements
if ( !bIsFlashlight && ( MSurf_Flags( pDispInfo->GetParent() ) & SURFDRAW_NOSHADOWS ) )
return;
// Trivial bbox reject.
Vector bbMin, bbMax;
pDispInfo->GetBoundingBox( bbMin, bbMax );
if ( !bIsFlashlight )
{
if ( !IsBoxIntersectingSphere( bbMin, bbMax, build.m_vecSphereCenter, build.m_flSphereRadius ) )
return;
}
else
{
if( R_CullBox( bbMin, bbMax, GetFlashlightFrustum( build.m_Shadow ) ) )
return;
}
SurfaceHandle_t surfID = pDispInfo->GetParent();
if ( surfID->m_bDynamicShadowsEnabled == false && !bIsFlashlight )
return;
AddSurfaceToShadow( build.m_Shadow, surfID );
}
//-----------------------------------------------------------------------------
// Allows us to disable particular shadows
//-----------------------------------------------------------------------------
void CShadowMgr::EnableShadow( ShadowHandle_t handle, bool bEnable )
{
if (!bEnable)
{
// We need to remove the shadow from all surfaces it may currently be in
RemoveAllSurfacesFromShadow( handle );
RemoveAllModelsFromShadow( handle );
m_Shadows[handle].m_Flags |= SHADOW_DISABLED;
}
else
{
// FIXME: Could make this recompute the cache...
m_Shadows[handle].m_Flags &= ~SHADOW_DISABLED;
}
}
//-----------------------------------------------------------------------------
// Purpose: Set the darkness falloff bias
// Input : shadow -
// ucBias -
//-----------------------------------------------------------------------------
void CShadowMgr::SetFalloffBias( ShadowHandle_t shadow, unsigned char ucBias )
{
m_Shadows[shadow].m_FalloffBias = ucBias;
}
//-----------------------------------------------------------------------------
// Recursive routine to find surface to apply a decal to. World coordinates of
// the decal are passed in r_recalpos like the rest of the engine. This should
// be called through R_DecalShoot()
//-----------------------------------------------------------------------------
void CShadowMgr::ProjectShadow( ShadowHandle_t handle, const Vector &origin,
const Vector& projectionDir, const VMatrix& worldToShadow, const Vector2D& size,
int nLeafCount, const int *pLeafList,
float maxHeight, float falloffOffset, float falloffAmount, const Vector &vecCasterOrigin )
{
VPROF_BUDGET( "CShadowMgr::ProjectShadow", VPROF_BUDGETGROUP_SHADOW_RENDERING );
// First, we need to remove the shadow from all surfaces it may
// currently be in; in other words we're invalidating the shadow surface cache
RemoveAllSurfacesFromShadow( handle );
RemoveAllModelsFromShadow( handle );
// Don't bother with this shadow if it's disabled
Shadow_t &shadow = m_Shadows[handle];
if ( shadow.m_Flags & SHADOW_DISABLED )
return;
// Don't compute the surface cache if shadows are off..
if ( !r_shadows.GetInt() )
return;
// Set the falloff coefficient
shadow.m_FalloffOffset = falloffOffset;
VectorCopy( projectionDir, shadow.m_ProjectionDir );
// We need to know about surfaces in leaves hit by the ray...
// We'd like to stop iterating as soon as the entire swept volume
// enters a solid leaf; that may be hard to determine. Instead,
// we should stop iterating when the ray center enters a solid leaf?
AssertFloatEquals( projectionDir.LengthSqr(), 1.0f, 1e-3 );
// The maximum ray distance is equal to the distance it takes the
// falloff to get to 15%.
shadow.m_MaxDist = maxHeight; //sqrt( coeff / 0.10f ) + falloffOffset;
shadow.m_FalloffAmount = falloffAmount;
MatrixCopy( worldToShadow, shadow.m_WorldToShadow );
// Compute a rough bounding sphere for the ray
float flRadius = sqrt( size.x * size.x + size.y * size.y ) * 0.5f;
VectorMA( origin, 0.5f * maxHeight, projectionDir, shadow.m_vecSphereCenter );
shadow.m_flSphereRadius = 0.5f * maxHeight + flRadius;
Vector vecEndPoint;
Vector vecMins( -flRadius, -flRadius, -flRadius );
Vector vecMaxs( flRadius, flRadius, flRadius );
VectorMA( origin, maxHeight, projectionDir, vecEndPoint );
shadow.m_Ray.Init( origin, vecEndPoint, vecMins, vecMaxs );
// No more work necessary if it hits no leaves
if ( nLeafCount == 0 )
return;
// We're hijacking the surface vis frame to make sure we enumerate
// surfaces only once;
++r_surfacevisframe;
// Clear out the displacement tags also
DispInfo_ClearAllTags( host_state.worldbrush->hDispInfos );
ShadowBuildInfo_t build;
build.m_Shadow = handle;
build.m_RayStart = origin;
build.m_pVis = NULL;
build.m_vecSphereCenter = shadow.m_vecSphereCenter;
build.m_flSphereRadius = shadow.m_flSphereRadius;
VectorCopy( projectionDir, build.m_ProjectionDirection );
// Enumerate leaves
for ( int i = 0; i < nLeafCount; ++i )
{
// NOTE: Scope specifier eliminates virtual function call
CShadowMgr::EnumerateLeaf( pLeafList[i], (int)&build );
}
}
void DrawFrustum( Frustum_t &frustum )
{
const int maxPoints = 8;
int i;
for( i = 0; i < FRUSTUM_NUMPLANES; i++ )
{
Vector points[maxPoints];
Vector points2[maxPoints];
int numPoints = PolyFromPlane( points, frustum.GetPlane( i )->normal, frustum.GetPlane( i )->dist );
Assert( numPoints <= maxPoints );
Vector *in, *out;
in = points;
out = points2;
int j;
for( j = 0; j < FRUSTUM_NUMPLANES; j++ )
{
if( i == j )
{
continue;
}
numPoints = ClipPolyToPlane( in, numPoints, out, frustum.GetPlane( j )->normal, frustum.GetPlane( j )->dist );
Assert( numPoints <= maxPoints );
V_swap( in, out );
}
int c;
for( c = 0; c < numPoints; c++ )
{
CDebugOverlay::AddLineOverlay( in[c], in[(c+1)%numPoints], 0, 255, 0, 255, true, 0.0f );
}
}
}
//static void LineDrawHelper( const Vector &startShadowSpace, const Vector &endShadowSpace,
// const VMatrix &shadowToWorld, unsigned char r, unsigned char g,
// unsigned char b, bool ignoreZ )
//{
// Vector startWorldSpace, endWorldSpace;
// Vector3DMultiplyPositionProjective( shadowToWorld, startShadowSpace, startWorldSpace );
// Vector3DMultiplyPositionProjective( shadowToWorld, endShadowSpace, endWorldSpace );
//
// CDebugOverlay::AddLineOverlay( startWorldSpace,
// endWorldSpace,
// r, g, b, ignoreZ
// , 0.0 );
//}
void CShadowMgr::ProjectFlashlight( ShadowHandle_t handle, const VMatrix& worldToShadow, int nLeafCount, const int *pLeafList )
{
VPROF_BUDGET( "CShadowMgr::ProjectFlashlight", VPROF_BUDGETGROUP_SHADOW_DEPTH_TEXTURING );
Shadow_t& shadow = m_Shadows[handle];
if ( !IsX360() && !r_flashlight_version2.GetInt() )
{
// First, we need to remove the shadow from all surfaces it may
// currently be in; in other words we're invalidating the shadow surface cache
RemoveAllSurfacesFromShadow( handle );
RemoveAllModelsFromShadow( handle );
m_FlashlightStates[ shadow.m_FlashlightHandle ].m_OccluderBuckets.Flush();
}
// Don't bother with this shadow if it's disabled
if ( m_Shadows[handle].m_Flags & SHADOW_DISABLED )
return;
// Don't compute the surface cache if shadows are off..
if ( !r_shadows.GetInt() )
return;
MatrixCopy( worldToShadow, shadow.m_WorldToShadow );
// We need this for our various bounding computations
VMatrix shadowToWorld;
MatrixInverseGeneral( shadow.m_WorldToShadow, shadowToWorld );
// Set up the frustum for the flashlight so that we can cull each leaf against it.
Assert( shadow.m_Flags & SHADOW_FLASHLIGHT );
Frustum_t &frustum = m_FlashlightStates[shadow.m_FlashlightHandle].m_Frustum;
FrustumPlanesFromMatrix( shadowToWorld, frustum );
CalculateSphereFromProjectionMatrixInverse( shadowToWorld, &shadow.m_vecSphereCenter, &shadow.m_flSphereRadius );
if ( nLeafCount == 0 )
return;
// We're hijacking the surface vis frame to make sure we enumerate
// surfaces only once;
++r_surfacevisframe;
// Clear out the displacement tags also
DispInfo_ClearAllTags( host_state.worldbrush->hDispInfos );
ShadowBuildInfo_t build;
build.m_Shadow = handle;
build.m_RayStart = m_FlashlightStates[shadow.m_FlashlightHandle].m_FlashlightState.m_vecLightOrigin;
build.m_pVis = NULL;
build.m_vecSphereCenter = shadow.m_vecSphereCenter;
build.m_flSphereRadius = shadow.m_flSphereRadius;
if( r_flashlightdrawfrustumbbox.GetBool() )
{
Vector mins, maxs;
CalculateAABBFromProjectionMatrixInverse( shadowToWorld, &mins, &maxs );
CDebugOverlay::AddBoxOverlay( Vector( 0.0f, 0.0f, 0.0f ), mins, maxs, QAngle( 0, 0, 0 ),
0, 0, 255, 100, 0.0f );
}
for ( int i = 0; i < nLeafCount; ++i )
{
// NOTE: Scope specifier eliminates virtual function call
CShadowMgr::EnumerateLeaf( pLeafList[i], (int)&build );
}
}
//-----------------------------------------------------------------------------
// Applies the flashlight to all surfaces in the leaf
//-----------------------------------------------------------------------------
void CShadowMgr::ApplyFlashlightToLeaf( const Shadow_t &shadow, mleaf_t* pLeaf, ShadowBuildInfo_t* pBuild )
{
// Get the bounds of the leaf so that we can test it against the flashlight frustum.
Vector leafMins, leafMaxs;
VectorAdd( pLeaf->m_vecCenter, pLeaf->m_vecHalfDiagonal, leafMaxs );
VectorSubtract( pLeaf->m_vecCenter, pLeaf->m_vecHalfDiagonal, leafMins );
// The flashlight frustum didn't intersect the bounding box for this leaf! Get outta here!
if( R_CullBox( leafMins, leafMaxs, GetFlashlightFrustum( pBuild->m_Shadow ) ) )
return;
// Iterate over all surfaces in the leaf, check for backfacing
// and apply the shadow to the surface if it's not backfaced.
// Note that this really only indicates that the shadow may potentially
// sit on the surface; when we render, we'll actually do the clipping
// computation and at that point we'll remove surfaces that don't
// actually hit the surface
bool bCullDepth = r_flashlightculldepth.GetBool();
SurfaceHandle_t *pHandle = &host_state.worldbrush->marksurfaces[pLeaf->firstmarksurface];
for ( int i = 0; i < pLeaf->nummarksurfaces; i++ )
{
SurfaceHandle_t surfID = pHandle[i];
// only process each surface once;
if( MSurf_VisFrame( surfID ) == r_surfacevisframe )
continue;
MSurf_VisFrame( surfID ) = r_surfacevisframe;
Assert( !MSurf_DispInfo( surfID ) );
// perspective projection
// world-space vertex
int vertIndex = host_state.worldbrush->vertindices[MSurf_FirstVertIndex( surfID )];
Vector& worldPos = host_state.worldbrush->vertexes[vertIndex].position;
// Get the lookdir
Vector lookdir;
VectorSubtract( worldPos, pBuild->m_RayStart, lookdir );
VectorNormalize( lookdir );
const cplane_t &surfPlane = MSurf_Plane( surfID );
// Now apply the spherical cull
float flDist = DotProduct( surfPlane.normal, pBuild->m_vecSphereCenter ) - surfPlane.dist;
if ( fabs(flDist) >= pBuild->m_flSphereRadius )
continue;
ApplyShadowToSurface( *pBuild, surfID );
// Backface cull
if( bCullDepth )
{
if ( (MSurf_Flags( surfID ) & SURFDRAW_NOCULL) == 0 )
{
if ( DotProduct(surfPlane.normal, lookdir) < BACKFACE_EPSILON )
continue;
}
else
{
// Avoid edge-on shadows regardless.
float dot = DotProduct(surfPlane.normal, lookdir);
if (fabs(dot) < BACKFACE_EPSILON)
continue;
}
}
FlashlightInfo_t &flashlightInfo = m_FlashlightStates[ shadow.m_FlashlightHandle ];
flashlightInfo.m_OccluderBuckets.AddElement( MSurf_MaterialSortID( surfID ), surfID );
}
}
//-----------------------------------------------------------------------------
// Applies a shadow to all surfaces in the leaf
//-----------------------------------------------------------------------------
void CShadowMgr::ApplyShadowToLeaf( const Shadow_t &shadow, mleaf_t* RESTRICT pLeaf, ShadowBuildInfo_t* RESTRICT pBuild )
{
// Iterate over all surfaces in the leaf, check for backfacing
// and apply the shadow to the surface if it's not backfaced.
// Note that this really only indicates that the shadow may potentially
// sit on the surface; when we render, we'll actually do the clipping
// computation and at that point we'll remove surfaces that don't
// actually hit the surface
SurfaceHandle_t *pHandle = &host_state.worldbrush->marksurfaces[pLeaf->firstmarksurface];
for ( int i = 0; i < pLeaf->nummarksurfaces; i++ )
{
SurfaceHandleRestrict_t surfID = pHandle[i];
// only process each surface once;
if( MSurf_VisFrame( surfID ) == r_surfacevisframe )
continue;
MSurf_VisFrame( surfID ) = r_surfacevisframe;
Assert( !MSurf_DispInfo( surfID ) );
// If this surface has specifically had dynamic shadows disabled on it, then get out!
if ( !MSurf_AreDynamicShadowsEnabled( surfID ) )
continue;
// Backface cull
const cplane_t * RESTRICT pSurfPlane = &MSurf_Plane( surfID );
bool bInFront;
if ( (MSurf_Flags( surfID ) & SURFDRAW_NOCULL) == 0 )
{
if ( DotProduct( pSurfPlane->normal, pBuild->m_ProjectionDirection) > -BACKFACE_EPSILON )
continue;
bInFront = true;
}
else
{
// Avoid edge-on shadows regardless.
float dot = DotProduct( pSurfPlane->normal, pBuild->m_ProjectionDirection );
if (fabs(dot) < BACKFACE_EPSILON)
continue;
bInFront = (dot < 0);
}
// Here, it's front facing...
// Discard stuff on the wrong side of the ray start
if (bInFront)
{
if ( DotProduct( pSurfPlane->normal, pBuild->m_RayStart) < pSurfPlane->dist )
continue;
}
else
{
if ( DotProduct( pSurfPlane->normal, pBuild->m_RayStart) > pSurfPlane->dist )
continue;
}
// Now apply the spherical cull
float flDist = DotProduct( pSurfPlane->normal, pBuild->m_vecSphereCenter ) - pSurfPlane->dist;
if ( fabs(flDist) >= pBuild->m_flSphereRadius )
continue;
ApplyShadowToSurface( *pBuild, surfID );
}
}
#define BIT_SET( a, b ) ((a)[(b)>>3] & (1<<((b)&7)))
//-----------------------------------------------------------------------------
// Applies a projected texture to all surfaces in the leaf
//-----------------------------------------------------------------------------
bool CShadowMgr::EnumerateLeaf( int leaf, int context )
{
VPROF( "CShadowMgr::EnumerateLeaf" );
ShadowBuildInfo_t* pBuild = (ShadowBuildInfo_t*)context;
// Skip this leaf if it's not visible from the shadow caster
if ( pBuild->m_pVis )
{
int cluster = CM_LeafCluster( leaf );
if ( !BIT_SET( pBuild->m_pVis, cluster ) )
return true;
}
const Shadow_t &shadow = m_Shadows[pBuild->m_Shadow];
mleaf_t* pLeaf = &host_state.worldbrush->leafs[leaf];
bool bIsFlashlight;
if( shadow.m_Flags & SHADOW_FLASHLIGHT )
{
bIsFlashlight = true;
ApplyFlashlightToLeaf( shadow, pLeaf, pBuild );
}
else
{
bIsFlashlight = false;
ApplyShadowToLeaf( shadow, pLeaf, pBuild );
}
// Add the decal to each displacement in the leaf it touches.
for ( int i = 0; i < pLeaf->dispCount; i++ )
{
IDispInfo *pDispInfo = MLeaf_Disaplcement( pLeaf, i );
// Make sure the decal hasn't already been added to it.
if( pDispInfo->GetTag() )
continue;
pDispInfo->SetTag();
ApplyShadowToDisplacement( *pBuild, pDispInfo, bIsFlashlight );
}
return true;
}
//-----------------------------------------------------------------------------
// Adds a shadow to a brush model
//-----------------------------------------------------------------------------
void CShadowMgr::AddShadowToBrushModel( ShadowHandle_t handle, model_t* pModel,
const Vector& origin, const QAngle& angles )
{
// Don't compute the surface cache if shadows are off..
if ( !r_shadows.GetInt() )
return;
const Shadow_t * RESTRICT pShadow = &m_Shadows[handle];
// Transform the shadow ray direction into model space
Vector shadowDirInModelSpace;
bool bIsFlashlight = ( pShadow->m_Flags & SHADOW_FLASHLIGHT ) != 0;
if( !bIsFlashlight )
{
// FLASHLIGHTFIXME: should do backface culling for projective light sources.
matrix3x4_t worldToModel;
AngleIMatrix( angles, worldToModel );
VectorRotate( pShadow->m_ProjectionDir, worldToModel, shadowDirInModelSpace );
}
// Just add all non-backfacing brush surfaces to the list of potential
// surfaces that we may be casting a shadow onto.
SurfaceHandleRestrict_t surfID = SurfaceHandleFromIndex( pModel->brush.firstmodelsurface, pModel->brush.pShared );
for (int i=0; i<pModel->brush.nummodelsurfaces; ++i, ++surfID)
{
// Don't bother with nodraw surfaces
int nFlags = MSurf_Flags( surfID );
if ( nFlags & SURFDRAW_NODRAW )
continue;
if( !bIsFlashlight )
{
// FLASHLIGHTFIXME: should do backface culling for projective light sources.
// Don't bother with backfacing surfaces
if ( (nFlags & SURFDRAW_NOCULL) == 0 )
{
const cplane_t * RESTRICT pSurfPlane = &MSurf_Plane( surfID );
float dot = DotProduct( shadowDirInModelSpace, pSurfPlane->normal );
if ( dot > 0 )
continue;
}
}
// FIXME: We may want to do some more high-level per-surface culling
// If so, it'll be added to ApplyShadowToSurface. Call it instead.
AddSurfaceToShadow( handle, surfID );
}
}
//-----------------------------------------------------------------------------
// Removes all shadows from a brush model
//-----------------------------------------------------------------------------
void CShadowMgr::RemoveAllShadowsFromBrushModel( model_t* pModel )
{
SurfaceHandle_t surfID = SurfaceHandleFromIndex( pModel->brush.firstmodelsurface, pModel->brush.pShared );
for (int i=0; i<pModel->brush.nummodelsurfaces; ++i, ++surfID)
{
RemoveAllShadowsFromSurface( surfID );
}
}
//-----------------------------------------------------------------------------
// Adds the shadow decals on the surface to a queue of things to render
//-----------------------------------------------------------------------------
void CShadowMgr::AddShadowsOnSurfaceToRenderList( ShadowDecalHandle_t decalHandle )
{
// Don't compute the surface cache if shadows are off..
if (!r_shadows.GetInt() )
return;
// Add all surface decals into the appropriate render lists
while( decalHandle != m_ShadowDecals.InvalidIndex() )
{
ShadowDecal_t& shadowDecal = m_ShadowDecals[decalHandle];
if( m_Shadows[shadowDecal.m_Shadow].m_Flags & SHADOW_FLASHLIGHT )
{
AddSurfaceToFlashlightMaterialBuckets( shadowDecal.m_Shadow, shadowDecal.m_SurfID );
// We've got one more decal to render
++m_DecalsToRender;
}
else if( r_shadows_gamecontrol.GetInt() != 0 )
{
// For shadow rendering, hook the decal into the render list based on the shadow material, not the surface material.
int sortOrder = m_Shadows[shadowDecal.m_Shadow].m_SortOrder;
m_ShadowDecals[decalHandle].m_NextRender = m_RenderQueue[sortOrder];
m_RenderQueue[sortOrder] = decalHandle;
// We've got one more decal to render
++m_DecalsToRender;
}
decalHandle = m_ShadowDecals.Next(decalHandle);
}
}
void CShadowMgr::ClearShadowRenderList()
{
COMPILE_TIME_ASSERT( sizeof(ShadowDecalHandle_t) == 2 );
// Clear out the render list
if (m_RenderQueue.Count() > 0)
{
memset( m_RenderQueue.Base(), 0xFF, m_RenderQueue.Count() * sizeof(ShadowDecalHandle_t) );
}
m_DecalsToRender = 0;
// Clear all lists pertaining to flashlight decals that need to be rendered.
ClearAllFlashlightMaterialBuckets();
}
void CShadowMgr::RenderShadows( const VMatrix* pModelToWorld )
{
VPROF_BUDGET( "CShadowMgr::RenderShadows", VPROF_BUDGETGROUP_SHADOW_RENDERING );
// Iterate through all sort ids and render for regular shadows, which get their materials from the shadow material.
CMatRenderContextPtr pRenderContext( materials );
int i;
for( i = 0; i < m_RenderQueue.Count(); ++i )
{
if (m_RenderQueue[i] != m_ShadowDecals.InvalidIndex())
{
RenderShadowList(pRenderContext, m_RenderQueue[i], pModelToWorld );
}
}
}
void CShadowMgr::RenderProjectedTextures( const VMatrix* pModelToWorld )
{
VPROF_BUDGET( "CShadowMgr::RenderProjectedTextures", VPROF_BUDGETGROUP_SHADOW_RENDERING );
RenderFlashlights( true, pModelToWorld );
RenderShadows( pModelToWorld );
// Clear out the render list, we've rendered it now
ClearShadowRenderList();
}
//-----------------------------------------------------------------------------
// A 2D sutherland-hodgman clipper
//-----------------------------------------------------------------------------
class CClipTop
{
public:
static inline bool Inside( ShadowVertex_t const& vert ) { return vert.m_ShadowSpaceTexCoord.y < 1;}
static inline float Clip( const Vector& one, const Vector& two ) { return (1 - one.y) / (two.y - one.y);}
static inline bool IsPlane() {return false;}
static inline bool IsAbove() {return false;}
};
class CClipLeft
{
public:
static inline bool Inside( ShadowVertex_t const& vert ) { return vert.m_ShadowSpaceTexCoord.x > 0;}
static inline float Clip( const Vector& one, const Vector& two ) { return one.x / (one.x - two.x);}
static inline bool IsPlane() {return false;}
static inline bool IsAbove() {return false;}
};
class CClipRight
{
public:
static inline bool Inside( ShadowVertex_t const& vert ) {return vert.m_ShadowSpaceTexCoord.x < 1;}
static inline float Clip( const Vector& one, const Vector& two ) {return (1 - one.x) / (two.x - one.x);}
static inline bool IsPlane() {return false;}
static inline bool IsAbove() {return false;}
};
class CClipBottom
{
public:
static inline bool Inside( ShadowVertex_t const& vert ) {return vert.m_ShadowSpaceTexCoord.y > 0;}
static inline float Clip( const Vector& one, const Vector& two ) {return one.y / (one.y - two.y);}
static inline bool IsPlane() {return false;}
static inline bool IsAbove() {return false;}
};
class CClipAbove
{
public:
static inline bool Inside( ShadowVertex_t const& vert ) {return vert.m_ShadowSpaceTexCoord.z > 0;}
static inline float Clip( const Vector& one, const Vector& two ) {return one.z / (one.z - two.z);}
static inline bool IsPlane() {return false;}
static inline bool IsAbove() {return true;}
};
class CClipPlane
{
public:
static inline bool Inside( ShadowVertex_t const& vert )
{
return DotProduct( vert.m_Position, *m_pNormal ) < m_Dist;
}
static inline float Clip( const Vector& one, const Vector& two )
{
Vector dir;
VectorSubtract( two, one, dir );
return IntersectRayWithPlane( one, dir, *m_pNormal, m_Dist );
}
static inline bool IsAbove() {return false;}
static inline bool IsPlane() {return true;}
static void SetPlane( const Vector& normal, float dist )
{
m_pNormal = &normal;
m_Dist = dist;
}
private:
static const Vector *m_pNormal;
static float m_Dist;
};
const Vector *CClipPlane::m_pNormal;
float CClipPlane::m_Dist;
static inline void ClampTexCoord( ShadowVertex_t *pInVertex, ShadowVertex_t *pOutVertex )
{
if ( fabs(pInVertex->m_ShadowSpaceTexCoord[0]) < 1e-3 )
pOutVertex->m_ShadowSpaceTexCoord[0] = 0.0f;
else if ( fabs(pInVertex->m_ShadowSpaceTexCoord[0] - 1.0f) < 1e-3 )
pOutVertex->m_ShadowSpaceTexCoord[0] = 1.0f;
if ( fabs(pInVertex->m_ShadowSpaceTexCoord[1]) < 1e-3 )
pOutVertex->m_ShadowSpaceTexCoord[1] = 0.0f;
else if ( fabs(pInVertex->m_ShadowSpaceTexCoord[1] - 1.0f) < 1e-3 )
pOutVertex->m_ShadowSpaceTexCoord[1] = 1.0f;
}
template <class Clipper>
static inline void Intersect( ShadowVertex_t* pStart, ShadowVertex_t* pEnd, ShadowVertex_t* pOut, bool startInside, Clipper& clipper )
{
// Clip the edge to the clip plane
float t;
if (!Clipper::IsPlane())
{
if (!Clipper::IsAbove())
{
// This is the path the we always take for perspective light volumes.
t = Clipper::Clip( pStart->m_ShadowSpaceTexCoord, pEnd->m_ShadowSpaceTexCoord );
VectorLerp( pStart->m_ShadowSpaceTexCoord, pEnd->m_ShadowSpaceTexCoord, t, pOut->m_ShadowSpaceTexCoord );
}
else
{
t = Clipper::Clip( pStart->m_ShadowSpaceTexCoord, pEnd->m_ShadowSpaceTexCoord );
VectorLerp( pStart->m_ShadowSpaceTexCoord, pEnd->m_ShadowSpaceTexCoord, t, pOut->m_ShadowSpaceTexCoord );
// This is a special thing we do here to avoid hard-edged shadows
if (startInside)
ClampTexCoord( pEnd, pOut );
else
ClampTexCoord( pStart, pOut );
}
}
else
{
t = Clipper::Clip( pStart->m_Position, pEnd->m_Position );
VectorLerp( pStart->m_ShadowSpaceTexCoord, pEnd->m_ShadowSpaceTexCoord, t, pOut->m_ShadowSpaceTexCoord );
}
VectorLerp( pStart->m_Position, pEnd->m_Position, t, pOut->m_Position );
}
template <class Clipper>
static void ShadowClip( ShadowClipState_t& clip, Clipper& clipper )
{
if ( clip.m_ClipCount == 0 )
return;
// Ye Olde Sutherland-Hodgman clipping algorithm
int numOutVerts = 0;
ShadowVertex_t** pSrcVert = clip.m_ppClipVertices[clip.m_CurrVert];
ShadowVertex_t** pDestVert = clip.m_ppClipVertices[!clip.m_CurrVert];
int numVerts = clip.m_ClipCount;
ShadowVertex_t* pStart = pSrcVert[numVerts-1];
bool startInside = Clipper::Inside( *pStart );
for (int i = 0; i < numVerts; ++i)
{
ShadowVertex_t* pEnd = pSrcVert[i];
bool endInside = Clipper::Inside( *pEnd );
if (endInside)
{
if (!startInside)
{
// Started outside, ended inside, need to clip the edge
if ( clip.m_TempCount >= SHADOW_VERTEX_TEMP_COUNT )
return;
// Allocate a new clipped vertex
pDestVert[numOutVerts] = &clip.m_pTempVertices[clip.m_TempCount++];
// Clip the edge to the clip plane
Intersect( pStart, pEnd, pDestVert[numOutVerts], startInside, clipper );
++numOutVerts;
}
pDestVert[numOutVerts++] = pEnd;
}
else
{
if (startInside)
{
// Started inside, ended outside, need to clip the edge
if ( clip.m_TempCount >= SHADOW_VERTEX_TEMP_COUNT )
return;
// Allocate a new clipped vertex
pDestVert[numOutVerts] = &clip.m_pTempVertices[clip.m_TempCount++];
// Clip the edge to the clip plane
Intersect( pStart, pEnd, pDestVert[numOutVerts], startInside, clipper );
++numOutVerts;
}
}
pStart = pEnd;
startInside = endInside;
}
// Switch source lists
clip.m_CurrVert = 1 - clip.m_CurrVert;
clip.m_ClipCount = numOutVerts;
Assert( clip.m_ClipCount <= SHADOW_VERTEX_TEMP_COUNT );
}
//-----------------------------------------------------------------------------
// Project vertices into shadow space
//-----------------------------------------------------------------------------
bool CShadowMgr::ProjectVerticesIntoShadowSpace( const VMatrix& modelToShadow,
float maxDist, int count, Vector** RESTRICT ppPosition, ShadowClipState_t& clip )
{
bool insideVolume = false;
// Create vertices to clip to...
for (int i = 0; i < count; ++i )
{
Assert( ppPosition[i] );
VectorCopy( *ppPosition[i], clip.m_pTempVertices[i].m_Position );
// Project the points into shadow texture space
Vector3DMultiplyPosition( modelToShadow, *ppPosition[i], clip.m_pTempVertices[i].m_ShadowSpaceTexCoord );
// Set up clipping coords...
clip.m_ppClipVertices[0][i] = &clip.m_pTempVertices[i];
if (clip.m_pTempVertices[i].m_ShadowSpaceTexCoord[2] < maxDist )
{
insideVolume = true;
}
}
clip.m_TempCount = clip.m_ClipCount = count;
clip.m_CurrVert = 0;
return insideVolume;
}
//-----------------------------------------------------------------------------
// Projects + clips shadows
//-----------------------------------------------------------------------------
int CShadowMgr::ProjectAndClipVertices( const Shadow_t& shadow, const VMatrix& worldToShadow,
const VMatrix *pWorldToModel, int count, Vector** ppPosition, ShadowVertex_t*** ppOutVertex )
{
VPROF( "ProjectAndClipVertices" );
static ShadowClipState_t clip;
if ( !ProjectVerticesIntoShadowSpace( worldToShadow, shadow.m_MaxDist, count, ppPosition, clip ) )
return 0;
// Clippers...
CClipTop top;
CClipBottom bottom;
CClipLeft left;
CClipRight right;
CClipAbove above;
CClipPlane plane;
// Sutherland-hodgman clip
ShadowClip( clip, top );
ShadowClip( clip, bottom );
ShadowClip( clip, left );
ShadowClip( clip, right );
ShadowClip( clip, above );
// Planes to suppress back-casting
for (int i = 0; i < shadow.m_ClipPlaneCount; ++i)
{
if ( pWorldToModel )
{
cplane_t worldPlane, modelPlane;
worldPlane.normal = shadow.m_ClipPlane[i];
worldPlane.dist = shadow.m_ClipDist[i];
MatrixTransformPlane( *pWorldToModel, worldPlane, modelPlane );
plane.SetPlane( modelPlane.normal, modelPlane.dist );
}
else
{
plane.SetPlane( shadow.m_ClipPlane[i], shadow.m_ClipDist[i] );
}
ShadowClip( clip, plane );
}
if (clip.m_ClipCount < 3)
return 0;
// Return a pointer to the array of clipped vertices...
Assert(ppOutVertex);
*ppOutVertex = clip.m_ppClipVertices[clip.m_CurrVert];
return clip.m_ClipCount;
}
//-----------------------------------------------------------------------------
// Accessor for use by the displacements
//-----------------------------------------------------------------------------
int CShadowMgr::ProjectAndClipVertices( ShadowHandle_t handle, int count,
Vector** ppPosition, ShadowVertex_t*** ppOutVertex )
{
return ProjectAndClipVertices( m_Shadows[handle],
m_Shadows[handle].m_WorldToShadow, NULL, count, ppPosition, ppOutVertex );
}
//-----------------------------------------------------------------------------
// Copies vertex info from the clipped vertices
//-----------------------------------------------------------------------------
// This version treats texcoords as Vector
inline void CShadowMgr::CopyClippedVertices( int count, ShadowVertex_t** ppSrcVert, ShadowVertex_t* pDstVert, const Vector &vToAdd )
{
for (int i = 0; i < count; ++i)
{
pDstVert[i].m_Position = ppSrcVert[i]->m_Position + vToAdd;
pDstVert[i].m_ShadowSpaceTexCoord = ppSrcVert[i]->m_ShadowSpaceTexCoord;
// Make sure it's been clipped
Assert( ppSrcVert[i]->m_ShadowSpaceTexCoord[0] >= -1e-3f );
Assert( ppSrcVert[i]->m_ShadowSpaceTexCoord[0] - 1.0f <= 1e-3f );
Assert( ppSrcVert[i]->m_ShadowSpaceTexCoord[1] >= -1e-3f );
Assert( ppSrcVert[i]->m_ShadowSpaceTexCoord[1] - 1.0f <= 1e-3f );
}
}
//-----------------------------------------------------------------------------
// Does the actual work of computing shadow vertices
//-----------------------------------------------------------------------------
bool CShadowMgr::ComputeShadowVertices( ShadowDecal_t& decal,
const VMatrix* pModelToWorld, const VMatrix *pWorldToModel, ShadowVertexCache_t* pVertexCache )
{
VPROF( "CShadowMgr::ComputeShadowVertices" );
// Prepare for the clipping
Vector **ppVec = (Vector**)stackalloc( MSurf_VertCount( decal.m_SurfID ) * sizeof(Vector*) );
for (int i = 0; i < MSurf_VertCount( decal.m_SurfID ); ++i )
{
int vertIndex = host_state.worldbrush->vertindices[MSurf_FirstVertIndex( decal.m_SurfID )+i];
ppVec[i] = &host_state.worldbrush->vertexes[vertIndex].position;
}
// Compute the modelToShadow transform.
// In the case of the world, just use worldToShadow...
VMatrix* pModelToShadow = &m_Shadows[decal.m_Shadow].m_WorldToShadow;
VMatrix temp;
if ( pModelToWorld )
{
MatrixMultiply( *pModelToShadow, *pModelToWorld, temp );
pModelToShadow = &temp;
}
else
{
pWorldToModel = NULL;
}
// Create vertices to clip to...
ShadowVertex_t** ppSrcVert;
int clipCount = ProjectAndClipVertices( m_Shadows[decal.m_Shadow], *pModelToShadow, pWorldToModel,
MSurf_VertCount( decal.m_SurfID ), ppVec, &ppSrcVert );
if (clipCount == 0)
{
pVertexCache->m_Count = 0;
return false;
}
// Allocate the vertices we're going to use for the decal
ShadowVertex_t* pDstVert = AllocateVertices( *pVertexCache, clipCount );
Assert( pDstVert );
// Copy the clipped vertices into the cache
const Vector &vNormal = MSurf_Plane( decal.m_SurfID ).normal;
CopyClippedVertices( clipCount, ppSrcVert, pDstVert, vNormal * OVERLAY_AVOID_FLICKER_NORMAL_OFFSET );
// Indicate which shadow this is related to
pVertexCache->m_Shadow = decal.m_Shadow;
return true;
}
//-----------------------------------------------------------------------------
// Should we cache vertices?
//-----------------------------------------------------------------------------
inline bool CShadowMgr::ShouldCacheVertices( const ShadowDecal_t& decal )
{
return (m_Shadows[decal.m_Shadow].m_Flags & SHADOW_CACHE_VERTS) != 0;
}
//-----------------------------------------------------------------------------
// Generates a list displacement shadow vertices to render
//-----------------------------------------------------------------------------
inline bool CShadowMgr::GenerateDispShadowRenderInfo( IMatRenderContext *pRenderContext, ShadowDecal_t& decal, ShadowRenderInfo_t& info )
{
//=============================================================================
// HPE_BEGIN:
// [smessick] Added an overflow condition for the max disp decal cache.
//=============================================================================
if ( info.m_DispCount >= MAX_SHADOW_DECAL_CACHE_COUNT )
{
info.m_DispCount = MAX_SHADOW_DECAL_CACHE_COUNT;
return true;
}
//=============================================================================
// HPE_END
//=============================================================================
int v, i;
if ( !MSurf_DispInfo( decal.m_SurfID )->ComputeShadowFragments( decal.m_DispShadow, v, i ) )
return false;
// Catch overflows....
if ( ( info.m_VertexCount + v >= info.m_nMaxVertices ) || ( info.m_IndexCount + i >= info.m_nMaxIndices ) )
return true;
info.m_VertexCount += v;
info.m_IndexCount += i;
info.m_pDispCache[info.m_DispCount++] = decal.m_DispShadow;
return true;
}
//-----------------------------------------------------------------------------
// Generates a list shadow vertices to render
//-----------------------------------------------------------------------------
inline bool CShadowMgr::GenerateNormalShadowRenderInfo( IMatRenderContext *pRenderContext, ShadowDecal_t& decal, ShadowRenderInfo_t& info )
{
//=============================================================================
// HPE_BEGIN:
// [smessick] Check for cache overflow.
//=============================================================================
if ( info.m_Count >= MAX_SHADOW_DECAL_CACHE_COUNT )
{
info.m_Count = MAX_SHADOW_DECAL_CACHE_COUNT;
return true;
}
//=============================================================================
// HPE_END
//=============================================================================
// Look for a cache hit
ShadowVertexCache_t* pVertexCache;
if (decal.m_ShadowVerts != m_VertexCache.InvalidIndex())
{
// Ok, we've already computed the data, lets use it
info.m_pCache[info.m_Count] = decal.m_ShadowVerts;
pVertexCache = &m_VertexCache[decal.m_ShadowVerts];
}
else
{
// Attempt to cull the surface
bool bIsNear = IsShadowNearSurface( decal.m_Shadow, decal.m_SurfID, info.m_pModelToWorld, &info.m_WorldToModel );
if ( !bIsNear )
return false;
// In this case, we gotta recompute the shadow decal vertices
// and maybe even store it into the cache....
bool shouldCacheVerts = ShouldCacheVertices( decal );
if (shouldCacheVerts)
{
decal.m_ShadowVerts = m_VertexCache.AddToTail();
info.m_pCache[info.m_Count] = decal.m_ShadowVerts;
pVertexCache = &m_VertexCache[decal.m_ShadowVerts];
}
else
{
int i = m_TempVertexCache.AddToTail();
info.m_pCache[info.m_Count] = -i-1;
pVertexCache = &m_TempVertexCache[i];
Assert( info.m_pCache[info.m_Count] < 0 );
}
// Compute the shadow vertices
// If no vertices were created, indicate this surface should be removed from the cache
if ( !ComputeShadowVertices( decal, info.m_pModelToWorld, &info.m_WorldToModel, pVertexCache ) )
return false;
}
// Catch overflows....
int nAdditionalIndices = 3 * (pVertexCache->m_Count - 2);
if ( ( info.m_VertexCount + pVertexCache->m_Count >= info.m_nMaxVertices ) ||
( info.m_IndexCount + nAdditionalIndices >= info.m_nMaxIndices ) )
{
return true;
}
// Update vertex, index, and decal counts
info.m_VertexCount += pVertexCache->m_Count;
info.m_IndexCount += nAdditionalIndices;
++info.m_Count;
return true;
}
//-----------------------------------------------------------------------------
// Generates a list shadow vertices to render
//-----------------------------------------------------------------------------
void CShadowMgr::GenerateShadowRenderInfo( IMatRenderContext *pRenderContext, ShadowDecalHandle_t decalHandle, ShadowRenderInfo_t& info )
{
info.m_VertexCount = 0;
info.m_IndexCount = 0;
info.m_Count = 0;
info.m_DispCount = 0;
// Keep the lists only full of valid decals; that way we can preserve
// the render lists in the case that we discover a shadow isn't needed.
ShadowDecalHandle_t next;
for ( ; decalHandle != m_ShadowDecals.InvalidIndex(); decalHandle = next )
{
ShadowDecal_t& decal = m_ShadowDecals[decalHandle];
next = m_ShadowDecals[decalHandle].m_NextRender;
// Skip translucent shadows [ don't add their verts + indices to the render lists ]
Shadow_t &shadow = m_Shadows[ decal.m_Shadow ];
if ( shadow.m_FalloffBias == 255 )
continue;
bool keepShadow;
if ( decal.m_DispShadow != DISP_SHADOW_HANDLE_INVALID )
{
// Handle shadows on displacements...
keepShadow = GenerateDispShadowRenderInfo( pRenderContext, decal, info );
}
else
{
// Handle shadows on normal surfaces
keepShadow = GenerateNormalShadowRenderInfo( pRenderContext, decal, info );
}
// Retire the surface if the shadow didn't actually hit it
if ( !keepShadow && ShouldCacheVertices( decal ) )
{
// If no triangles were generated
// (the decal was completely clipped off)
// In this case, remove the decal from the surface cache
// so next time it'll be faster (for cached decals)
RemoveShadowDecalFromSurface( decal.m_SurfID, decalHandle );
}
}
}
//-----------------------------------------------------------------------------
// Computes information for rendering
//-----------------------------------------------------------------------------
void CShadowMgr::ComputeRenderInfo( ShadowDecalRenderInfo_t* pInfo, ShadowHandle_t handle ) const
{
const ShadowInfo_t& i = m_Shadows[handle];
pInfo->m_vTexOrigin = i.m_TexOrigin;
pInfo->m_vTexSize = i.m_TexSize;
pInfo->m_flFalloffOffset = i.m_FalloffOffset;
pInfo->m_flFalloffAmount = i.m_FalloffAmount;
pInfo->m_flFalloffBias = i.m_FalloffBias;
float flFalloffDist = i.m_MaxDist - i.m_FalloffOffset;
pInfo->m_flOOZFalloffDist = ( flFalloffDist > 0.0f ) ? 1.0f / flFalloffDist : 1.0f;
}
//-----------------------------------------------------------------------------
// Adds normal shadows to the mesh builder
//-----------------------------------------------------------------------------
int CShadowMgr::AddNormalShadowsToMeshBuilder( CMeshBuilder& meshBuilder, ShadowRenderInfo_t& info )
{
// Step through the cache and add all shadows on normal surfaces
ShadowDecalRenderInfo_t shadow;
int baseIndex = 0;
for (int i = 0; i < info.m_Count; ++i)
{
// Two loops here, basically to minimize the # of if statements we need
ShadowVertexCache_t* pVertexCache;
if (info.m_pCache[i] < 0)
{
pVertexCache = &m_TempVertexCache[-info.m_pCache[i]-1];
}
else
{
pVertexCache = &m_VertexCache[info.m_pCache[i]];
}
ShadowVertex_t* pVerts = GetCachedVerts( *pVertexCache );
g_pShadowMgr->ComputeRenderInfo( &shadow, pVertexCache->m_Shadow );
int j;
unsigned char c;
Vector2D texCoord;
int vCount = pVertexCache->m_Count - 2;
if ( vCount <= 0 )
continue;
for ( j = 0; j < vCount; ++j, ++pVerts )
{
// Transform + offset the texture coords
Vector2DMultiply( pVerts->m_ShadowSpaceTexCoord.AsVector2D(), shadow.m_vTexSize, texCoord );
texCoord += shadow.m_vTexOrigin;
c = ComputeDarkness( pVerts->m_ShadowSpaceTexCoord.z, shadow );
meshBuilder.Position3fv( pVerts->m_Position.Base() );
meshBuilder.Color4ub( c, c, c, c );
meshBuilder.TexCoord2fv( 0, texCoord.Base() );
meshBuilder.AdvanceVertex();
meshBuilder.FastIndex( baseIndex );
meshBuilder.FastIndex( j + baseIndex + 1 );
meshBuilder.FastIndex( j + baseIndex + 2 );
}
Vector2DMultiply( pVerts->m_ShadowSpaceTexCoord.AsVector2D(), shadow.m_vTexSize, texCoord );
texCoord += shadow.m_vTexOrigin;
c = ComputeDarkness( pVerts->m_ShadowSpaceTexCoord.z, shadow );
meshBuilder.Position3fv( pVerts->m_Position.Base() );
meshBuilder.Color4ub( c, c, c, c );
meshBuilder.TexCoord2fv( 0, texCoord.Base() );
meshBuilder.AdvanceVertex();
++pVerts;
Vector2DMultiply( pVerts->m_ShadowSpaceTexCoord.AsVector2D(), shadow.m_vTexSize, texCoord );
texCoord += shadow.m_vTexOrigin;
c = ComputeDarkness( pVerts->m_ShadowSpaceTexCoord.z, shadow );
meshBuilder.Position3fv( pVerts->m_Position.Base() );
meshBuilder.Color4ub( c, c, c, c );
meshBuilder.TexCoord2fv( 0, texCoord.Base() );
meshBuilder.AdvanceVertex();
// Update the base index
baseIndex += vCount + 2;
}
return baseIndex;
}
//-----------------------------------------------------------------------------
// Adds displacement shadows to the mesh builder
//-----------------------------------------------------------------------------
int CShadowMgr::AddDisplacementShadowsToMeshBuilder( CMeshBuilder& meshBuilder,
ShadowRenderInfo_t& info, int baseIndex )
{
if ( !r_DrawDisp.GetBool() )
return baseIndex;
// Step through the cache and add all shadows on displacement surfaces
for (int i = 0; i < info.m_DispCount; ++i)
{
baseIndex = DispInfo_AddShadowsToMeshBuilder( meshBuilder, info.m_pDispCache[i], baseIndex );
}
return baseIndex;
}
//-----------------------------------------------------------------------------
// The following methods will display debugging info in the middle of each shadow decal
//-----------------------------------------------------------------------------
static void DrawShadowID( ShadowHandle_t shadowHandle, const Vector &vecCentroid )
{
#ifndef SWDS
char buf[32];
Q_snprintf(buf, sizeof( buf ), "%d", shadowHandle );
CDebugOverlay::AddTextOverlay( vecCentroid, 0, buf );
#endif
}
void CShadowMgr::RenderDebuggingInfo( const ShadowRenderInfo_t &info, ShadowDebugFunc_t func )
{
// Step through the cache and add all shadows on normal surfaces
for (int i = 0; i < info.m_Count; ++i)
{
ShadowVertexCache_t* pVertexCache;
if (info.m_pCache[i] < 0)
{
pVertexCache = &m_TempVertexCache[-info.m_pCache[i]-1];
}
else
{
pVertexCache = &m_VertexCache[info.m_pCache[i]];
}
ShadowVertex_t* pVerts = GetCachedVerts( *pVertexCache );
Vector vecNormal;
float flTotalArea = 0.0f;
Vector vecCentroid(0,0,0);
Vector vecApex = pVerts[0].m_Position;
int vCount = pVertexCache->m_Count;
for ( int j = 0; j < vCount - 2; ++j )
{
Vector v1 = pVerts[j + 1].m_Position;
Vector v2 = pVerts[j + 2].m_Position;
CrossProduct( v2 - v1, v1 - vecApex, vecNormal );
float flArea = vecNormal.Length();
flTotalArea += flArea;
vecCentroid += (vecApex + v1 + v2) * flArea / 3.0f;
}
if (flTotalArea)
{
vecCentroid /= flTotalArea;
}
func( pVertexCache->m_Shadow, vecCentroid );
}
}
//-----------------------------------------------------------------------------
// Renders shadows that all share a material enumeration
//-----------------------------------------------------------------------------
void CShadowMgr::RenderShadowList( IMatRenderContext *pRenderContext, ShadowDecalHandle_t decalHandle, const VMatrix* pModelToWorld )
{
//=============================================================================
// HPE_BEGIN:
// [smessick] Make sure we don't overflow our caches.
//=============================================================================
if ( m_DecalsToRender > m_ShadowDecalCache.Count() )
{
// Don't grow past the MAX_SHADOW_DECAL_CACHE_COUNT cap.
int diff = min( m_DecalsToRender, (int)MAX_SHADOW_DECAL_CACHE_COUNT ) - m_ShadowDecalCache.Count();
if ( diff > 0 )
{
// Grow the cache.
m_ShadowDecalCache.Grow( diff );
DevMsg( "[CShadowMgr::RenderShadowList] growing shadow decal cache (decals: %d, cache: %d, diff: %d).\n", m_DecalsToRender, m_ShadowDecalCache.Count(), diff );
}
}
if ( m_DecalsToRender > m_DispShadowDecalCache.Count() )
{
// Don't grow past the MAX_SHADOW_DECAL_CACHE_COUNT cap.
int diff = min( m_DecalsToRender, (int)MAX_SHADOW_DECAL_CACHE_COUNT ) - m_DispShadowDecalCache.Count();
if ( diff > 0 )
{
// Grow the cache.
m_DispShadowDecalCache.Grow( diff );
DevMsg( "[CShadowMgr::RenderShadowList] growing disp shadow decal cache (decals: %d, cache: %d, diff: %d).\n", m_DecalsToRender, m_DispShadowDecalCache.Count(), diff );
}
}
//=============================================================================
// HPE_END
//=============================================================================
// Set the render state...
Shadow_t& shadow = m_Shadows[m_ShadowDecals[decalHandle].m_Shadow];
if ( r_shadowwireframe.GetInt() == 0 )
{
pRenderContext->Bind( shadow.m_pMaterial, shadow.m_pBindProxy );
}
else
{
pRenderContext->Bind( g_materialWorldWireframe );
}
// Blow away the temporary vertex cache (for normal surfaces)
ClearTempCache();
// Set up rendering info structure
ShadowRenderInfo_t info;
//=============================================================================
// HPE_BEGIN:
// [smessick] This code used to create the cache dynamically on the stack.
//=============================================================================
info.m_pCache = m_ShadowDecalCache.Base();
info.m_pDispCache = m_DispShadowDecalCache.Base();
//=============================================================================
// HPE_END
//=============================================================================
info.m_pModelToWorld = pModelToWorld;
if ( pModelToWorld )
{
MatrixInverseTR( *pModelToWorld, info.m_WorldToModel );
}
info.m_nMaxIndices = pRenderContext->GetMaxIndicesToRender();
info.m_nMaxVertices = pRenderContext->GetMaxVerticesToRender( shadow.m_pMaterial );
// Iterate over all decals in the decal list and generate polygon lists
// Creating them from scratch if their shadow poly cache is invalid
GenerateShadowRenderInfo(pRenderContext, decalHandle, info);
Assert( info.m_Count <= m_DecalsToRender );
Assert( info.m_DispCount <= m_DecalsToRender );
//=============================================================================
// HPE_BEGIN:
// [smessick] Also check against the max.
//=============================================================================
Assert( info.m_Count <= m_ShadowDecalCache.Count() &&
info.m_Count <= MAX_SHADOW_DECAL_CACHE_COUNT );
Assert( info.m_DispCount <= m_DispShadowDecalCache.Count() &&
info.m_DispCount <= MAX_SHADOW_DECAL_CACHE_COUNT );
//=============================================================================
// HPE_END
//=============================================================================
// Now that the vertex lists are created, render them
IMesh* pMesh = pRenderContext->GetDynamicMesh();
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, info.m_VertexCount, info.m_IndexCount );
// Add in shadows from both normal surfaces + displacement surfaces
int baseIndex = AddNormalShadowsToMeshBuilder( meshBuilder, info );
AddDisplacementShadowsToMeshBuilder( meshBuilder, info, baseIndex );
meshBuilder.End();
pMesh->Draw();
if (r_shadowids.GetInt() != 0)
{
RenderDebuggingInfo( info, DrawShadowID );
}
}
//-----------------------------------------------------------------------------
// Set the number of world material buckets. This should get called on level load.
//-----------------------------------------------------------------------------
void CShadowMgr::SetNumWorldMaterialBuckets( int numMaterialSortBins )
{
m_NumWorldMaterialBuckets = numMaterialSortBins;
FlashlightHandle_t flashlightID;
for( flashlightID = m_FlashlightStates.Head();
flashlightID != m_FlashlightStates.InvalidIndex();
flashlightID = m_FlashlightStates.Next( flashlightID ) )
{
m_FlashlightStates[flashlightID].m_MaterialBuckets.SetNumMaterialSortIDs( numMaterialSortBins );
m_FlashlightStates[flashlightID].m_OccluderBuckets.SetNumMaterialSortIDs( numMaterialSortBins );
}
ClearAllFlashlightMaterialBuckets();
}
//-----------------------------------------------------------------------------
// Per frame call to clear all of the flashlight world material buckets.
//-----------------------------------------------------------------------------
void CShadowMgr::ClearAllFlashlightMaterialBuckets( void )
{
if ( IsX360() || r_flashlight_version2.GetInt() )
return;
FlashlightHandle_t flashlightID;
for( flashlightID = m_FlashlightStates.Head();
flashlightID != m_FlashlightStates.InvalidIndex();
flashlightID = m_FlashlightStates.Next( flashlightID ) )
{
m_FlashlightStates[flashlightID].m_MaterialBuckets.Flush();
}
}
//-----------------------------------------------------------------------------
// Allocate world material buckets for a particular flashlight. This should get called on flashlight creation.
//-----------------------------------------------------------------------------
void CShadowMgr::AllocFlashlightMaterialBuckets( FlashlightHandle_t flashlightID )
{
Assert( m_FlashlightStates.MaxElementIndex() >= flashlightID );
m_FlashlightStates[flashlightID].m_MaterialBuckets.SetNumMaterialSortIDs( m_NumWorldMaterialBuckets );
m_FlashlightStates[flashlightID].m_OccluderBuckets.SetNumMaterialSortIDs( m_NumWorldMaterialBuckets );
}
//-----------------------------------------------------------------------------
// Update a particular flashlight's state.
//-----------------------------------------------------------------------------
void CShadowMgr::UpdateFlashlightState( ShadowHandle_t shadowHandle, const FlashlightState_t &lightState )
{
m_FlashlightStates[m_Shadows[shadowHandle].m_FlashlightHandle].m_FlashlightState = lightState;
}
void CShadowMgr::SetFlashlightDepthTexture( ShadowHandle_t shadowHandle, ITexture *pFlashlightDepthTexture, unsigned char ucShadowStencilBit )
{
m_Shadows[shadowHandle].m_pFlashlightDepthTexture = pFlashlightDepthTexture;
m_Shadows[shadowHandle].m_ucShadowStencilBit = ucShadowStencilBit;
}
bool ScreenSpaceRectFromPoints( IMatRenderContext *pRenderContext, Vector vClippedPolygons[8][10], int *pNumPoints, int nNumPolygons, int *nLeft, int *nTop, int *nRight, int *nBottom )
{
if( nNumPolygons == 0 )
return false;
VMatrix matView, matProj, matViewProj;
pRenderContext->GetMatrix( MATERIAL_VIEW, &matView );
pRenderContext->GetMatrix( MATERIAL_PROJECTION, &matProj );
MatrixMultiply( matProj, matView, matViewProj );
float fMinX, fMaxX, fMinY, fMaxY; // Init bounding rect
fMinX = fMinY = FLT_MAX;
fMaxX = fMaxY = -FLT_MAX;
for ( int i=0; i<nNumPolygons; i++ )
{
for ( int j=0; j<pNumPoints[i]; j++ )
{
Vector vScreenSpacePoint;
matViewProj.V3Mul( vClippedPolygons[i][j], vScreenSpacePoint ); // Transform from World to screen space
fMinX = fpmin( fMinX, vScreenSpacePoint.x ); // Update mins/maxes
fMaxX = fpmax( fMaxX, vScreenSpacePoint.x ); //
fMinY = fpmin( fMinY, -vScreenSpacePoint.y ); // These are in -1 to +1 range
fMaxY = fpmax( fMaxY, -vScreenSpacePoint.y ); //
}
}
int nWidth, nHeight;
g_pMaterialSystem->GetBackBufferDimensions( nWidth, nHeight ); // Get render target dimensions
*nLeft = ((fMinX * 0.5f + 0.5f) * (float) nWidth ) - 1; // Convert to render target pixel units
*nTop = ((fMinY * 0.5f + 0.5f) * (float) nHeight) - 1;
*nRight = ((fMaxX * 0.5f + 0.5f) * (float) nWidth ) + 1;
*nBottom = ((fMaxY * 0.5f + 0.5f) * (float) nHeight) + 1;
*nLeft = clamp( *nLeft, 0, nWidth ); // Clamp to render target dimensions
*nTop = clamp( *nTop, 0, nHeight );
*nRight = clamp( *nRight, 0, nWidth );
*nBottom = clamp( *nBottom, 0, nHeight );
Assert( (*nLeft <= *nRight) && (*nTop <= *nBottom) );
// Do we have an actual subrect of the whole screen?
bool bWithinBounds = ((*nLeft > 0 ) || (*nTop > 0) || (*nRight < nWidth) || (*nBottom < nHeight));
// Compute valid area
nWidth = (*nRight - *nLeft);
nHeight = (*nBottom - *nTop);
int nArea = ( nWidth > 0 ) && ( nHeight > 0 ) ? nWidth * nHeight : 0;
// Valid rect?
return bWithinBounds && (nArea > 0);
}
// Turn this optimization off by default
static ConVar r_flashlightclip("r_flashlightclip", "0", FCVAR_CHEAT );
static ConVar r_flashlightdrawclip("r_flashlightdrawclip", "0", FCVAR_CHEAT );
static ConVar r_flashlightscissor( "r_flashlightscissor", "1", 0 );
void ExtractFrustumPlanes( Frustum frustumPlanes, float flPlaneEpsilon )
{
const CViewSetup &view = g_EngineRenderer->ViewGetCurrent();
float flFOVy = CalcFovY( view.fov, view.m_flAspectRatio );
Frustum_t frustum;
Vector vForward, vRight, vUp;
AngleVectors( view.angles, &vForward, &vRight, &vUp );
GeneratePerspectiveFrustum( view.origin, vForward, vRight, vUp,
view.zNear + flPlaneEpsilon, view.zFar - flPlaneEpsilon, // Apply epsilon to near and far
view.fov, flFOVy, frustum );
// Copy out to the planes that the engine renderer uses.
for( int i=0; i < FRUSTUM_NUMPLANES; i++ )
{
frustumPlanes[i].m_Normal = frustum.GetPlane(i)->normal;
frustumPlanes[i].m_Dist = frustum.GetPlane(i)->dist;
}
}
void ConstructNearAndFarPolygons( Vector *pVecNearPlane, Vector *pVecFarPlane, float flPlaneEpsilon )
{
const CViewSetup &view = g_EngineRenderer->ViewGetCurrent();
float fovY = CalcFovY( view.fov, view.m_flAspectRatio );
// Compute near and far plane half-width and half-height
float flTanHalfAngleRadians = tan( view.fov * ( 0.5f * M_PI / 180.0f ) );
float flHalfNearWidth = flTanHalfAngleRadians * ( view.zNear + flPlaneEpsilon );
float flHalfFarWidth = flTanHalfAngleRadians * ( view.zFar - flPlaneEpsilon );
flTanHalfAngleRadians = tan( fovY * ( 0.5f * M_PI / 180.0f ) );
float flHalfNearHeight = flTanHalfAngleRadians * ( view.zNear + flPlaneEpsilon );
float flHalfFarHeight = flTanHalfAngleRadians * ( view.zFar - flPlaneEpsilon );
// World-space orientation of viewer
Vector vForward, vRight, vUp;
AngleVectors( view.angles, &vForward, &vRight, &vUp );
vForward.NormalizeInPlace();
vRight.NormalizeInPlace();
vUp.NormalizeInPlace();
// Center of near and far planes in world space
Vector vCenterNear = view.origin + vForward * ( view.zNear + flPlaneEpsilon );
Vector vCenterFar = view.origin + vForward * ( view.zFar - flPlaneEpsilon );
pVecNearPlane[0] = vCenterNear - ( vRight * flHalfNearWidth ) - ( vUp * flHalfNearHeight );
pVecNearPlane[1] = vCenterNear - ( vRight * flHalfNearWidth ) + ( vUp * flHalfNearHeight );
pVecNearPlane[2] = vCenterNear + ( vRight * flHalfNearWidth ) + ( vUp * flHalfNearHeight );
pVecNearPlane[3] = vCenterNear + ( vRight * flHalfNearWidth ) - ( vUp * flHalfNearHeight );
pVecFarPlane[0] = vCenterNear - ( vRight * flHalfFarWidth ) - ( vUp * flHalfFarHeight );
pVecFarPlane[1] = vCenterNear + ( vRight * flHalfFarWidth ) - ( vUp * flHalfFarHeight );
pVecFarPlane[2] = vCenterNear + ( vRight * flHalfFarWidth ) + ( vUp * flHalfFarHeight );
pVecFarPlane[3] = vCenterNear - ( vRight * flHalfFarWidth ) + ( vUp * flHalfFarHeight );
}
void DrawDebugPolygon( int nNumVerts, Vector *pVecPoints, bool bFrontFacing, bool bNearPlane )
{
int r=0, g=0, b=0;
if ( bFrontFacing )
b = 255;
else
r = 255;
if ( bNearPlane ) // Draw near plane green for visualization
{
r = b = 0;
g = 255;
}
// Draw triangles fanned out from vertex zero
for (int i=1; i<(nNumVerts-1); i++)
{
Vector v0 = pVecPoints[0];
Vector v1 = pVecPoints[bFrontFacing ? i : i+1];
Vector v2 = pVecPoints[bFrontFacing ? i+1 : i];
CDebugOverlay::AddTriangleOverlay(v0, v1, v2, r, g, b, 20, true, 0 );
}
// Draw solid lines around the polygon
for (int i=0; i<nNumVerts; i++)
{
Vector v0 = pVecPoints[i];
Vector v1 = pVecPoints[ (i+1) % nNumVerts];
CDebugOverlay::AddLineOverlay( v0, v1, 255, 255, 255, 255, false, 0);
}
}
void DrawPolygonToStencil( IMatRenderContext *pRenderContext, int nNumVerts, Vector *pVecPoints, bool bFrontFacing, bool bNearPlane )
{
IMaterial *pMaterial = materials->FindMaterial( "engine/writestencil", TEXTURE_GROUP_OTHER, true );
pRenderContext->Bind( pMaterial );
IMesh* pMesh = pRenderContext->GetDynamicMesh( true );
pRenderContext->MatrixMode( MATERIAL_MODEL );
pRenderContext->PushMatrix();
pRenderContext->LoadIdentity();
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, nNumVerts-2 );
// Fan out from vertex zero
for (int i=1; i<(nNumVerts-1); i++)
{
meshBuilder.Position3f( pVecPoints[0].x, pVecPoints[0].y, pVecPoints[0].z );
meshBuilder.AdvanceVertex();
int index = bFrontFacing ? i : i+1;
meshBuilder.Position3f( pVecPoints[index].x, pVecPoints[index].y, pVecPoints[index].z );
meshBuilder.AdvanceVertex();
index = bFrontFacing ? i+1 : i;
meshBuilder.Position3f( pVecPoints[index].x, pVecPoints[index].y, pVecPoints[index].z );
meshBuilder.AdvanceVertex();
}
meshBuilder.End( false, true );
pRenderContext->MatrixMode( MATERIAL_MODEL );
pRenderContext->PopMatrix();
}
// Determine if two Vectors are sufficiently close (Manhattan-ish distance, not Euclidean)
bool SufficientlyClose( Vector v1, Vector v2, float flEpsilon )
{
if ( fabs( v1.x - v2.x ) > flEpsilon ) // Bail if x components are sufficiently different
return false;
if ( fabs( v1.y - v2.y ) > flEpsilon ) // Bail if y components are sufficiently different
return false;
if ( fabs( v1.z - v2.z ) > flEpsilon ) // Bail if z components are sufficiently different
return false;
return true;
}
int ClipPlaneToFrustum( Vector *pInPoints, Vector *pOutPoints, Vector *pVecWorldFrustumPoints )
{
Vector vClipPing[10]; // Vector lists to ping-pong between while clipping
Vector vClipPong[10]; //
bool bPing = true; // Ping holds the latest polygon
vClipPing[0] = pInPoints[0]; // Copy into Ping
vClipPing[1] = pInPoints[1];
vClipPing[2] = pInPoints[2];
vClipPing[3] = pInPoints[3];
int nNumPoints = 4;
for ( int i=0; i < 6; i++ )
{
Vector vNormal;
float flDist;
if ( nNumPoints < 3 ) // If we're already clipped away, bail out entirely
break;
Vector *pClipPolygon = pVecWorldFrustumPoints+(4*i); // Polygon defining clip plane
ComputeTrianglePlane( pClipPolygon[0], pClipPolygon[1], pClipPolygon[2], vNormal, flDist ); // Compute plane normal and dist
if ( bPing )
nNumPoints = ClipPolyToPlane( vClipPing, nNumPoints, vClipPong, vNormal, flDist ); // Clip Ping into Pong
else
nNumPoints = ClipPolyToPlane( vClipPong, nNumPoints, vClipPing, vNormal, flDist ); // Clip Pong into Ping
bPing = !bPing; // Flip buffers
}
if ( nNumPoints < 3)
return 0;
if ( bPing )
memcpy( pOutPoints, vClipPing, nNumPoints * sizeof(Vector) );
else
memcpy( pOutPoints, vClipPong, nNumPoints * sizeof(Vector) );
return nNumPoints;
}
void CShadowMgr::SetStencilAndScissor( IMatRenderContext *pRenderContext, FlashlightInfo_t &flashlightInfo, bool bUseStencil )
{
VMatrix matFlashlightToWorld;
MatrixInverseGeneral( m_Shadows[flashlightInfo.m_Shadow].m_WorldToShadow, matFlashlightToWorld );
// Eight points defining the frustum in Flashlight space
Vector vFrustumPoints[24] = { Vector(0.0f, 0.0f, 0.0f), Vector(1.0f, 0.0f, 0.0f), Vector(1.0f, 1.0f, 0.0f), Vector(0.0f, 1.0f, 0.0f), // Near
Vector(0.0f, 0.0f, 1.0f), Vector(0.0f, 1.0f, 1.0f), Vector(1.0f, 1.0f, 1.0f), Vector(1.0f, 0.0f, 1.0f), // Far
Vector(1.0f, 0.0f, 0.0f), Vector(1.0f, 0.0f, 1.0f), Vector(1.0f, 1.0f, 1.0f), Vector(1.0f, 1.0f, 0.0f), // Right
Vector(0.0f, 0.0f, 0.0f), Vector(0.0f, 1.0f, 0.0f), Vector(0.0f, 1.0f, 1.0f), Vector(0.0f, 0.0f, 1.0f), // Left
Vector(0.0f, 1.0f, 0.0f), Vector(1.0f, 1.0f, 0.0f), Vector(1.0f, 1.0f, 1.0f), Vector(0.0f, 1.0f, 1.0f), // Bottom
Vector(0.0f, 0.0f, 0.0f), Vector(0.0f, 0.0f, 1.0f), Vector(1.0f, 0.0f, 1.0f), Vector(1.0f, 0.0f, 0.0f)}; // Top
// Transform points to world space
Vector vWorldFrustumPoints[24];
for ( int i=0; i < 24; i++ )
{
matFlashlightToWorld.V3Mul( vFrustumPoints[i], vWorldFrustumPoints[i] );
}
// Express near and far planes of View frustum in world space
Frustum frustumPlanes;
const float flPlaneEpsilon = 0.4f;
ExtractFrustumPlanes( frustumPlanes, flPlaneEpsilon );
Vector vNearNormal = frustumPlanes[FRUSTUM_NEARZ].m_Normal;
Vector vFarNormal = frustumPlanes[FRUSTUM_FARZ].m_Normal;
float flNearDist = frustumPlanes[FRUSTUM_NEARZ].m_Dist;
float flFarDist = frustumPlanes[FRUSTUM_FARZ].m_Dist;
Vector vTempFace[5];
Vector vClippedFace[6];
Vector vClippedPolygons[8][10]; // Array of up to eight polygons (10 verts is more than enough for each)
int nNumVertices[8]; // Number vertices on each of the of clipped polygons
int nNumPolygons = 0; // How many polygons have survived the clip
// Clip each face individually to near and far planes
for ( int i=0; i < 6; i++ )
{
Vector *inVerts = vWorldFrustumPoints+(4*i); // Series of quadrilateral inputs
Vector *tempVerts = vTempFace;
Vector *outVerts = vClippedFace;
int nClipCount = ClipPolyToPlane( inVerts, 4, tempVerts, vNearNormal, flNearDist ); // need to set fOnPlaneEpsilon?
if ( nClipCount > 2 ) // If the polygon survived the near clip, try the far as well
{
nClipCount = ClipPolyToPlane( tempVerts, nClipCount, outVerts, vFarNormal, flFarDist ); // need to set fOnPlaneEpsilon?
if ( nClipCount > 2 ) // If we still have a poly after clipping to both planes, add it to the list
{
memcpy( vClippedPolygons[nNumPolygons], outVerts, nClipCount * sizeof (Vector) );
nNumVertices[nNumPolygons] = nClipCount;
nNumPolygons++;
}
}
}
// Construct polygons for near and far planes
Vector vNearPlane[4], vFarPlane[4];
ConstructNearAndFarPolygons( vNearPlane, vFarPlane, flPlaneEpsilon );
bool bNearPlane = false;
// Clip near plane to flashlight frustum and tack on to list
int nClipCount = ClipPlaneToFrustum( vNearPlane, vClippedPolygons[nNumPolygons], vWorldFrustumPoints );
if ( nClipCount > 2 ) // If the near plane clipped and resulted in a polygon, take note in the polygon list
{
nNumVertices[nNumPolygons] = nClipCount;
nNumPolygons++;
bNearPlane = true;
}
/*
TODO: do we even need to do the far plane?
// Clip near plane to flashlight frustum and tack on to list
nClipCount = ClipPlaneToFrustum( vFarPlane, vClippedPolygons[nNumPolygons], vWorldFrustumPoints );
if ( nClipCount > 2 ) // If the near plane clipped and resulted in a polygon, take note in the polygon list
{
nNumVertices[nNumPolygons] = nClipCount;
nNumPolygons++;
}
*/
// Fuse positions of any verts which are within epsilon
for (int i=0; i<nNumPolygons; i++) // For each polygon
{
for (int j=0; j<nNumVertices[i]; j++) // For each vertex
{
for (int k=i+1; k<nNumPolygons; k++) // For each later polygon
{
for (int m=0; m<nNumVertices[k]; m++) // For each vertex
{
if ( SufficientlyClose(vClippedPolygons[i][j], vClippedPolygons[k][m], 0.1f) )
{
vClippedPolygons[k][m] = vClippedPolygons[i][j];
}
}
}
}
}
// Calculate scissoring rect
flashlightInfo.m_FlashlightState.m_bScissor = false;
if ( r_flashlightscissor.GetBool() && (nNumPolygons > 0) )
{
int nLeft, nTop, nRight, nBottom;
flashlightInfo.m_FlashlightState.m_bScissor = ScreenSpaceRectFromPoints( pRenderContext, vClippedPolygons, nNumVertices, nNumPolygons, &nLeft, &nTop, &nRight, &nBottom );
if ( flashlightInfo.m_FlashlightState.m_bScissor )
{
flashlightInfo.m_FlashlightState.m_nLeft = nLeft;
flashlightInfo.m_FlashlightState.m_nTop = nTop;
flashlightInfo.m_FlashlightState.m_nRight = nRight;
flashlightInfo.m_FlashlightState.m_nBottom = nBottom;
}
}
if ( r_flashlightdrawclip.GetBool() && r_flashlightclip.GetBool() && bUseStencil )
{
// Draw back facing debug polygons
for (int i=0; i<nNumPolygons; i++)
{
DrawDebugPolygon( nNumVertices[i], vClippedPolygons[i], false, false );
}
/*
// Draw front facing debug polygons
for (int i=0; i<nNumPolygons; i++)
{
DrawDebugPolygon( nNumVertices[i], vClippedPolygons[i], true, bNearPlane && (i == nNumPolygons-1) );
}
*/
}
if ( r_flashlightclip.GetBool() && bUseStencil )
{
/*
// The traditional settings...
// Set up to set stencil bit on front facing polygons
pRenderContext->SetStencilEnable( true );
pRenderContext->SetStencilFailOperation( STENCILOPERATION_KEEP ); // Stencil fails
pRenderContext->SetStencilZFailOperation( STENCILOPERATION_KEEP ); // Stencil passes but depth fails
pRenderContext->SetStencilPassOperation( STENCILOPERATION_REPLACE ); // Z and stencil both pass
pRenderContext->SetStencilCompareFunction( STENCILCOMPARISONFUNCTION_ALWAYS ); // Stencil always pass
pRenderContext->SetStencilReferenceValue( m_Shadows[flashlightInfo.m_Shadow].m_ucShadowStencilBit );
pRenderContext->SetStencilTestMask( m_Shadows[flashlightInfo.m_Shadow].m_ucShadowStencilBit );
pRenderContext->SetStencilWriteMask( m_Shadows[flashlightInfo.m_Shadow].m_ucShadowStencilBit ); // Bit mask which is specific to this shadow
*/
// Just blast front faces into the stencil buffer no matter what...
pRenderContext->SetStencilEnable( true );
pRenderContext->SetStencilFailOperation( STENCILOPERATION_REPLACE ); // Stencil fails
pRenderContext->SetStencilZFailOperation( STENCILOPERATION_REPLACE ); // Stencil passes but depth fails
pRenderContext->SetStencilPassOperation( STENCILOPERATION_REPLACE ); // Z and stencil both pass
pRenderContext->SetStencilCompareFunction( STENCILCOMPARISONFUNCTION_ALWAYS ); // Stencil always pass
pRenderContext->SetStencilReferenceValue( m_Shadows[flashlightInfo.m_Shadow].m_ucShadowStencilBit );
pRenderContext->SetStencilTestMask( m_Shadows[flashlightInfo.m_Shadow].m_ucShadowStencilBit );
pRenderContext->SetStencilWriteMask( m_Shadows[flashlightInfo.m_Shadow].m_ucShadowStencilBit ); // Bit mask which is specific to this shadow
for ( int i=0; i<nNumPolygons; i++ ) // Set the stencil bit on front facing
{
DrawPolygonToStencil( pRenderContext, nNumVertices[i], vClippedPolygons[i], true, false );
}
/*
pRenderContext->SetStencilReferenceValue( 0x00000000 ); // All bits cleared
for (int i=0; i<nNumPolygons; i++) // Clear the stencil bit on back facing
{
DrawPolygonToStencil( nNumVertices[i], vClippedPolygons[i], false, false );
}
*/
pRenderContext->SetStencilEnable( false );
}
}
//---------------------------------------------------------------------------------------
// Set masking stencil bits for all flashlights
//---------------------------------------------------------------------------------------
void CShadowMgr::SetFlashlightStencilMasks( bool bDoMasking )
{
VPROF_BUDGET( "CShadowMgr::RenderFlashlights", VPROF_BUDGETGROUP_SHADOW_RENDERING );
if ( IsX360() || r_flashlight_version2.GetInt() )
return;
// Bail out if we're not doing any of these optimizations
if ( !( r_flashlightclip.GetBool() || r_flashlightscissor.GetBool()) )
return;
FlashlightHandle_t flashlightID = m_FlashlightStates.Head();
if ( flashlightID == m_FlashlightStates.InvalidIndex() )
return;
CMatRenderContextPtr pRenderContext( materials );
for( ;
flashlightID != m_FlashlightStates.InvalidIndex();
flashlightID = m_FlashlightStates.Next( flashlightID ) )
{
FlashlightInfo_t &flashlightInfo = m_FlashlightStates[flashlightID];
SetStencilAndScissor( pRenderContext, flashlightInfo, m_Shadows[flashlightInfo.m_Shadow].m_pFlashlightDepthTexture != NULL );
}
}
void CShadowMgr::DisableStencilAndScissorMasking( IMatRenderContext *pRenderContext )
{
if ( r_flashlightclip.GetBool() )
{
pRenderContext->SetStencilEnable( false );
}
// Scissor even if we're not shadow depth mapping
if ( r_flashlightscissor.GetBool() )
{
pRenderContext->SetScissorRect( -1, -1, -1, -1, false );
}
}
//---------------------------------------------------------------------------------------
// Enable/Disable masking based on stencil bit
//---------------------------------------------------------------------------------------
void CShadowMgr::EnableStencilAndScissorMasking( IMatRenderContext *pRenderContext, const FlashlightInfo_t &flashlightInfo, bool bDoMasking )
{
// Bail out if we're not doing any of these optimizations
if ( !( r_flashlightclip.GetBool() || r_flashlightscissor.GetBool()) || !bDoMasking )
return;
// Only turn on scissor when rendering to the back buffer
if ( pRenderContext->GetRenderTarget() == NULL )
{
// Only do the stencil optimization when shadow depth mapping
if ( r_flashlightclip.GetBool() && m_Shadows[flashlightInfo.m_Shadow].m_pFlashlightDepthTexture != NULL )
{
unsigned char ucShadowStencilBit = m_Shadows[flashlightInfo.m_Shadow].m_ucShadowStencilBit;
pRenderContext->SetStencilEnable( true );
pRenderContext->SetStencilFailOperation( STENCILOPERATION_KEEP ); // Stencil fails
pRenderContext->SetStencilZFailOperation( STENCILOPERATION_KEEP ); // Stencil passes but depth fails
pRenderContext->SetStencilPassOperation( STENCILOPERATION_KEEP ); // Z and stencil both pass
pRenderContext->SetStencilCompareFunction( STENCILCOMPARISONFUNCTION_EQUAL ); // Bit must be set
pRenderContext->SetStencilReferenceValue( ucShadowStencilBit ); // Specific bit
pRenderContext->SetStencilTestMask( ucShadowStencilBit ); // Specific bit
pRenderContext->SetStencilWriteMask( 0x00000000 );
}
// Scissor even if we're not shadow depth mapping
if ( r_flashlightscissor.GetBool() && flashlightInfo.m_FlashlightState.m_bScissor )
{
pRenderContext->SetScissorRect( flashlightInfo.m_FlashlightState.m_nLeft, flashlightInfo.m_FlashlightState.m_nTop,
flashlightInfo.m_FlashlightState.m_nRight, flashlightInfo.m_FlashlightState.m_nBottom, true );
}
}
else // disable
{
DisableStencilAndScissorMasking( pRenderContext );
}
}
//---------------------------------------------------------------------------------------
// Sets the render states necessary to render a flashlight
//---------------------------------------------------------------------------------------
void CShadowMgr::SetFlashlightRenderState( ShadowHandle_t handle )
{
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
if ( handle == SHADOW_HANDLE_INVALID )
{
pRenderContext->SetFlashlightMode( false );
return;
}
const Shadow_t &shadow = m_Shadows[handle];
pRenderContext->SetFlashlightMode( true );
const FlashlightInfo_t &flashlightInfo = m_FlashlightStates[ shadow.m_FlashlightHandle ];
pRenderContext->SetFlashlightStateEx( flashlightInfo.m_FlashlightState, shadow.m_WorldToShadow, shadow.m_pFlashlightDepthTexture );
}
//---------------------------------------------------------------------------------------
// Render all of the world and displacement surfaces that need to be drawn for flashlights
//---------------------------------------------------------------------------------------
void CShadowMgr::RenderFlashlights( bool bDoMasking, const VMatrix* pModelToWorld )
{
#ifndef SWDS
VPROF_BUDGET( "CShadowMgr::RenderFlashlights", VPROF_BUDGETGROUP_SHADOW_RENDERING );
if ( IsX360() || r_flashlight_version2.GetInt() )
return;
if( r_flashlightrender.GetBool()==false )
return;
// Draw the projective light sources, which get their material
// from the surface and not from the shadow.
// Tell the materialsystem that we are drawing additive flashlight lighting.
FlashlightHandle_t flashlightID = m_FlashlightStates.Head();
if ( flashlightID == m_FlashlightStates.InvalidIndex() )
return;
bool bWireframe = r_shadowwireframe.GetBool();
CMatRenderContextPtr pRenderContext( materials );
PIXEVENT( pRenderContext, "CShadowMgr::RenderFlashlights" );
pRenderContext->SetFlashlightMode( true );
for( ;
flashlightID != m_FlashlightStates.InvalidIndex();
flashlightID = m_FlashlightStates.Next( flashlightID ) )
{
FlashlightInfo_t &flashlightInfo = m_FlashlightStates[flashlightID];
CMaterialsBuckets<SurfaceHandle_t> &materialBuckets = flashlightInfo.m_MaterialBuckets;
CMaterialsBuckets<SurfaceHandle_t>::SortIDHandle_t sortIDHandle = materialBuckets.GetFirstUsedSortID();
if ( sortIDHandle == materialBuckets.InvalidSortIDHandle() )
continue;
pRenderContext->SetFlashlightStateEx(flashlightInfo.m_FlashlightState, m_Shadows[flashlightInfo.m_Shadow].m_WorldToShadow, m_Shadows[flashlightInfo.m_Shadow].m_pFlashlightDepthTexture );
EnableStencilAndScissorMasking( pRenderContext, flashlightInfo, bDoMasking );
for( ; sortIDHandle != materialBuckets.InvalidSortIDHandle();
sortIDHandle = materialBuckets.GetNextUsedSortID( sortIDHandle ) )
{
int sortID = materialBuckets.GetSortID( sortIDHandle );
if( bWireframe )
{
pRenderContext->Bind( g_materialWorldWireframe );
}
else
{
pRenderContext->Bind( materialSortInfoArray[sortID].material );
pRenderContext->BindLightmapPage( materialSortInfoArray[sortID].lightmapPageID );
}
CMaterialsBuckets<SurfaceHandle_t>::ElementHandle_t elemHandle;
// Figure out how many indices we have.
int numIndices = 0;
for( elemHandle = materialBuckets.GetElementListHead( sortID );
elemHandle != materialBuckets.InvalidElementHandle();
elemHandle = materialBuckets.GetElementListNext( elemHandle ) )
{
SurfaceHandle_t surfID = materialBuckets.GetElement( elemHandle );
if( !SurfaceHasDispInfo( surfID ) )
{
numIndices += 3 * ( MSurf_VertCount( surfID ) - 2 );
}
}
if( numIndices > 0 )
{
// NOTE: If we ever need to make this faster, we could get larger
// batches here.
// Draw this batch.
#if NEWMESH
IIndexBuffer *pIndexBuffer = pRenderContext->GetDynamicIndexBuffer( MATERIAL_INDEX_FORMAT_16BIT );
CIndexBufferBuilder indexBufferBuilder;
indexBufferBuilder.Begin( pIndexBuffer, numIndices );
#else
IMesh *pMesh = pRenderContext->GetDynamicMesh( false, g_WorldStaticMeshes[sortID], 0 );
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, 0, numIndices );
#endif
for( elemHandle = materialBuckets.GetElementListHead( sortID );
elemHandle != materialBuckets.InvalidElementHandle();
elemHandle = materialBuckets.GetElementListNext( elemHandle ) )
{
SurfaceHandle_t surfID = materialBuckets.GetElement( elemHandle );
if( !SurfaceHasDispInfo( surfID ) )
{
#if NEWMESH
BuildIndicesForWorldSurface( indexBufferBuilder, surfID, host_state.worldbrush );
#else
BuildIndicesForWorldSurface( meshBuilder, surfID, host_state.worldbrush );
#endif
}
}
// close out the index buffer
#if NEWMESH
indexBufferBuilder.End( false ); // haven't tested this one yet (flashlights)
// FIXME: IMaterial::GetVertexFormat() should do this stripping (add a separate 'SupportsCompression' accessor)
VertexFormat_t vertexFormat = materialSortInfoArray[sortID].material->GetVertexFormat() & ~VERTEX_FORMAT_COMPRESSED;
pRenderContext->BindVertexBuffer( 0, g_WorldStaticMeshes[sortID], 0, materialSortInfoArray[sortID].material->GetVertexFormat() ); // hack fixme. . . use currently bound material format instead of passing in?
pRenderContext->BindIndexBuffer( pIndexBuffer, 0 );
pRenderContext->Draw( MATERIAL_TRIANGLES, 0, numIndices );
#else
meshBuilder.End( false, true );
#endif
}
// NOTE: If we ever need to make this faster, we could get larger batches here.
// Draw displacements
for( elemHandle = materialBuckets.GetElementListHead( sortID );
elemHandle != materialBuckets.InvalidElementHandle();
elemHandle = materialBuckets.GetElementListNext( elemHandle ) )
{
SurfaceHandle_t surfID = materialBuckets.GetElement( elemHandle );
if( SurfaceHasDispInfo( surfID ) )
{
CDispInfo *pDisp = ( CDispInfo * )MSurf_DispInfo( surfID );
Assert( pDisp );
if( bWireframe )
{
pDisp->SpecifyDynamicMesh();
}
else
{
Assert( pDisp && pDisp->m_pMesh && pDisp->m_pMesh->m_pMesh );
pDisp->m_pMesh->m_pMesh->Draw( pDisp->m_iIndexOffset, pDisp->m_nIndices );
}
}
}
}
}
// Tell the materialsystem that we are finished drawing additive flashlight lighting.
pRenderContext->SetFlashlightMode( false );
// Turn off stencil masking
DisableStencilAndScissorMasking( pRenderContext );
#endif
}
const Frustum_t &CShadowMgr::GetFlashlightFrustum( ShadowHandle_t handle )
{
Assert( m_Shadows[handle].m_Flags & SHADOW_FLASHLIGHT );
Assert( m_Shadows[handle].m_FlashlightHandle != m_Shadows.InvalidIndex() );
return m_FlashlightStates[m_Shadows[handle].m_FlashlightHandle].m_Frustum;
}
const FlashlightState_t &CShadowMgr::GetFlashlightState( ShadowHandle_t handle )
{
Assert( m_Shadows[handle].m_Flags & SHADOW_FLASHLIGHT );
Assert( m_Shadows[handle].m_FlashlightHandle != m_Shadows.InvalidIndex() );
return m_FlashlightStates[m_Shadows[handle].m_FlashlightHandle].m_FlashlightState;
}
void CShadowMgr::DrawFlashlightDecals( int sortGroup, bool bDoMasking )
{
VPROF_BUDGET( "CShadowMgr::DrawFlashlightDecals", VPROF_BUDGETGROUP_SHADOW_RENDERING );
if ( IsX360() || r_flashlight_version2.GetInt() )
return;
FlashlightHandle_t flashlightID = m_FlashlightStates.Head();
if ( flashlightID == m_FlashlightStates.InvalidIndex() )
return;
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->SetFlashlightMode( true );
for( ;
flashlightID != m_FlashlightStates.InvalidIndex();
flashlightID = m_FlashlightStates.Next( flashlightID ) )
{
FlashlightInfo_t &flashlightInfo = m_FlashlightStates[flashlightID];
pRenderContext->SetFlashlightState(flashlightInfo.m_FlashlightState, m_Shadows[flashlightInfo.m_Shadow].m_WorldToShadow );
EnableStencilAndScissorMasking( pRenderContext, flashlightInfo, bDoMasking );
DecalSurfaceDraw( pRenderContext, sortGroup );
}
// Tell the materialsystem that we are finished drawing additive flashlight lighting.
pRenderContext->SetFlashlightMode( false );
// Turn off stencil masking
DisableStencilAndScissorMasking( pRenderContext );
}
void CShadowMgr::DrawFlashlightDecalsOnDisplacements( int sortGroup, CDispInfo *visibleDisps[MAX_MAP_DISPINFO], int nVisibleDisps, bool bDoMasking )
{
VPROF_BUDGET( "CShadowMgr::DrawFlashlightDecalsOnDisplacements", VPROF_BUDGETGROUP_SHADOW_RENDERING );
if ( IsX360() || r_flashlight_version2.GetInt() )
return;
FlashlightHandle_t flashlightID = m_FlashlightStates.Head();
if ( flashlightID == m_FlashlightStates.InvalidIndex() )
return;
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->SetFlashlightMode( true );
DispInfo_BatchDecals( visibleDisps, nVisibleDisps );
for( ;
flashlightID != m_FlashlightStates.InvalidIndex();
flashlightID = m_FlashlightStates.Next( flashlightID ) )
{
FlashlightInfo_t &flashlightInfo = m_FlashlightStates[flashlightID];
pRenderContext->SetFlashlightState(flashlightInfo.m_FlashlightState, m_Shadows[flashlightInfo.m_Shadow].m_WorldToShadow );
EnableStencilAndScissorMasking( pRenderContext, flashlightInfo, bDoMasking );
DispInfo_DrawDecals( visibleDisps, nVisibleDisps );
}
// Tell the materialsystem that we are finished drawing additive flashlight lighting.
pRenderContext->SetFlashlightMode( false );
// Turn off stencil masking
DisableStencilAndScissorMasking( pRenderContext );
}
void CShadowMgr::DrawFlashlightDecalsOnSingleSurface( SurfaceHandle_t surfID, bool bDoMasking )
{
VPROF_BUDGET( "CShadowMgr::DrawFlashlightDecalsOnSingleSurface", VPROF_BUDGETGROUP_SHADOW_RENDERING );
if ( IsX360() || r_flashlight_version2.GetInt() )
return;
FlashlightHandle_t flashlightID = m_FlashlightStates.Head();
if ( flashlightID == m_FlashlightStates.InvalidIndex() )
return;
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->SetFlashlightMode( true );
for( ;
flashlightID != m_FlashlightStates.InvalidIndex();
flashlightID = m_FlashlightStates.Next( flashlightID ) )
{
FlashlightInfo_t &flashlightInfo = m_FlashlightStates[flashlightID];
pRenderContext->SetFlashlightState(flashlightInfo.m_FlashlightState, m_Shadows[flashlightInfo.m_Shadow].m_WorldToShadow );
EnableStencilAndScissorMasking( pRenderContext, flashlightInfo, bDoMasking );
DrawDecalsOnSingleSurface( pRenderContext, surfID );
}
// Tell the materialsystem that we are finished drawing additive flashlight lighting.
pRenderContext->SetFlashlightMode( false );
// Turn off stencil masking
DisableStencilAndScissorMasking( pRenderContext );
}
void CShadowMgr::DrawFlashlightOverlays( int nSortGroup, bool bDoMasking )
{
VPROF_BUDGET( "CShadowMgr::DrawFlashlightOverlays", VPROF_BUDGETGROUP_SHADOW_RENDERING );
if ( IsX360() || r_flashlight_version2.GetInt() )
return;
FlashlightHandle_t flashlightID = m_FlashlightStates.Head();
if ( flashlightID == m_FlashlightStates.InvalidIndex() )
return;
if ( r_flashlightrender.GetBool()==false )
return;
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->SetFlashlightMode( true );
for( ;
flashlightID != m_FlashlightStates.InvalidIndex();
flashlightID = m_FlashlightStates.Next( flashlightID ) )
{
FlashlightInfo_t &flashlightInfo = m_FlashlightStates[flashlightID];
pRenderContext->SetFlashlightState(flashlightInfo.m_FlashlightState, m_Shadows[flashlightInfo.m_Shadow].m_WorldToShadow );
EnableStencilAndScissorMasking( pRenderContext, flashlightInfo, bDoMasking );
OverlayMgr()->RenderOverlays( nSortGroup );
}
// Tell the materialsystem that we are finished drawing additive flashlight lighting.
pRenderContext->SetFlashlightMode( false );
// Turn off stencil masking
DisableStencilAndScissorMasking( pRenderContext );
}
void CShadowMgr::DrawFlashlightDepthTexture( )
{
int i = 0;
FlashlightHandle_t flashlightID = m_FlashlightStates.Head();
while ( flashlightID != m_FlashlightStates.InvalidIndex() ) // Count up the shadows
{
FlashlightInfo_t &flashlightInfo = m_FlashlightStates[ flashlightID ];
if( m_Shadows[ flashlightInfo.m_Shadow ].m_pFlashlightDepthTexture )
{
bool foundVar;
IMaterial *pMaterial = materials->FindMaterial( "debug/showz", TEXTURE_GROUP_OTHER, true );
IMaterialVar *BaseTextureVar = pMaterial->FindVar( "$basetexture", &foundVar, false );
if (!foundVar)
return;
IMaterialVar *FrameVar = pMaterial->FindVar( "$frame", &foundVar, false );
if (!foundVar)
return;
float w = 256.0f, h = 256.0f;
float wOffset = (i % 2) * 256.0f; // Even|Odd go left|right
float hOffset = (i / 2) * 256.0f; // Rows of two
BaseTextureVar->SetTextureValue( m_Shadows[ flashlightInfo.m_Shadow ].m_pFlashlightDepthTexture );
FrameVar->SetIntValue( 0 );
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->Bind( pMaterial );
IMesh* pMesh = pRenderContext->GetDynamicMesh( true );
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_QUADS, 1 );
meshBuilder.Position3f( wOffset, hOffset, 0.0f );
#ifdef DX_TO_GL_ABSTRACTION
meshBuilder.TexCoord2f( 0, 0.0f, 1.0f ); // Posix is rotated due to render target origin differences
#else
meshBuilder.TexCoord2f( 0, 0.0f, 0.0f );
#endif
meshBuilder.AdvanceVertex();
meshBuilder.Position3f( wOffset + w, hOffset, 0.0f );
#ifdef DX_TO_GL_ABSTRACTION
meshBuilder.TexCoord2f( 0, 0.0f, 0.0f );
#else
meshBuilder.TexCoord2f( 0, 1.0f, 0.0f );
#endif
meshBuilder.AdvanceVertex();
meshBuilder.Position3f( wOffset + w, hOffset + h, 0.0f );
#ifdef DX_TO_GL_ABSTRACTION
meshBuilder.TexCoord2f( 0, 1.0f, 0.0f );
#else
meshBuilder.TexCoord2f( 0, 1.0f, 1.0f );
#endif
meshBuilder.AdvanceVertex();
meshBuilder.Position3f( wOffset, hOffset + h, 0.0f );
#ifdef DX_TO_GL_ABSTRACTION
meshBuilder.TexCoord2f( 0, 1.0f, 1.0f );
#else
meshBuilder.TexCoord2f( 0, 0.0f, 1.0f );
#endif
meshBuilder.AdvanceVertex();
meshBuilder.End();
pMesh->Draw();
i++;
}
flashlightID = m_FlashlightStates.Next( flashlightID );
}
}
void CShadowMgr::AddFlashlightRenderable( ShadowHandle_t shadowHandle, IClientRenderable *pRenderable )
{
Shadow_t &shadow = m_Shadows[ shadowHandle ];
FlashlightInfo_t &flashlightInfo = m_FlashlightStates[ shadow.m_FlashlightHandle ];
if( pRenderable->GetModelInstance() != MODEL_INSTANCE_INVALID )
{
flashlightInfo.m_Renderables.AddToTail( pRenderable );
}
}