mirror of
https://github.com/nillerusr/source-engine.git
synced 2024-12-28 09:03:01 +00:00
2747 lines
121 KiB
XML
2747 lines
121 KiB
XML
|
<?xml version="1.0" encoding="UTF-8"?>
|
||
|
<protocol name="wayland">
|
||
|
|
||
|
<copyright>
|
||
|
Copyright © 2008-2011 Kristian Høgsberg
|
||
|
Copyright © 2010-2011 Intel Corporation
|
||
|
Copyright © 2012-2013 Collabora, Ltd.
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person
|
||
|
obtaining a copy of this software and associated documentation files
|
||
|
(the "Software"), to deal in the Software without restriction,
|
||
|
including without limitation the rights to use, copy, modify, merge,
|
||
|
publish, distribute, sublicense, and/or sell copies of the Software,
|
||
|
and to permit persons to whom the Software is furnished to do so,
|
||
|
subject to the following conditions:
|
||
|
|
||
|
The above copyright notice and this permission notice (including the
|
||
|
next paragraph) shall be included in all copies or substantial
|
||
|
portions of the Software.
|
||
|
|
||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||
|
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||
|
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||
|
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||
|
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
|
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
SOFTWARE.
|
||
|
</copyright>
|
||
|
|
||
|
<interface name="wl_display" version="1">
|
||
|
<description summary="core global object">
|
||
|
The core global object. This is a special singleton object. It
|
||
|
is used for internal Wayland protocol features.
|
||
|
</description>
|
||
|
|
||
|
<request name="sync">
|
||
|
<description summary="asynchronous roundtrip">
|
||
|
The sync request asks the server to emit the 'done' event
|
||
|
on the returned wl_callback object. Since requests are
|
||
|
handled in-order and events are delivered in-order, this can
|
||
|
be used as a barrier to ensure all previous requests and the
|
||
|
resulting events have been handled.
|
||
|
|
||
|
The object returned by this request will be destroyed by the
|
||
|
compositor after the callback is fired and as such the client must not
|
||
|
attempt to use it after that point.
|
||
|
|
||
|
The callback_data passed in the callback is the event serial.
|
||
|
</description>
|
||
|
<arg name="callback" type="new_id" interface="wl_callback"
|
||
|
summary="callback object for the sync request"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="get_registry">
|
||
|
<description summary="get global registry object">
|
||
|
This request creates a registry object that allows the client
|
||
|
to list and bind the global objects available from the
|
||
|
compositor.
|
||
|
</description>
|
||
|
<arg name="registry" type="new_id" interface="wl_registry"
|
||
|
summary="global registry object"/>
|
||
|
</request>
|
||
|
|
||
|
<event name="error">
|
||
|
<description summary="fatal error event">
|
||
|
The error event is sent out when a fatal (non-recoverable)
|
||
|
error has occurred. The object_id argument is the object
|
||
|
where the error occurred, most often in response to a request
|
||
|
to that object. The code identifies the error and is defined
|
||
|
by the object interface. As such, each interface defines its
|
||
|
own set of error codes. The message is a brief description
|
||
|
of the error, for (debugging) convenience.
|
||
|
</description>
|
||
|
<arg name="object_id" type="object" summary="object where the error occurred"/>
|
||
|
<arg name="code" type="uint" summary="error code"/>
|
||
|
<arg name="message" type="string" summary="error description"/>
|
||
|
</event>
|
||
|
|
||
|
<enum name="error">
|
||
|
<description summary="global error values">
|
||
|
These errors are global and can be emitted in response to any
|
||
|
server request.
|
||
|
</description>
|
||
|
<entry name="invalid_object" value="0"
|
||
|
summary="server couldn't find object"/>
|
||
|
<entry name="invalid_method" value="1"
|
||
|
summary="method doesn't exist on the specified interface"/>
|
||
|
<entry name="no_memory" value="2"
|
||
|
summary="server is out of memory"/>
|
||
|
</enum>
|
||
|
|
||
|
<event name="delete_id">
|
||
|
<description summary="acknowledge object ID deletion">
|
||
|
This event is used internally by the object ID management
|
||
|
logic. When a client deletes an object, the server will send
|
||
|
this event to acknowledge that it has seen the delete request.
|
||
|
When the client receives this event, it will know that it can
|
||
|
safely reuse the object ID.
|
||
|
</description>
|
||
|
<arg name="id" type="uint" summary="deleted object ID"/>
|
||
|
</event>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_registry" version="1">
|
||
|
<description summary="global registry object">
|
||
|
The singleton global registry object. The server has a number of
|
||
|
global objects that are available to all clients. These objects
|
||
|
typically represent an actual object in the server (for example,
|
||
|
an input device) or they are singleton objects that provide
|
||
|
extension functionality.
|
||
|
|
||
|
When a client creates a registry object, the registry object
|
||
|
will emit a global event for each global currently in the
|
||
|
registry. Globals come and go as a result of device or
|
||
|
monitor hotplugs, reconfiguration or other events, and the
|
||
|
registry will send out global and global_remove events to
|
||
|
keep the client up to date with the changes. To mark the end
|
||
|
of the initial burst of events, the client can use the
|
||
|
wl_display.sync request immediately after calling
|
||
|
wl_display.get_registry.
|
||
|
|
||
|
A client can bind to a global object by using the bind
|
||
|
request. This creates a client-side handle that lets the object
|
||
|
emit events to the client and lets the client invoke requests on
|
||
|
the object.
|
||
|
</description>
|
||
|
|
||
|
<request name="bind">
|
||
|
<description summary="bind an object to the display">
|
||
|
Binds a new, client-created object to the server using the
|
||
|
specified name as the identifier.
|
||
|
</description>
|
||
|
<arg name="name" type="uint" summary="unique numeric name of the object"/>
|
||
|
<arg name="id" type="new_id" summary="bounded object"/>
|
||
|
</request>
|
||
|
|
||
|
<event name="global">
|
||
|
<description summary="announce global object">
|
||
|
Notify the client of global objects.
|
||
|
|
||
|
The event notifies the client that a global object with
|
||
|
the given name is now available, and it implements the
|
||
|
given version of the given interface.
|
||
|
</description>
|
||
|
<arg name="name" type="uint" summary="numeric name of the global object"/>
|
||
|
<arg name="interface" type="string" summary="interface implemented by the object"/>
|
||
|
<arg name="version" type="uint" summary="interface version"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="global_remove">
|
||
|
<description summary="announce removal of global object">
|
||
|
Notify the client of removed global objects.
|
||
|
|
||
|
This event notifies the client that the global identified
|
||
|
by name is no longer available. If the client bound to
|
||
|
the global using the bind request, the client should now
|
||
|
destroy that object.
|
||
|
|
||
|
The object remains valid and requests to the object will be
|
||
|
ignored until the client destroys it, to avoid races between
|
||
|
the global going away and a client sending a request to it.
|
||
|
</description>
|
||
|
<arg name="name" type="uint" summary="numeric name of the global object"/>
|
||
|
</event>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_callback" version="1">
|
||
|
<description summary="callback object">
|
||
|
Clients can handle the 'done' event to get notified when
|
||
|
the related request is done.
|
||
|
</description>
|
||
|
|
||
|
<event name="done">
|
||
|
<description summary="done event">
|
||
|
Notify the client when the related request is done.
|
||
|
</description>
|
||
|
<arg name="callback_data" type="uint" summary="request-specific data for the callback"/>
|
||
|
</event>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_compositor" version="4">
|
||
|
<description summary="the compositor singleton">
|
||
|
A compositor. This object is a singleton global. The
|
||
|
compositor is in charge of combining the contents of multiple
|
||
|
surfaces into one displayable output.
|
||
|
</description>
|
||
|
|
||
|
<request name="create_surface">
|
||
|
<description summary="create new surface">
|
||
|
Ask the compositor to create a new surface.
|
||
|
</description>
|
||
|
<arg name="id" type="new_id" interface="wl_surface" summary="the new surface"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="create_region">
|
||
|
<description summary="create new region">
|
||
|
Ask the compositor to create a new region.
|
||
|
</description>
|
||
|
<arg name="id" type="new_id" interface="wl_region" summary="the new region"/>
|
||
|
</request>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_shm_pool" version="1">
|
||
|
<description summary="a shared memory pool">
|
||
|
The wl_shm_pool object encapsulates a piece of memory shared
|
||
|
between the compositor and client. Through the wl_shm_pool
|
||
|
object, the client can allocate shared memory wl_buffer objects.
|
||
|
All objects created through the same pool share the same
|
||
|
underlying mapped memory. Reusing the mapped memory avoids the
|
||
|
setup/teardown overhead and is useful when interactively resizing
|
||
|
a surface or for many small buffers.
|
||
|
</description>
|
||
|
|
||
|
<request name="create_buffer">
|
||
|
<description summary="create a buffer from the pool">
|
||
|
Create a wl_buffer object from the pool.
|
||
|
|
||
|
The buffer is created offset bytes into the pool and has
|
||
|
width and height as specified. The stride argument specifies
|
||
|
the number of bytes from the beginning of one row to the beginning
|
||
|
of the next. The format is the pixel format of the buffer and
|
||
|
must be one of those advertised through the wl_shm.format event.
|
||
|
|
||
|
A buffer will keep a reference to the pool it was created from
|
||
|
so it is valid to destroy the pool immediately after creating
|
||
|
a buffer from it.
|
||
|
</description>
|
||
|
<arg name="id" type="new_id" interface="wl_buffer" summary="buffer to create"/>
|
||
|
<arg name="offset" type="int" summary="buffer byte offset within the pool"/>
|
||
|
<arg name="width" type="int" summary="buffer width, in pixels"/>
|
||
|
<arg name="height" type="int" summary="buffer height, in pixels"/>
|
||
|
<arg name="stride" type="int" summary="number of bytes from the beginning of one row to the beginning of the next row"/>
|
||
|
<arg name="format" type="uint" enum="wl_shm.format" summary="buffer pixel format"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="destroy" type="destructor">
|
||
|
<description summary="destroy the pool">
|
||
|
Destroy the shared memory pool.
|
||
|
|
||
|
The mmapped memory will be released when all
|
||
|
buffers that have been created from this pool
|
||
|
are gone.
|
||
|
</description>
|
||
|
</request>
|
||
|
|
||
|
<request name="resize">
|
||
|
<description summary="change the size of the pool mapping">
|
||
|
This request will cause the server to remap the backing memory
|
||
|
for the pool from the file descriptor passed when the pool was
|
||
|
created, but using the new size. This request can only be
|
||
|
used to make the pool bigger.
|
||
|
</description>
|
||
|
<arg name="size" type="int" summary="new size of the pool, in bytes"/>
|
||
|
</request>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_shm" version="1">
|
||
|
<description summary="shared memory support">
|
||
|
A singleton global object that provides support for shared
|
||
|
memory.
|
||
|
|
||
|
Clients can create wl_shm_pool objects using the create_pool
|
||
|
request.
|
||
|
|
||
|
At connection setup time, the wl_shm object emits one or more
|
||
|
format events to inform clients about the valid pixel formats
|
||
|
that can be used for buffers.
|
||
|
</description>
|
||
|
|
||
|
<enum name="error">
|
||
|
<description summary="wl_shm error values">
|
||
|
These errors can be emitted in response to wl_shm requests.
|
||
|
</description>
|
||
|
<entry name="invalid_format" value="0" summary="buffer format is not known"/>
|
||
|
<entry name="invalid_stride" value="1" summary="invalid size or stride during pool or buffer creation"/>
|
||
|
<entry name="invalid_fd" value="2" summary="mmapping the file descriptor failed"/>
|
||
|
</enum>
|
||
|
|
||
|
<enum name="format">
|
||
|
<description summary="pixel formats">
|
||
|
This describes the memory layout of an individual pixel.
|
||
|
|
||
|
All renderers should support argb8888 and xrgb8888 but any other
|
||
|
formats are optional and may not be supported by the particular
|
||
|
renderer in use.
|
||
|
|
||
|
The drm format codes match the macros defined in drm_fourcc.h.
|
||
|
The formats actually supported by the compositor will be
|
||
|
reported by the format event.
|
||
|
</description>
|
||
|
<entry name="argb8888" value="0" summary="32-bit ARGB format, [31:0] A:R:G:B 8:8:8:8 little endian"/>
|
||
|
<entry name="xrgb8888" value="1" summary="32-bit RGB format, [31:0] x:R:G:B 8:8:8:8 little endian"/>
|
||
|
<entry name="c8" value="0x20203843" summary="8-bit color index format, [7:0] C"/>
|
||
|
<entry name="rgb332" value="0x38424752" summary="8-bit RGB format, [7:0] R:G:B 3:3:2"/>
|
||
|
<entry name="bgr233" value="0x38524742" summary="8-bit BGR format, [7:0] B:G:R 2:3:3"/>
|
||
|
<entry name="xrgb4444" value="0x32315258" summary="16-bit xRGB format, [15:0] x:R:G:B 4:4:4:4 little endian"/>
|
||
|
<entry name="xbgr4444" value="0x32314258" summary="16-bit xBGR format, [15:0] x:B:G:R 4:4:4:4 little endian"/>
|
||
|
<entry name="rgbx4444" value="0x32315852" summary="16-bit RGBx format, [15:0] R:G:B:x 4:4:4:4 little endian"/>
|
||
|
<entry name="bgrx4444" value="0x32315842" summary="16-bit BGRx format, [15:0] B:G:R:x 4:4:4:4 little endian"/>
|
||
|
<entry name="argb4444" value="0x32315241" summary="16-bit ARGB format, [15:0] A:R:G:B 4:4:4:4 little endian"/>
|
||
|
<entry name="abgr4444" value="0x32314241" summary="16-bit ABGR format, [15:0] A:B:G:R 4:4:4:4 little endian"/>
|
||
|
<entry name="rgba4444" value="0x32314152" summary="16-bit RBGA format, [15:0] R:G:B:A 4:4:4:4 little endian"/>
|
||
|
<entry name="bgra4444" value="0x32314142" summary="16-bit BGRA format, [15:0] B:G:R:A 4:4:4:4 little endian"/>
|
||
|
<entry name="xrgb1555" value="0x35315258" summary="16-bit xRGB format, [15:0] x:R:G:B 1:5:5:5 little endian"/>
|
||
|
<entry name="xbgr1555" value="0x35314258" summary="16-bit xBGR 1555 format, [15:0] x:B:G:R 1:5:5:5 little endian"/>
|
||
|
<entry name="rgbx5551" value="0x35315852" summary="16-bit RGBx 5551 format, [15:0] R:G:B:x 5:5:5:1 little endian"/>
|
||
|
<entry name="bgrx5551" value="0x35315842" summary="16-bit BGRx 5551 format, [15:0] B:G:R:x 5:5:5:1 little endian"/>
|
||
|
<entry name="argb1555" value="0x35315241" summary="16-bit ARGB 1555 format, [15:0] A:R:G:B 1:5:5:5 little endian"/>
|
||
|
<entry name="abgr1555" value="0x35314241" summary="16-bit ABGR 1555 format, [15:0] A:B:G:R 1:5:5:5 little endian"/>
|
||
|
<entry name="rgba5551" value="0x35314152" summary="16-bit RGBA 5551 format, [15:0] R:G:B:A 5:5:5:1 little endian"/>
|
||
|
<entry name="bgra5551" value="0x35314142" summary="16-bit BGRA 5551 format, [15:0] B:G:R:A 5:5:5:1 little endian"/>
|
||
|
<entry name="rgb565" value="0x36314752" summary="16-bit RGB 565 format, [15:0] R:G:B 5:6:5 little endian"/>
|
||
|
<entry name="bgr565" value="0x36314742" summary="16-bit BGR 565 format, [15:0] B:G:R 5:6:5 little endian"/>
|
||
|
<entry name="rgb888" value="0x34324752" summary="24-bit RGB format, [23:0] R:G:B little endian"/>
|
||
|
<entry name="bgr888" value="0x34324742" summary="24-bit BGR format, [23:0] B:G:R little endian"/>
|
||
|
<entry name="xbgr8888" value="0x34324258" summary="32-bit xBGR format, [31:0] x:B:G:R 8:8:8:8 little endian"/>
|
||
|
<entry name="rgbx8888" value="0x34325852" summary="32-bit RGBx format, [31:0] R:G:B:x 8:8:8:8 little endian"/>
|
||
|
<entry name="bgrx8888" value="0x34325842" summary="32-bit BGRx format, [31:0] B:G:R:x 8:8:8:8 little endian"/>
|
||
|
<entry name="abgr8888" value="0x34324241" summary="32-bit ABGR format, [31:0] A:B:G:R 8:8:8:8 little endian"/>
|
||
|
<entry name="rgba8888" value="0x34324152" summary="32-bit RGBA format, [31:0] R:G:B:A 8:8:8:8 little endian"/>
|
||
|
<entry name="bgra8888" value="0x34324142" summary="32-bit BGRA format, [31:0] B:G:R:A 8:8:8:8 little endian"/>
|
||
|
<entry name="xrgb2101010" value="0x30335258" summary="32-bit xRGB format, [31:0] x:R:G:B 2:10:10:10 little endian"/>
|
||
|
<entry name="xbgr2101010" value="0x30334258" summary="32-bit xBGR format, [31:0] x:B:G:R 2:10:10:10 little endian"/>
|
||
|
<entry name="rgbx1010102" value="0x30335852" summary="32-bit RGBx format, [31:0] R:G:B:x 10:10:10:2 little endian"/>
|
||
|
<entry name="bgrx1010102" value="0x30335842" summary="32-bit BGRx format, [31:0] B:G:R:x 10:10:10:2 little endian"/>
|
||
|
<entry name="argb2101010" value="0x30335241" summary="32-bit ARGB format, [31:0] A:R:G:B 2:10:10:10 little endian"/>
|
||
|
<entry name="abgr2101010" value="0x30334241" summary="32-bit ABGR format, [31:0] A:B:G:R 2:10:10:10 little endian"/>
|
||
|
<entry name="rgba1010102" value="0x30334152" summary="32-bit RGBA format, [31:0] R:G:B:A 10:10:10:2 little endian"/>
|
||
|
<entry name="bgra1010102" value="0x30334142" summary="32-bit BGRA format, [31:0] B:G:R:A 10:10:10:2 little endian"/>
|
||
|
<entry name="yuyv" value="0x56595559" summary="packed YCbCr format, [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian"/>
|
||
|
<entry name="yvyu" value="0x55595659" summary="packed YCbCr format, [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian"/>
|
||
|
<entry name="uyvy" value="0x59565955" summary="packed YCbCr format, [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian"/>
|
||
|
<entry name="vyuy" value="0x59555956" summary="packed YCbCr format, [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian"/>
|
||
|
<entry name="ayuv" value="0x56555941" summary="packed AYCbCr format, [31:0] A:Y:Cb:Cr 8:8:8:8 little endian"/>
|
||
|
<entry name="nv12" value="0x3231564e" summary="2 plane YCbCr Cr:Cb format, 2x2 subsampled Cr:Cb plane"/>
|
||
|
<entry name="nv21" value="0x3132564e" summary="2 plane YCbCr Cb:Cr format, 2x2 subsampled Cb:Cr plane"/>
|
||
|
<entry name="nv16" value="0x3631564e" summary="2 plane YCbCr Cr:Cb format, 2x1 subsampled Cr:Cb plane"/>
|
||
|
<entry name="nv61" value="0x3136564e" summary="2 plane YCbCr Cb:Cr format, 2x1 subsampled Cb:Cr plane"/>
|
||
|
<entry name="yuv410" value="0x39565559" summary="3 plane YCbCr format, 4x4 subsampled Cb (1) and Cr (2) planes"/>
|
||
|
<entry name="yvu410" value="0x39555659" summary="3 plane YCbCr format, 4x4 subsampled Cr (1) and Cb (2) planes"/>
|
||
|
<entry name="yuv411" value="0x31315559" summary="3 plane YCbCr format, 4x1 subsampled Cb (1) and Cr (2) planes"/>
|
||
|
<entry name="yvu411" value="0x31315659" summary="3 plane YCbCr format, 4x1 subsampled Cr (1) and Cb (2) planes"/>
|
||
|
<entry name="yuv420" value="0x32315559" summary="3 plane YCbCr format, 2x2 subsampled Cb (1) and Cr (2) planes"/>
|
||
|
<entry name="yvu420" value="0x32315659" summary="3 plane YCbCr format, 2x2 subsampled Cr (1) and Cb (2) planes"/>
|
||
|
<entry name="yuv422" value="0x36315559" summary="3 plane YCbCr format, 2x1 subsampled Cb (1) and Cr (2) planes"/>
|
||
|
<entry name="yvu422" value="0x36315659" summary="3 plane YCbCr format, 2x1 subsampled Cr (1) and Cb (2) planes"/>
|
||
|
<entry name="yuv444" value="0x34325559" summary="3 plane YCbCr format, non-subsampled Cb (1) and Cr (2) planes"/>
|
||
|
<entry name="yvu444" value="0x34325659" summary="3 plane YCbCr format, non-subsampled Cr (1) and Cb (2) planes"/>
|
||
|
</enum>
|
||
|
|
||
|
<request name="create_pool">
|
||
|
<description summary="create a shm pool">
|
||
|
Create a new wl_shm_pool object.
|
||
|
|
||
|
The pool can be used to create shared memory based buffer
|
||
|
objects. The server will mmap size bytes of the passed file
|
||
|
descriptor, to use as backing memory for the pool.
|
||
|
</description>
|
||
|
<arg name="id" type="new_id" interface="wl_shm_pool" summary="pool to create"/>
|
||
|
<arg name="fd" type="fd" summary="file descriptor for the pool"/>
|
||
|
<arg name="size" type="int" summary="pool size, in bytes"/>
|
||
|
</request>
|
||
|
|
||
|
<event name="format">
|
||
|
<description summary="pixel format description">
|
||
|
Informs the client about a valid pixel format that
|
||
|
can be used for buffers. Known formats include
|
||
|
argb8888 and xrgb8888.
|
||
|
</description>
|
||
|
<arg name="format" type="uint" enum="format" summary="buffer pixel format"/>
|
||
|
</event>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_buffer" version="1">
|
||
|
<description summary="content for a wl_surface">
|
||
|
A buffer provides the content for a wl_surface. Buffers are
|
||
|
created through factory interfaces such as wl_drm, wl_shm or
|
||
|
similar. It has a width and a height and can be attached to a
|
||
|
wl_surface, but the mechanism by which a client provides and
|
||
|
updates the contents is defined by the buffer factory interface.
|
||
|
</description>
|
||
|
|
||
|
<request name="destroy" type="destructor">
|
||
|
<description summary="destroy a buffer">
|
||
|
Destroy a buffer. If and how you need to release the backing
|
||
|
storage is defined by the buffer factory interface.
|
||
|
|
||
|
For possible side-effects to a surface, see wl_surface.attach.
|
||
|
</description>
|
||
|
</request>
|
||
|
|
||
|
<event name="release">
|
||
|
<description summary="compositor releases buffer">
|
||
|
Sent when this wl_buffer is no longer used by the compositor.
|
||
|
The client is now free to reuse or destroy this buffer and its
|
||
|
backing storage.
|
||
|
|
||
|
If a client receives a release event before the frame callback
|
||
|
requested in the same wl_surface.commit that attaches this
|
||
|
wl_buffer to a surface, then the client is immediately free to
|
||
|
reuse the buffer and its backing storage, and does not need a
|
||
|
second buffer for the next surface content update. Typically
|
||
|
this is possible, when the compositor maintains a copy of the
|
||
|
wl_surface contents, e.g. as a GL texture. This is an important
|
||
|
optimization for GL(ES) compositors with wl_shm clients.
|
||
|
</description>
|
||
|
</event>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_data_offer" version="3">
|
||
|
<description summary="offer to transfer data">
|
||
|
A wl_data_offer represents a piece of data offered for transfer
|
||
|
by another client (the source client). It is used by the
|
||
|
copy-and-paste and drag-and-drop mechanisms. The offer
|
||
|
describes the different mime types that the data can be
|
||
|
converted to and provides the mechanism for transferring the
|
||
|
data directly from the source client.
|
||
|
</description>
|
||
|
|
||
|
<enum name="error">
|
||
|
<entry name="invalid_finish" value="0"
|
||
|
summary="finish request was called untimely"/>
|
||
|
<entry name="invalid_action_mask" value="1"
|
||
|
summary="action mask contains invalid values"/>
|
||
|
<entry name="invalid_action" value="2"
|
||
|
summary="action argument has an invalid value"/>
|
||
|
<entry name="invalid_offer" value="3"
|
||
|
summary="offer doesn't accept this request"/>
|
||
|
</enum>
|
||
|
|
||
|
<request name="accept">
|
||
|
<description summary="accept one of the offered mime types">
|
||
|
Indicate that the client can accept the given mime type, or
|
||
|
NULL for not accepted.
|
||
|
|
||
|
For objects of version 2 or older, this request is used by the
|
||
|
client to give feedback whether the client can receive the given
|
||
|
mime type, or NULL if none is accepted; the feedback does not
|
||
|
determine whether the drag-and-drop operation succeeds or not.
|
||
|
|
||
|
For objects of version 3 or newer, this request determines the
|
||
|
final result of the drag-and-drop operation. If the end result
|
||
|
is that no mime types were accepted, the drag-and-drop operation
|
||
|
will be cancelled and the corresponding drag source will receive
|
||
|
wl_data_source.cancelled. Clients may still use this event in
|
||
|
conjunction with wl_data_source.action for feedback.
|
||
|
</description>
|
||
|
<arg name="serial" type="uint" summary="serial number of the accept request"/>
|
||
|
<arg name="mime_type" type="string" allow-null="true" summary="mime type accepted by the client"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="receive">
|
||
|
<description summary="request that the data is transferred">
|
||
|
To transfer the offered data, the client issues this request
|
||
|
and indicates the mime type it wants to receive. The transfer
|
||
|
happens through the passed file descriptor (typically created
|
||
|
with the pipe system call). The source client writes the data
|
||
|
in the mime type representation requested and then closes the
|
||
|
file descriptor.
|
||
|
|
||
|
The receiving client reads from the read end of the pipe until
|
||
|
EOF and then closes its end, at which point the transfer is
|
||
|
complete.
|
||
|
|
||
|
This request may happen multiple times for different mime types,
|
||
|
both before and after wl_data_device.drop. Drag-and-drop destination
|
||
|
clients may preemptively fetch data or examine it more closely to
|
||
|
determine acceptance.
|
||
|
</description>
|
||
|
<arg name="mime_type" type="string" summary="mime type desired by receiver"/>
|
||
|
<arg name="fd" type="fd" summary="file descriptor for data transfer"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="destroy" type="destructor">
|
||
|
<description summary="destroy data offer">
|
||
|
Destroy the data offer.
|
||
|
</description>
|
||
|
</request>
|
||
|
|
||
|
<event name="offer">
|
||
|
<description summary="advertise offered mime type">
|
||
|
Sent immediately after creating the wl_data_offer object. One
|
||
|
event per offered mime type.
|
||
|
</description>
|
||
|
<arg name="mime_type" type="string" summary="offered mime type"/>
|
||
|
</event>
|
||
|
|
||
|
<!-- Version 3 additions -->
|
||
|
|
||
|
<request name="finish" since="3">
|
||
|
<description summary="the offer will no longer be used">
|
||
|
Notifies the compositor that the drag destination successfully
|
||
|
finished the drag-and-drop operation.
|
||
|
|
||
|
Upon receiving this request, the compositor will emit
|
||
|
wl_data_source.dnd_finished on the drag source client.
|
||
|
|
||
|
It is a client error to perform other requests than
|
||
|
wl_data_offer.destroy after this one. It is also an error to perform
|
||
|
this request after a NULL mime type has been set in
|
||
|
wl_data_offer.accept or no action was received through
|
||
|
wl_data_offer.action.
|
||
|
</description>
|
||
|
</request>
|
||
|
|
||
|
<request name="set_actions" since="3">
|
||
|
<description summary="set the available/preferred drag-and-drop actions">
|
||
|
Sets the actions that the destination side client supports for
|
||
|
this operation. This request may trigger the emission of
|
||
|
wl_data_source.action and wl_data_offer.action events if the compositor
|
||
|
needs to change the selected action.
|
||
|
|
||
|
This request can be called multiple times throughout the
|
||
|
drag-and-drop operation, typically in response to wl_data_device.enter
|
||
|
or wl_data_device.motion events.
|
||
|
|
||
|
This request determines the final result of the drag-and-drop
|
||
|
operation. If the end result is that no action is accepted,
|
||
|
the drag source will receive wl_drag_source.cancelled.
|
||
|
|
||
|
The dnd_actions argument must contain only values expressed in the
|
||
|
wl_data_device_manager.dnd_actions enum, and the preferred_action
|
||
|
argument must only contain one of those values set, otherwise it
|
||
|
will result in a protocol error.
|
||
|
|
||
|
While managing an "ask" action, the destination drag-and-drop client
|
||
|
may perform further wl_data_offer.receive requests, and is expected
|
||
|
to perform one last wl_data_offer.set_actions request with a preferred
|
||
|
action other than "ask" (and optionally wl_data_offer.accept) before
|
||
|
requesting wl_data_offer.finish, in order to convey the action selected
|
||
|
by the user. If the preferred action is not in the
|
||
|
wl_data_offer.source_actions mask, an error will be raised.
|
||
|
|
||
|
If the "ask" action is dismissed (e.g. user cancellation), the client
|
||
|
is expected to perform wl_data_offer.destroy right away.
|
||
|
|
||
|
This request can only be made on drag-and-drop offers, a protocol error
|
||
|
will be raised otherwise.
|
||
|
</description>
|
||
|
<arg name="dnd_actions" type="uint" summary="actions supported by the destination client"/>
|
||
|
<arg name="preferred_action" type="uint" summary="action preferred by the destination client"/>
|
||
|
</request>
|
||
|
|
||
|
<event name="source_actions" since="3">
|
||
|
<description summary="notify the source-side available actions">
|
||
|
This event indicates the actions offered by the data source. It
|
||
|
will be sent right after wl_data_device.enter, or anytime the source
|
||
|
side changes its offered actions through wl_data_source.set_actions.
|
||
|
</description>
|
||
|
<arg name="source_actions" type="uint" summary="actions offered by the data source"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="action" since="3">
|
||
|
<description summary="notify the selected action">
|
||
|
This event indicates the action selected by the compositor after
|
||
|
matching the source/destination side actions. Only one action (or
|
||
|
none) will be offered here.
|
||
|
|
||
|
This event can be emitted multiple times during the drag-and-drop
|
||
|
operation in response to destination side action changes through
|
||
|
wl_data_offer.set_actions.
|
||
|
|
||
|
This event will no longer be emitted after wl_data_device.drop
|
||
|
happened on the drag-and-drop destination, the client must
|
||
|
honor the last action received, or the last preferred one set
|
||
|
through wl_data_offer.set_actions when handling an "ask" action.
|
||
|
|
||
|
Compositors may also change the selected action on the fly, mainly
|
||
|
in response to keyboard modifier changes during the drag-and-drop
|
||
|
operation.
|
||
|
|
||
|
The most recent action received is always the valid one. Prior to
|
||
|
receiving wl_data_device.drop, the chosen action may change (e.g.
|
||
|
due to keyboard modifiers being pressed). At the time of receiving
|
||
|
wl_data_device.drop the drag-and-drop destination must honor the
|
||
|
last action received.
|
||
|
|
||
|
Action changes may still happen after wl_data_device.drop,
|
||
|
especially on "ask" actions, where the drag-and-drop destination
|
||
|
may choose another action afterwards. Action changes happening
|
||
|
at this stage are always the result of inter-client negotiation, the
|
||
|
compositor shall no longer be able to induce a different action.
|
||
|
|
||
|
Upon "ask" actions, it is expected that the drag-and-drop destination
|
||
|
may potentially choose a different action and/or mime type,
|
||
|
based on wl_data_offer.source_actions and finally chosen by the
|
||
|
user (e.g. popping up a menu with the available options). The
|
||
|
final wl_data_offer.set_actions and wl_data_offer.accept requests
|
||
|
must happen before the call to wl_data_offer.finish.
|
||
|
</description>
|
||
|
<arg name="dnd_action" type="uint" summary="action selected by the compositor"/>
|
||
|
</event>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_data_source" version="3">
|
||
|
<description summary="offer to transfer data">
|
||
|
The wl_data_source object is the source side of a wl_data_offer.
|
||
|
It is created by the source client in a data transfer and
|
||
|
provides a way to describe the offered data and a way to respond
|
||
|
to requests to transfer the data.
|
||
|
</description>
|
||
|
|
||
|
<enum name="error">
|
||
|
<entry name="invalid_action_mask" value="0"
|
||
|
summary="action mask contains invalid values"/>
|
||
|
<entry name="invalid_source" value="1"
|
||
|
summary="source doesn't accept this request"/>
|
||
|
</enum>
|
||
|
|
||
|
<request name="offer">
|
||
|
<description summary="add an offered mime type">
|
||
|
This request adds a mime type to the set of mime types
|
||
|
advertised to targets. Can be called several times to offer
|
||
|
multiple types.
|
||
|
</description>
|
||
|
<arg name="mime_type" type="string" summary="mime type offered by the data source"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="destroy" type="destructor">
|
||
|
<description summary="destroy the data source">
|
||
|
Destroy the data source.
|
||
|
</description>
|
||
|
</request>
|
||
|
|
||
|
<event name="target">
|
||
|
<description summary="a target accepts an offered mime type">
|
||
|
Sent when a target accepts pointer_focus or motion events. If
|
||
|
a target does not accept any of the offered types, type is NULL.
|
||
|
|
||
|
Used for feedback during drag-and-drop.
|
||
|
</description>
|
||
|
<arg name="mime_type" type="string" allow-null="true" summary="mime type accepted by the target"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="send">
|
||
|
<description summary="send the data">
|
||
|
Request for data from the client. Send the data as the
|
||
|
specified mime type over the passed file descriptor, then
|
||
|
close it.
|
||
|
</description>
|
||
|
<arg name="mime_type" type="string" summary="mime type for the data"/>
|
||
|
<arg name="fd" type="fd" summary="file descriptor for the data"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="cancelled">
|
||
|
<description summary="selection was cancelled">
|
||
|
This data source is no longer valid. There are several reasons why
|
||
|
this could happen:
|
||
|
|
||
|
- The data source has been replaced by another data source.
|
||
|
- The drag-and-drop operation was performed, but the drop destination
|
||
|
did not accept any of the mime types offered through
|
||
|
wl_data_source.target.
|
||
|
- The drag-and-drop operation was performed, but the drop destination
|
||
|
did not select any of the actions present in the mask offered through
|
||
|
wl_data_source.action.
|
||
|
- The drag-and-drop operation was performed but didn't happen over a
|
||
|
surface.
|
||
|
- The compositor cancelled the drag-and-drop operation (e.g. compositor
|
||
|
dependent timeouts to avoid stale drag-and-drop transfers).
|
||
|
|
||
|
The client should clean up and destroy this data source.
|
||
|
|
||
|
For objects of version 2 or older, wl_data_source.cancelled will
|
||
|
only be emitted if the data source was replaced by another data
|
||
|
source.
|
||
|
</description>
|
||
|
</event>
|
||
|
|
||
|
<!-- Version 3 additions -->
|
||
|
|
||
|
<request name="set_actions" since="3">
|
||
|
<description summary="set the available drag-and-drop actions">
|
||
|
Sets the actions that the source side client supports for this
|
||
|
operation. This request may trigger wl_data_source.action and
|
||
|
wl_data_offer.action events if the compositor needs to change the
|
||
|
selected action.
|
||
|
|
||
|
The dnd_actions argument must contain only values expressed in the
|
||
|
wl_data_device_manager.dnd_actions enum, otherwise it will result
|
||
|
in a protocol error.
|
||
|
|
||
|
This request must be made once only, and can only be made on sources
|
||
|
used in drag-and-drop, so it must be performed before
|
||
|
wl_data_device.start_drag. Attempting to use the source other than
|
||
|
for drag-and-drop will raise a protocol error.
|
||
|
</description>
|
||
|
<arg name="dnd_actions" type="uint" summary="actions supported by the data source"/>
|
||
|
</request>
|
||
|
|
||
|
<event name="dnd_drop_performed" since="3">
|
||
|
<description summary="the drag-and-drop operation physically finished">
|
||
|
The user performed the drop action. This event does not indicate
|
||
|
acceptance, wl_data_source.cancelled may still be emitted afterwards
|
||
|
if the drop destination does not accept any mime type.
|
||
|
|
||
|
However, this event might however not be received if the compositor
|
||
|
cancelled the drag-and-drop operation before this event could happen.
|
||
|
|
||
|
Note that the data_source may still be used in the future and should
|
||
|
not be destroyed here.
|
||
|
</description>
|
||
|
</event>
|
||
|
|
||
|
<event name="dnd_finished" since="3">
|
||
|
<description summary="the drag-and-drop operation concluded">
|
||
|
The drop destination finished interoperating with this data
|
||
|
source, so the client is now free to destroy this data source and
|
||
|
free all associated data.
|
||
|
|
||
|
If the action used to perform the operation was "move", the
|
||
|
source can now delete the transferred data.
|
||
|
</description>
|
||
|
</event>
|
||
|
|
||
|
<event name="action" since="3">
|
||
|
<description summary="notify the selected action">
|
||
|
This event indicates the action selected by the compositor after
|
||
|
matching the source/destination side actions. Only one action (or
|
||
|
none) will be offered here.
|
||
|
|
||
|
This event can be emitted multiple times during the drag-and-drop
|
||
|
operation, mainly in response to destination side changes through
|
||
|
wl_data_offer.set_actions, and as the data device enters/leaves
|
||
|
surfaces.
|
||
|
|
||
|
It is only possible to receive this event after
|
||
|
wl_data_source.dnd_drop_performed if the drag-and-drop operation
|
||
|
ended in an "ask" action, in which case the final wl_data_source.action
|
||
|
event will happen immediately before wl_data_source.dnd_finished.
|
||
|
|
||
|
Compositors may also change the selected action on the fly, mainly
|
||
|
in response to keyboard modifier changes during the drag-and-drop
|
||
|
operation.
|
||
|
|
||
|
The most recent action received is always the valid one. The chosen
|
||
|
action may change alongside negotiation (e.g. an "ask" action can turn
|
||
|
into a "move" operation), so the effects of the final action must
|
||
|
always be applied in wl_data_offer.dnd_finished.
|
||
|
|
||
|
Clients can trigger cursor surface changes from this point, so
|
||
|
they reflect the current action.
|
||
|
</description>
|
||
|
<arg name="dnd_action" type="uint" summary="action selected by the compositor"/>
|
||
|
</event>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_data_device" version="3">
|
||
|
<description summary="data transfer device">
|
||
|
There is one wl_data_device per seat which can be obtained
|
||
|
from the global wl_data_device_manager singleton.
|
||
|
|
||
|
A wl_data_device provides access to inter-client data transfer
|
||
|
mechanisms such as copy-and-paste and drag-and-drop.
|
||
|
</description>
|
||
|
|
||
|
<enum name="error">
|
||
|
<entry name="role" value="0" summary="given wl_surface has another role"/>
|
||
|
</enum>
|
||
|
|
||
|
<request name="start_drag">
|
||
|
<description summary="start drag-and-drop operation">
|
||
|
This request asks the compositor to start a drag-and-drop
|
||
|
operation on behalf of the client.
|
||
|
|
||
|
The source argument is the data source that provides the data
|
||
|
for the eventual data transfer. If source is NULL, enter, leave
|
||
|
and motion events are sent only to the client that initiated the
|
||
|
drag and the client is expected to handle the data passing
|
||
|
internally.
|
||
|
|
||
|
The origin surface is the surface where the drag originates and
|
||
|
the client must have an active implicit grab that matches the
|
||
|
serial.
|
||
|
|
||
|
The icon surface is an optional (can be NULL) surface that
|
||
|
provides an icon to be moved around with the cursor. Initially,
|
||
|
the top-left corner of the icon surface is placed at the cursor
|
||
|
hotspot, but subsequent wl_surface.attach request can move the
|
||
|
relative position. Attach requests must be confirmed with
|
||
|
wl_surface.commit as usual. The icon surface is given the role of
|
||
|
a drag-and-drop icon. If the icon surface already has another role,
|
||
|
it raises a protocol error.
|
||
|
|
||
|
The current and pending input regions of the icon wl_surface are
|
||
|
cleared, and wl_surface.set_input_region is ignored until the
|
||
|
wl_surface is no longer used as the icon surface. When the use
|
||
|
as an icon ends, the current and pending input regions become
|
||
|
undefined, and the wl_surface is unmapped.
|
||
|
</description>
|
||
|
<arg name="source" type="object" interface="wl_data_source" allow-null="true" summary="data source for the eventual transfer"/>
|
||
|
<arg name="origin" type="object" interface="wl_surface" summary="surface where the drag originates"/>
|
||
|
<arg name="icon" type="object" interface="wl_surface" allow-null="true" summary="drag-and-drop icon surface"/>
|
||
|
<arg name="serial" type="uint" summary="serial number of the implicit grab on the origin"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="set_selection">
|
||
|
<description summary="copy data to the selection">
|
||
|
This request asks the compositor to set the selection
|
||
|
to the data from the source on behalf of the client.
|
||
|
|
||
|
To unset the selection, set the source to NULL.
|
||
|
</description>
|
||
|
<arg name="source" type="object" interface="wl_data_source" allow-null="true" summary="data source for the selection"/>
|
||
|
<arg name="serial" type="uint" summary="serial number of the event that triggered this request"/>
|
||
|
</request>
|
||
|
|
||
|
<event name="data_offer">
|
||
|
<description summary="introduce a new wl_data_offer">
|
||
|
The data_offer event introduces a new wl_data_offer object,
|
||
|
which will subsequently be used in either the
|
||
|
data_device.enter event (for drag-and-drop) or the
|
||
|
data_device.selection event (for selections). Immediately
|
||
|
following the data_device_data_offer event, the new data_offer
|
||
|
object will send out data_offer.offer events to describe the
|
||
|
mime types it offers.
|
||
|
</description>
|
||
|
<arg name="id" type="new_id" interface="wl_data_offer" summary="the new data_offer object"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="enter">
|
||
|
<description summary="initiate drag-and-drop session">
|
||
|
This event is sent when an active drag-and-drop pointer enters
|
||
|
a surface owned by the client. The position of the pointer at
|
||
|
enter time is provided by the x and y arguments, in surface-local
|
||
|
coordinates.
|
||
|
</description>
|
||
|
<arg name="serial" type="uint" summary="serial number of the enter event"/>
|
||
|
<arg name="surface" type="object" interface="wl_surface" summary="client surface entered"/>
|
||
|
<arg name="x" type="fixed" summary="surface-local x coordinate"/>
|
||
|
<arg name="y" type="fixed" summary="surface-local y coordinate"/>
|
||
|
<arg name="id" type="object" interface="wl_data_offer" allow-null="true"
|
||
|
summary="source data_offer object"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="leave">
|
||
|
<description summary="end drag-and-drop session">
|
||
|
This event is sent when the drag-and-drop pointer leaves the
|
||
|
surface and the session ends. The client must destroy the
|
||
|
wl_data_offer introduced at enter time at this point.
|
||
|
</description>
|
||
|
</event>
|
||
|
|
||
|
<event name="motion">
|
||
|
<description summary="drag-and-drop session motion">
|
||
|
This event is sent when the drag-and-drop pointer moves within
|
||
|
the currently focused surface. The new position of the pointer
|
||
|
is provided by the x and y arguments, in surface-local
|
||
|
coordinates.
|
||
|
</description>
|
||
|
<arg name="time" type="uint" summary="timestamp with millisecond granularity"/>
|
||
|
<arg name="x" type="fixed" summary="surface-local x coordinate"/>
|
||
|
<arg name="y" type="fixed" summary="surface-local y coordinate"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="drop">
|
||
|
<description summary="end drag-and-drop session successfully">
|
||
|
The event is sent when a drag-and-drop operation is ended
|
||
|
because the implicit grab is removed.
|
||
|
|
||
|
The drag-and-drop destination is expected to honor the last action
|
||
|
received through wl_data_offer.action, if the resulting action is
|
||
|
"copy" or "move", the destination can still perform
|
||
|
wl_data_offer.receive requests, and is expected to end all
|
||
|
transfers with a wl_data_offer.finish request.
|
||
|
|
||
|
If the resulting action is "ask", the action will not be considered
|
||
|
final. The drag-and-drop destination is expected to perform one last
|
||
|
wl_data_offer.set_actions request, or wl_data_offer.destroy in order
|
||
|
to cancel the operation.
|
||
|
</description>
|
||
|
</event>
|
||
|
|
||
|
<event name="selection">
|
||
|
<description summary="advertise new selection">
|
||
|
The selection event is sent out to notify the client of a new
|
||
|
wl_data_offer for the selection for this device. The
|
||
|
data_device.data_offer and the data_offer.offer events are
|
||
|
sent out immediately before this event to introduce the data
|
||
|
offer object. The selection event is sent to a client
|
||
|
immediately before receiving keyboard focus and when a new
|
||
|
selection is set while the client has keyboard focus. The
|
||
|
data_offer is valid until a new data_offer or NULL is received
|
||
|
or until the client loses keyboard focus. The client must
|
||
|
destroy the previous selection data_offer, if any, upon receiving
|
||
|
this event.
|
||
|
</description>
|
||
|
<arg name="id" type="object" interface="wl_data_offer" allow-null="true"
|
||
|
summary="selection data_offer object"/>
|
||
|
</event>
|
||
|
|
||
|
<!-- Version 2 additions -->
|
||
|
|
||
|
<request name="release" type="destructor" since="2">
|
||
|
<description summary="destroy data device">
|
||
|
This request destroys the data device.
|
||
|
</description>
|
||
|
</request>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_data_device_manager" version="3">
|
||
|
<description summary="data transfer interface">
|
||
|
The wl_data_device_manager is a singleton global object that
|
||
|
provides access to inter-client data transfer mechanisms such as
|
||
|
copy-and-paste and drag-and-drop. These mechanisms are tied to
|
||
|
a wl_seat and this interface lets a client get a wl_data_device
|
||
|
corresponding to a wl_seat.
|
||
|
|
||
|
Depending on the version bound, the objects created from the bound
|
||
|
wl_data_device_manager object will have different requirements for
|
||
|
functioning properly. See wl_data_source.set_actions,
|
||
|
wl_data_offer.accept and wl_data_offer.finish for details.
|
||
|
</description>
|
||
|
|
||
|
<request name="create_data_source">
|
||
|
<description summary="create a new data source">
|
||
|
Create a new data source.
|
||
|
</description>
|
||
|
<arg name="id" type="new_id" interface="wl_data_source" summary="data source to create"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="get_data_device">
|
||
|
<description summary="create a new data device">
|
||
|
Create a new data device for a given seat.
|
||
|
</description>
|
||
|
<arg name="id" type="new_id" interface="wl_data_device" summary="data device to create"/>
|
||
|
<arg name="seat" type="object" interface="wl_seat" summary="seat associated with the data device"/>
|
||
|
</request>
|
||
|
|
||
|
<!-- Version 3 additions -->
|
||
|
|
||
|
<enum name="dnd_action" bitfield="true" since="3">
|
||
|
<description summary="drag and drop actions">
|
||
|
This is a bitmask of the available/preferred actions in a
|
||
|
drag-and-drop operation.
|
||
|
|
||
|
In the compositor, the selected action is a result of matching the
|
||
|
actions offered by the source and destination sides. "action" events
|
||
|
with a "none" action will be sent to both source and destination if
|
||
|
there is no match. All further checks will effectively happen on
|
||
|
(source actions ∩ destination actions).
|
||
|
|
||
|
In addition, compositors may also pick different actions in
|
||
|
reaction to key modifiers being pressed. One common design that
|
||
|
is used in major toolkits (and the behavior recommended for
|
||
|
compositors) is:
|
||
|
|
||
|
- If no modifiers are pressed, the first match (in bit order)
|
||
|
will be used.
|
||
|
- Pressing Shift selects "move", if enabled in the mask.
|
||
|
- Pressing Control selects "copy", if enabled in the mask.
|
||
|
|
||
|
Behavior beyond that is considered implementation-dependent.
|
||
|
Compositors may for example bind other modifiers (like Alt/Meta)
|
||
|
or drags initiated with other buttons than BTN_LEFT to specific
|
||
|
actions (e.g. "ask").
|
||
|
</description>
|
||
|
<entry name="none" value="0" summary="no action"/>
|
||
|
<entry name="copy" value="1" summary="copy action"/>
|
||
|
<entry name="move" value="2" summary="move action"/>
|
||
|
<entry name="ask" value="4" summary="ask action"/>
|
||
|
</enum>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_shell" version="1">
|
||
|
<description summary="create desktop-style surfaces">
|
||
|
This interface is implemented by servers that provide
|
||
|
desktop-style user interfaces.
|
||
|
|
||
|
It allows clients to associate a wl_shell_surface with
|
||
|
a basic surface.
|
||
|
</description>
|
||
|
|
||
|
<enum name="error">
|
||
|
<entry name="role" value="0" summary="given wl_surface has another role"/>
|
||
|
</enum>
|
||
|
|
||
|
<request name="get_shell_surface">
|
||
|
<description summary="create a shell surface from a surface">
|
||
|
Create a shell surface for an existing surface. This gives
|
||
|
the wl_surface the role of a shell surface. If the wl_surface
|
||
|
already has another role, it raises a protocol error.
|
||
|
|
||
|
Only one shell surface can be associated with a given surface.
|
||
|
</description>
|
||
|
<arg name="id" type="new_id" interface="wl_shell_surface" summary="shell surface to create"/>
|
||
|
<arg name="surface" type="object" interface="wl_surface" summary="surface to be given the shell surface role"/>
|
||
|
</request>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_shell_surface" version="1">
|
||
|
<description summary="desktop-style metadata interface">
|
||
|
An interface that may be implemented by a wl_surface, for
|
||
|
implementations that provide a desktop-style user interface.
|
||
|
|
||
|
It provides requests to treat surfaces like toplevel, fullscreen
|
||
|
or popup windows, move, resize or maximize them, associate
|
||
|
metadata like title and class, etc.
|
||
|
|
||
|
On the server side the object is automatically destroyed when
|
||
|
the related wl_surface is destroyed. On the client side,
|
||
|
wl_shell_surface_destroy() must be called before destroying
|
||
|
the wl_surface object.
|
||
|
</description>
|
||
|
|
||
|
<request name="pong">
|
||
|
<description summary="respond to a ping event">
|
||
|
A client must respond to a ping event with a pong request or
|
||
|
the client may be deemed unresponsive.
|
||
|
</description>
|
||
|
<arg name="serial" type="uint" summary="serial number of the ping event"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="move">
|
||
|
<description summary="start an interactive move">
|
||
|
Start a pointer-driven move of the surface.
|
||
|
|
||
|
This request must be used in response to a button press event.
|
||
|
The server may ignore move requests depending on the state of
|
||
|
the surface (e.g. fullscreen or maximized).
|
||
|
</description>
|
||
|
<arg name="seat" type="object" interface="wl_seat" summary="seat whose pointer is used"/>
|
||
|
<arg name="serial" type="uint" summary="serial number of the implicit grab on the pointer"/>
|
||
|
</request>
|
||
|
|
||
|
<enum name="resize" bitfield="true">
|
||
|
<description summary="edge values for resizing">
|
||
|
These values are used to indicate which edge of a surface
|
||
|
is being dragged in a resize operation. The server may
|
||
|
use this information to adapt its behavior, e.g. choose
|
||
|
an appropriate cursor image.
|
||
|
</description>
|
||
|
<entry name="none" value="0" summary="no edge"/>
|
||
|
<entry name="top" value="1" summary="top edge"/>
|
||
|
<entry name="bottom" value="2" summary="bottom edge"/>
|
||
|
<entry name="left" value="4" summary="left edge"/>
|
||
|
<entry name="top_left" value="5" summary="top and left edges"/>
|
||
|
<entry name="bottom_left" value="6" summary="bottom and left edges"/>
|
||
|
<entry name="right" value="8" summary="right edge"/>
|
||
|
<entry name="top_right" value="9" summary="top and right edges"/>
|
||
|
<entry name="bottom_right" value="10" summary="bottom and right edges"/>
|
||
|
</enum>
|
||
|
|
||
|
<request name="resize">
|
||
|
<description summary="start an interactive resize">
|
||
|
Start a pointer-driven resizing of the surface.
|
||
|
|
||
|
This request must be used in response to a button press event.
|
||
|
The server may ignore resize requests depending on the state of
|
||
|
the surface (e.g. fullscreen or maximized).
|
||
|
</description>
|
||
|
<arg name="seat" type="object" interface="wl_seat" summary="seat whose pointer is used"/>
|
||
|
<arg name="serial" type="uint" summary="serial number of the implicit grab on the pointer"/>
|
||
|
<arg name="edges" type="uint" enum="resize" summary="which edge or corner is being dragged"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="set_toplevel">
|
||
|
<description summary="make the surface a toplevel surface">
|
||
|
Map the surface as a toplevel surface.
|
||
|
|
||
|
A toplevel surface is not fullscreen, maximized or transient.
|
||
|
</description>
|
||
|
</request>
|
||
|
|
||
|
<enum name="transient" bitfield="true">
|
||
|
<description summary="details of transient behaviour">
|
||
|
These flags specify details of the expected behaviour
|
||
|
of transient surfaces. Used in the set_transient request.
|
||
|
</description>
|
||
|
<entry name="inactive" value="0x1" summary="do not set keyboard focus"/>
|
||
|
</enum>
|
||
|
|
||
|
<request name="set_transient">
|
||
|
<description summary="make the surface a transient surface">
|
||
|
Map the surface relative to an existing surface.
|
||
|
|
||
|
The x and y arguments specify the location of the upper left
|
||
|
corner of the surface relative to the upper left corner of the
|
||
|
parent surface, in surface-local coordinates.
|
||
|
|
||
|
The flags argument controls details of the transient behaviour.
|
||
|
</description>
|
||
|
<arg name="parent" type="object" interface="wl_surface" summary="parent surface"/>
|
||
|
<arg name="x" type="int" summary="surface-local x coordinate"/>
|
||
|
<arg name="y" type="int" summary="surface-local y coordinate"/>
|
||
|
<arg name="flags" type="uint" enum="transient" summary="transient surface behavior"/>
|
||
|
</request>
|
||
|
|
||
|
<enum name="fullscreen_method">
|
||
|
<description summary="different method to set the surface fullscreen">
|
||
|
Hints to indicate to the compositor how to deal with a conflict
|
||
|
between the dimensions of the surface and the dimensions of the
|
||
|
output. The compositor is free to ignore this parameter.
|
||
|
</description>
|
||
|
<entry name="default" value="0" summary="no preference, apply default policy"/>
|
||
|
<entry name="scale" value="1" summary="scale, preserve the surface's aspect ratio and center on output"/>
|
||
|
<entry name="driver" value="2" summary="switch output mode to the smallest mode that can fit the surface, add black borders to compensate size mismatch"/>
|
||
|
<entry name="fill" value="3" summary="no upscaling, center on output and add black borders to compensate size mismatch"/>
|
||
|
</enum>
|
||
|
|
||
|
<request name="set_fullscreen">
|
||
|
<description summary="make the surface a fullscreen surface">
|
||
|
Map the surface as a fullscreen surface.
|
||
|
|
||
|
If an output parameter is given then the surface will be made
|
||
|
fullscreen on that output. If the client does not specify the
|
||
|
output then the compositor will apply its policy - usually
|
||
|
choosing the output on which the surface has the biggest surface
|
||
|
area.
|
||
|
|
||
|
The client may specify a method to resolve a size conflict
|
||
|
between the output size and the surface size - this is provided
|
||
|
through the method parameter.
|
||
|
|
||
|
The framerate parameter is used only when the method is set
|
||
|
to "driver", to indicate the preferred framerate. A value of 0
|
||
|
indicates that the client does not care about framerate. The
|
||
|
framerate is specified in mHz, that is framerate of 60000 is 60Hz.
|
||
|
|
||
|
A method of "scale" or "driver" implies a scaling operation of
|
||
|
the surface, either via a direct scaling operation or a change of
|
||
|
the output mode. This will override any kind of output scaling, so
|
||
|
that mapping a surface with a buffer size equal to the mode can
|
||
|
fill the screen independent of buffer_scale.
|
||
|
|
||
|
A method of "fill" means we don't scale up the buffer, however
|
||
|
any output scale is applied. This means that you may run into
|
||
|
an edge case where the application maps a buffer with the same
|
||
|
size of the output mode but buffer_scale 1 (thus making a
|
||
|
surface larger than the output). In this case it is allowed to
|
||
|
downscale the results to fit the screen.
|
||
|
|
||
|
The compositor must reply to this request with a configure event
|
||
|
with the dimensions for the output on which the surface will
|
||
|
be made fullscreen.
|
||
|
</description>
|
||
|
<arg name="method" type="uint" enum="fullscreen_method" summary="method for resolving size conflict"/>
|
||
|
<arg name="framerate" type="uint" summary="framerate in mHz"/>
|
||
|
<arg name="output" type="object" interface="wl_output" allow-null="true"
|
||
|
summary="output on which the surface is to be fullscreen"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="set_popup">
|
||
|
<description summary="make the surface a popup surface">
|
||
|
Map the surface as a popup.
|
||
|
|
||
|
A popup surface is a transient surface with an added pointer
|
||
|
grab.
|
||
|
|
||
|
An existing implicit grab will be changed to owner-events mode,
|
||
|
and the popup grab will continue after the implicit grab ends
|
||
|
(i.e. releasing the mouse button does not cause the popup to
|
||
|
be unmapped).
|
||
|
|
||
|
The popup grab continues until the window is destroyed or a
|
||
|
mouse button is pressed in any other client's window. A click
|
||
|
in any of the client's surfaces is reported as normal, however,
|
||
|
clicks in other clients' surfaces will be discarded and trigger
|
||
|
the callback.
|
||
|
|
||
|
The x and y arguments specify the location of the upper left
|
||
|
corner of the surface relative to the upper left corner of the
|
||
|
parent surface, in surface-local coordinates.
|
||
|
</description>
|
||
|
<arg name="seat" type="object" interface="wl_seat" summary="seat whose pointer is used"/>
|
||
|
<arg name="serial" type="uint" summary="serial number of the implicit grab on the pointer"/>
|
||
|
<arg name="parent" type="object" interface="wl_surface" summary="parent surface"/>
|
||
|
<arg name="x" type="int" summary="surface-local x coordinate"/>
|
||
|
<arg name="y" type="int" summary="surface-local y coordinate"/>
|
||
|
<arg name="flags" type="uint" enum="transient" summary="transient surface behavior"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="set_maximized">
|
||
|
<description summary="make the surface a maximized surface">
|
||
|
Map the surface as a maximized surface.
|
||
|
|
||
|
If an output parameter is given then the surface will be
|
||
|
maximized on that output. If the client does not specify the
|
||
|
output then the compositor will apply its policy - usually
|
||
|
choosing the output on which the surface has the biggest surface
|
||
|
area.
|
||
|
|
||
|
The compositor will reply with a configure event telling
|
||
|
the expected new surface size. The operation is completed
|
||
|
on the next buffer attach to this surface.
|
||
|
|
||
|
A maximized surface typically fills the entire output it is
|
||
|
bound to, except for desktop elements such as panels. This is
|
||
|
the main difference between a maximized shell surface and a
|
||
|
fullscreen shell surface.
|
||
|
|
||
|
The details depend on the compositor implementation.
|
||
|
</description>
|
||
|
<arg name="output" type="object" interface="wl_output" allow-null="true"
|
||
|
summary="output on which the surface is to be maximized"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="set_title">
|
||
|
<description summary="set surface title">
|
||
|
Set a short title for the surface.
|
||
|
|
||
|
This string may be used to identify the surface in a task bar,
|
||
|
window list, or other user interface elements provided by the
|
||
|
compositor.
|
||
|
|
||
|
The string must be encoded in UTF-8.
|
||
|
</description>
|
||
|
<arg name="title" type="string" summary="surface title"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="set_class">
|
||
|
<description summary="set surface class">
|
||
|
Set a class for the surface.
|
||
|
|
||
|
The surface class identifies the general class of applications
|
||
|
to which the surface belongs. A common convention is to use the
|
||
|
file name (or the full path if it is a non-standard location) of
|
||
|
the application's .desktop file as the class.
|
||
|
</description>
|
||
|
<arg name="class_" type="string" summary="surface class"/>
|
||
|
</request>
|
||
|
|
||
|
<event name="ping">
|
||
|
<description summary="ping client">
|
||
|
Ping a client to check if it is receiving events and sending
|
||
|
requests. A client is expected to reply with a pong request.
|
||
|
</description>
|
||
|
<arg name="serial" type="uint" summary="serial number of the ping"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="configure">
|
||
|
<description summary="suggest resize">
|
||
|
The configure event asks the client to resize its surface.
|
||
|
|
||
|
The size is a hint, in the sense that the client is free to
|
||
|
ignore it if it doesn't resize, pick a smaller size (to
|
||
|
satisfy aspect ratio or resize in steps of NxM pixels).
|
||
|
|
||
|
The edges parameter provides a hint about how the surface
|
||
|
was resized. The client may use this information to decide
|
||
|
how to adjust its content to the new size (e.g. a scrolling
|
||
|
area might adjust its content position to leave the viewable
|
||
|
content unmoved).
|
||
|
|
||
|
The client is free to dismiss all but the last configure
|
||
|
event it received.
|
||
|
|
||
|
The width and height arguments specify the size of the window
|
||
|
in surface-local coordinates.
|
||
|
</description>
|
||
|
<arg name="edges" type="uint" enum="resize" summary="how the surface was resized"/>
|
||
|
<arg name="width" type="int" summary="new width of the surface"/>
|
||
|
<arg name="height" type="int" summary="new height of the surface"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="popup_done">
|
||
|
<description summary="popup interaction is done">
|
||
|
The popup_done event is sent out when a popup grab is broken,
|
||
|
that is, when the user clicks a surface that doesn't belong
|
||
|
to the client owning the popup surface.
|
||
|
</description>
|
||
|
</event>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_surface" version="4">
|
||
|
<description summary="an onscreen surface">
|
||
|
A surface is a rectangular area that is displayed on the screen.
|
||
|
It has a location, size and pixel contents.
|
||
|
|
||
|
The size of a surface (and relative positions on it) is described
|
||
|
in surface-local coordinates, which may differ from the buffer
|
||
|
coordinates of the pixel content, in case a buffer_transform
|
||
|
or a buffer_scale is used.
|
||
|
|
||
|
A surface without a "role" is fairly useless: a compositor does
|
||
|
not know where, when or how to present it. The role is the
|
||
|
purpose of a wl_surface. Examples of roles are a cursor for a
|
||
|
pointer (as set by wl_pointer.set_cursor), a drag icon
|
||
|
(wl_data_device.start_drag), a sub-surface
|
||
|
(wl_subcompositor.get_subsurface), and a window as defined by a
|
||
|
shell protocol (e.g. wl_shell.get_shell_surface).
|
||
|
|
||
|
A surface can have only one role at a time. Initially a
|
||
|
wl_surface does not have a role. Once a wl_surface is given a
|
||
|
role, it is set permanently for the whole lifetime of the
|
||
|
wl_surface object. Giving the current role again is allowed,
|
||
|
unless explicitly forbidden by the relevant interface
|
||
|
specification.
|
||
|
|
||
|
Surface roles are given by requests in other interfaces such as
|
||
|
wl_pointer.set_cursor. The request should explicitly mention
|
||
|
that this request gives a role to a wl_surface. Often, this
|
||
|
request also creates a new protocol object that represents the
|
||
|
role and adds additional functionality to wl_surface. When a
|
||
|
client wants to destroy a wl_surface, they must destroy this 'role
|
||
|
object' before the wl_surface.
|
||
|
|
||
|
Destroying the role object does not remove the role from the
|
||
|
wl_surface, but it may stop the wl_surface from "playing the role".
|
||
|
For instance, if a wl_subsurface object is destroyed, the wl_surface
|
||
|
it was created for will be unmapped and forget its position and
|
||
|
z-order. It is allowed to create a wl_subsurface for the same
|
||
|
wl_surface again, but it is not allowed to use the wl_surface as
|
||
|
a cursor (cursor is a different role than sub-surface, and role
|
||
|
switching is not allowed).
|
||
|
</description>
|
||
|
|
||
|
<enum name="error">
|
||
|
<description summary="wl_surface error values">
|
||
|
These errors can be emitted in response to wl_surface requests.
|
||
|
</description>
|
||
|
<entry name="invalid_scale" value="0" summary="buffer scale value is invalid"/>
|
||
|
<entry name="invalid_transform" value="1" summary="buffer transform value is invalid"/>
|
||
|
</enum>
|
||
|
|
||
|
<request name="destroy" type="destructor">
|
||
|
<description summary="delete surface">
|
||
|
Deletes the surface and invalidates its object ID.
|
||
|
</description>
|
||
|
</request>
|
||
|
|
||
|
<request name="attach">
|
||
|
<description summary="set the surface contents">
|
||
|
Set a buffer as the content of this surface.
|
||
|
|
||
|
The new size of the surface is calculated based on the buffer
|
||
|
size transformed by the inverse buffer_transform and the
|
||
|
inverse buffer_scale. This means that the supplied buffer
|
||
|
must be an integer multiple of the buffer_scale.
|
||
|
|
||
|
The x and y arguments specify the location of the new pending
|
||
|
buffer's upper left corner, relative to the current buffer's upper
|
||
|
left corner, in surface-local coordinates. In other words, the
|
||
|
x and y, combined with the new surface size define in which
|
||
|
directions the surface's size changes.
|
||
|
|
||
|
Surface contents are double-buffered state, see wl_surface.commit.
|
||
|
|
||
|
The initial surface contents are void; there is no content.
|
||
|
wl_surface.attach assigns the given wl_buffer as the pending
|
||
|
wl_buffer. wl_surface.commit makes the pending wl_buffer the new
|
||
|
surface contents, and the size of the surface becomes the size
|
||
|
calculated from the wl_buffer, as described above. After commit,
|
||
|
there is no pending buffer until the next attach.
|
||
|
|
||
|
Committing a pending wl_buffer allows the compositor to read the
|
||
|
pixels in the wl_buffer. The compositor may access the pixels at
|
||
|
any time after the wl_surface.commit request. When the compositor
|
||
|
will not access the pixels anymore, it will send the
|
||
|
wl_buffer.release event. Only after receiving wl_buffer.release,
|
||
|
the client may reuse the wl_buffer. A wl_buffer that has been
|
||
|
attached and then replaced by another attach instead of committed
|
||
|
will not receive a release event, and is not used by the
|
||
|
compositor.
|
||
|
|
||
|
Destroying the wl_buffer after wl_buffer.release does not change
|
||
|
the surface contents. However, if the client destroys the
|
||
|
wl_buffer before receiving the wl_buffer.release event, the surface
|
||
|
contents become undefined immediately.
|
||
|
|
||
|
If wl_surface.attach is sent with a NULL wl_buffer, the
|
||
|
following wl_surface.commit will remove the surface content.
|
||
|
</description>
|
||
|
<arg name="buffer" type="object" interface="wl_buffer" allow-null="true"
|
||
|
summary="buffer of surface contents"/>
|
||
|
<arg name="x" type="int" summary="surface-local x coordinate"/>
|
||
|
<arg name="y" type="int" summary="surface-local y coordinate"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="damage">
|
||
|
<description summary="mark part of the surface damaged">
|
||
|
This request is used to describe the regions where the pending
|
||
|
buffer is different from the current surface contents, and where
|
||
|
the surface therefore needs to be repainted. The compositor
|
||
|
ignores the parts of the damage that fall outside of the surface.
|
||
|
|
||
|
Damage is double-buffered state, see wl_surface.commit.
|
||
|
|
||
|
The damage rectangle is specified in surface-local coordinates,
|
||
|
where x and y specify the upper left corner of the damage rectangle.
|
||
|
|
||
|
The initial value for pending damage is empty: no damage.
|
||
|
wl_surface.damage adds pending damage: the new pending damage
|
||
|
is the union of old pending damage and the given rectangle.
|
||
|
|
||
|
wl_surface.commit assigns pending damage as the current damage,
|
||
|
and clears pending damage. The server will clear the current
|
||
|
damage as it repaints the surface.
|
||
|
|
||
|
Alternatively, damage can be posted with wl_surface.damage_buffer
|
||
|
which uses buffer coordinates instead of surface coordinates,
|
||
|
and is probably the preferred and intuitive way of doing this.
|
||
|
</description>
|
||
|
<arg name="x" type="int" summary="surface-local x coordinate"/>
|
||
|
<arg name="y" type="int" summary="surface-local y coordinate"/>
|
||
|
<arg name="width" type="int" summary="width of damage rectangle"/>
|
||
|
<arg name="height" type="int" summary="height of damage rectangle"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="frame">
|
||
|
<description summary="request a frame throttling hint">
|
||
|
Request a notification when it is a good time to start drawing a new
|
||
|
frame, by creating a frame callback. This is useful for throttling
|
||
|
redrawing operations, and driving animations.
|
||
|
|
||
|
When a client is animating on a wl_surface, it can use the 'frame'
|
||
|
request to get notified when it is a good time to draw and commit the
|
||
|
next frame of animation. If the client commits an update earlier than
|
||
|
that, it is likely that some updates will not make it to the display,
|
||
|
and the client is wasting resources by drawing too often.
|
||
|
|
||
|
The frame request will take effect on the next wl_surface.commit.
|
||
|
The notification will only be posted for one frame unless
|
||
|
requested again. For a wl_surface, the notifications are posted in
|
||
|
the order the frame requests were committed.
|
||
|
|
||
|
The server must send the notifications so that a client
|
||
|
will not send excessive updates, while still allowing
|
||
|
the highest possible update rate for clients that wait for the reply
|
||
|
before drawing again. The server should give some time for the client
|
||
|
to draw and commit after sending the frame callback events to let it
|
||
|
hit the next output refresh.
|
||
|
|
||
|
A server should avoid signaling the frame callbacks if the
|
||
|
surface is not visible in any way, e.g. the surface is off-screen,
|
||
|
or completely obscured by other opaque surfaces.
|
||
|
|
||
|
The object returned by this request will be destroyed by the
|
||
|
compositor after the callback is fired and as such the client must not
|
||
|
attempt to use it after that point.
|
||
|
|
||
|
The callback_data passed in the callback is the current time, in
|
||
|
milliseconds, with an undefined base.
|
||
|
</description>
|
||
|
<arg name="callback" type="new_id" interface="wl_callback" summary="callback object for the frame request"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="set_opaque_region">
|
||
|
<description summary="set opaque region">
|
||
|
This request sets the region of the surface that contains
|
||
|
opaque content.
|
||
|
|
||
|
The opaque region is an optimization hint for the compositor
|
||
|
that lets it optimize the redrawing of content behind opaque
|
||
|
regions. Setting an opaque region is not required for correct
|
||
|
behaviour, but marking transparent content as opaque will result
|
||
|
in repaint artifacts.
|
||
|
|
||
|
The opaque region is specified in surface-local coordinates.
|
||
|
|
||
|
The compositor ignores the parts of the opaque region that fall
|
||
|
outside of the surface.
|
||
|
|
||
|
Opaque region is double-buffered state, see wl_surface.commit.
|
||
|
|
||
|
wl_surface.set_opaque_region changes the pending opaque region.
|
||
|
wl_surface.commit copies the pending region to the current region.
|
||
|
Otherwise, the pending and current regions are never changed.
|
||
|
|
||
|
The initial value for an opaque region is empty. Setting the pending
|
||
|
opaque region has copy semantics, and the wl_region object can be
|
||
|
destroyed immediately. A NULL wl_region causes the pending opaque
|
||
|
region to be set to empty.
|
||
|
</description>
|
||
|
<arg name="region" type="object" interface="wl_region" allow-null="true"
|
||
|
summary="opaque region of the surface"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="set_input_region">
|
||
|
<description summary="set input region">
|
||
|
This request sets the region of the surface that can receive
|
||
|
pointer and touch events.
|
||
|
|
||
|
Input events happening outside of this region will try the next
|
||
|
surface in the server surface stack. The compositor ignores the
|
||
|
parts of the input region that fall outside of the surface.
|
||
|
|
||
|
The input region is specified in surface-local coordinates.
|
||
|
|
||
|
Input region is double-buffered state, see wl_surface.commit.
|
||
|
|
||
|
wl_surface.set_input_region changes the pending input region.
|
||
|
wl_surface.commit copies the pending region to the current region.
|
||
|
Otherwise the pending and current regions are never changed,
|
||
|
except cursor and icon surfaces are special cases, see
|
||
|
wl_pointer.set_cursor and wl_data_device.start_drag.
|
||
|
|
||
|
The initial value for an input region is infinite. That means the
|
||
|
whole surface will accept input. Setting the pending input region
|
||
|
has copy semantics, and the wl_region object can be destroyed
|
||
|
immediately. A NULL wl_region causes the input region to be set
|
||
|
to infinite.
|
||
|
</description>
|
||
|
<arg name="region" type="object" interface="wl_region" allow-null="true"
|
||
|
summary="input region of the surface"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="commit">
|
||
|
<description summary="commit pending surface state">
|
||
|
Surface state (input, opaque, and damage regions, attached buffers,
|
||
|
etc.) is double-buffered. Protocol requests modify the pending state,
|
||
|
as opposed to the current state in use by the compositor. A commit
|
||
|
request atomically applies all pending state, replacing the current
|
||
|
state. After commit, the new pending state is as documented for each
|
||
|
related request.
|
||
|
|
||
|
On commit, a pending wl_buffer is applied first, and all other state
|
||
|
second. This means that all coordinates in double-buffered state are
|
||
|
relative to the new wl_buffer coming into use, except for
|
||
|
wl_surface.attach itself. If there is no pending wl_buffer, the
|
||
|
coordinates are relative to the current surface contents.
|
||
|
|
||
|
All requests that need a commit to become effective are documented
|
||
|
to affect double-buffered state.
|
||
|
|
||
|
Other interfaces may add further double-buffered surface state.
|
||
|
</description>
|
||
|
</request>
|
||
|
|
||
|
<event name="enter">
|
||
|
<description summary="surface enters an output">
|
||
|
This is emitted whenever a surface's creation, movement, or resizing
|
||
|
results in some part of it being within the scanout region of an
|
||
|
output.
|
||
|
|
||
|
Note that a surface may be overlapping with zero or more outputs.
|
||
|
</description>
|
||
|
<arg name="output" type="object" interface="wl_output" summary="output entered by the surface"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="leave">
|
||
|
<description summary="surface leaves an output">
|
||
|
This is emitted whenever a surface's creation, movement, or resizing
|
||
|
results in it no longer having any part of it within the scanout region
|
||
|
of an output.
|
||
|
</description>
|
||
|
<arg name="output" type="object" interface="wl_output" summary="output left by the surface"/>
|
||
|
</event>
|
||
|
|
||
|
<!-- Version 2 additions -->
|
||
|
|
||
|
<request name="set_buffer_transform" since="2">
|
||
|
<description summary="sets the buffer transformation">
|
||
|
This request sets an optional transformation on how the compositor
|
||
|
interprets the contents of the buffer attached to the surface. The
|
||
|
accepted values for the transform parameter are the values for
|
||
|
wl_output.transform.
|
||
|
|
||
|
Buffer transform is double-buffered state, see wl_surface.commit.
|
||
|
|
||
|
A newly created surface has its buffer transformation set to normal.
|
||
|
|
||
|
wl_surface.set_buffer_transform changes the pending buffer
|
||
|
transformation. wl_surface.commit copies the pending buffer
|
||
|
transformation to the current one. Otherwise, the pending and current
|
||
|
values are never changed.
|
||
|
|
||
|
The purpose of this request is to allow clients to render content
|
||
|
according to the output transform, thus permitting the compositor to
|
||
|
use certain optimizations even if the display is rotated. Using
|
||
|
hardware overlays and scanning out a client buffer for fullscreen
|
||
|
surfaces are examples of such optimizations. Those optimizations are
|
||
|
highly dependent on the compositor implementation, so the use of this
|
||
|
request should be considered on a case-by-case basis.
|
||
|
|
||
|
Note that if the transform value includes 90 or 270 degree rotation,
|
||
|
the width of the buffer will become the surface height and the height
|
||
|
of the buffer will become the surface width.
|
||
|
|
||
|
If transform is not one of the values from the
|
||
|
wl_output.transform enum the invalid_transform protocol error
|
||
|
is raised.
|
||
|
</description>
|
||
|
<arg name="transform" type="int" enum="wl_output.transform"
|
||
|
summary="transform for interpreting buffer contents"/>
|
||
|
</request>
|
||
|
|
||
|
<!-- Version 3 additions -->
|
||
|
|
||
|
<request name="set_buffer_scale" since="3">
|
||
|
<description summary="sets the buffer scaling factor">
|
||
|
This request sets an optional scaling factor on how the compositor
|
||
|
interprets the contents of the buffer attached to the window.
|
||
|
|
||
|
Buffer scale is double-buffered state, see wl_surface.commit.
|
||
|
|
||
|
A newly created surface has its buffer scale set to 1.
|
||
|
|
||
|
wl_surface.set_buffer_scale changes the pending buffer scale.
|
||
|
wl_surface.commit copies the pending buffer scale to the current one.
|
||
|
Otherwise, the pending and current values are never changed.
|
||
|
|
||
|
The purpose of this request is to allow clients to supply higher
|
||
|
resolution buffer data for use on high resolution outputs. It is
|
||
|
intended that you pick the same buffer scale as the scale of the
|
||
|
output that the surface is displayed on. This means the compositor
|
||
|
can avoid scaling when rendering the surface on that output.
|
||
|
|
||
|
Note that if the scale is larger than 1, then you have to attach
|
||
|
a buffer that is larger (by a factor of scale in each dimension)
|
||
|
than the desired surface size.
|
||
|
|
||
|
If scale is not positive the invalid_scale protocol error is
|
||
|
raised.
|
||
|
</description>
|
||
|
<arg name="scale" type="int"
|
||
|
summary="positive scale for interpreting buffer contents"/>
|
||
|
</request>
|
||
|
|
||
|
<!-- Version 4 additions -->
|
||
|
<request name="damage_buffer" since="4">
|
||
|
<description summary="mark part of the surface damaged using buffer coordinates">
|
||
|
This request is used to describe the regions where the pending
|
||
|
buffer is different from the current surface contents, and where
|
||
|
the surface therefore needs to be repainted. The compositor
|
||
|
ignores the parts of the damage that fall outside of the surface.
|
||
|
|
||
|
Damage is double-buffered state, see wl_surface.commit.
|
||
|
|
||
|
The damage rectangle is specified in buffer coordinates,
|
||
|
where x and y specify the upper left corner of the damage rectangle.
|
||
|
|
||
|
The initial value for pending damage is empty: no damage.
|
||
|
wl_surface.damage_buffer adds pending damage: the new pending
|
||
|
damage is the union of old pending damage and the given rectangle.
|
||
|
|
||
|
wl_surface.commit assigns pending damage as the current damage,
|
||
|
and clears pending damage. The server will clear the current
|
||
|
damage as it repaints the surface.
|
||
|
|
||
|
This request differs from wl_surface.damage in only one way - it
|
||
|
takes damage in buffer coordinates instead of surface-local
|
||
|
coordinates. While this generally is more intuitive than surface
|
||
|
coordinates, it is especially desirable when using wp_viewport
|
||
|
or when a drawing library (like EGL) is unaware of buffer scale
|
||
|
and buffer transform.
|
||
|
|
||
|
Note: Because buffer transformation changes and damage requests may
|
||
|
be interleaved in the protocol stream, it is impossible to determine
|
||
|
the actual mapping between surface and buffer damage until
|
||
|
wl_surface.commit time. Therefore, compositors wishing to take both
|
||
|
kinds of damage into account will have to accumulate damage from the
|
||
|
two requests separately and only transform from one to the other
|
||
|
after receiving the wl_surface.commit.
|
||
|
</description>
|
||
|
<arg name="x" type="int" summary="buffer-local x coordinate"/>
|
||
|
<arg name="y" type="int" summary="buffer-local y coordinate"/>
|
||
|
<arg name="width" type="int" summary="width of damage rectangle"/>
|
||
|
<arg name="height" type="int" summary="height of damage rectangle"/>
|
||
|
</request>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_seat" version="6">
|
||
|
<description summary="group of input devices">
|
||
|
A seat is a group of keyboards, pointer and touch devices. This
|
||
|
object is published as a global during start up, or when such a
|
||
|
device is hot plugged. A seat typically has a pointer and
|
||
|
maintains a keyboard focus and a pointer focus.
|
||
|
</description>
|
||
|
|
||
|
<enum name="capability" bitfield="true">
|
||
|
<description summary="seat capability bitmask">
|
||
|
This is a bitmask of capabilities this seat has; if a member is
|
||
|
set, then it is present on the seat.
|
||
|
</description>
|
||
|
<entry name="pointer" value="1" summary="the seat has pointer devices"/>
|
||
|
<entry name="keyboard" value="2" summary="the seat has one or more keyboards"/>
|
||
|
<entry name="touch" value="4" summary="the seat has touch devices"/>
|
||
|
</enum>
|
||
|
|
||
|
<event name="capabilities">
|
||
|
<description summary="seat capabilities changed">
|
||
|
This is emitted whenever a seat gains or loses the pointer,
|
||
|
keyboard or touch capabilities. The argument is a capability
|
||
|
enum containing the complete set of capabilities this seat has.
|
||
|
|
||
|
When the pointer capability is added, a client may create a
|
||
|
wl_pointer object using the wl_seat.get_pointer request. This object
|
||
|
will receive pointer events until the capability is removed in the
|
||
|
future.
|
||
|
|
||
|
When the pointer capability is removed, a client should destroy the
|
||
|
wl_pointer objects associated with the seat where the capability was
|
||
|
removed, using the wl_pointer.release request. No further pointer
|
||
|
events will be received on these objects.
|
||
|
|
||
|
In some compositors, if a seat regains the pointer capability and a
|
||
|
client has a previously obtained wl_pointer object of version 4 or
|
||
|
less, that object may start sending pointer events again. This
|
||
|
behavior is considered a misinterpretation of the intended behavior
|
||
|
and must not be relied upon by the client. wl_pointer objects of
|
||
|
version 5 or later must not send events if created before the most
|
||
|
recent event notifying the client of an added pointer capability.
|
||
|
|
||
|
The above behavior also applies to wl_keyboard and wl_touch with the
|
||
|
keyboard and touch capabilities, respectively.
|
||
|
</description>
|
||
|
<arg name="capabilities" type="uint" enum="capability" summary="capabilities of the seat"/>
|
||
|
</event>
|
||
|
|
||
|
<request name="get_pointer">
|
||
|
<description summary="return pointer object">
|
||
|
The ID provided will be initialized to the wl_pointer interface
|
||
|
for this seat.
|
||
|
|
||
|
This request only takes effect if the seat has the pointer
|
||
|
capability, or has had the pointer capability in the past.
|
||
|
It is a protocol violation to issue this request on a seat that has
|
||
|
never had the pointer capability.
|
||
|
</description>
|
||
|
<arg name="id" type="new_id" interface="wl_pointer" summary="seat pointer"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="get_keyboard">
|
||
|
<description summary="return keyboard object">
|
||
|
The ID provided will be initialized to the wl_keyboard interface
|
||
|
for this seat.
|
||
|
|
||
|
This request only takes effect if the seat has the keyboard
|
||
|
capability, or has had the keyboard capability in the past.
|
||
|
It is a protocol violation to issue this request on a seat that has
|
||
|
never had the keyboard capability.
|
||
|
</description>
|
||
|
<arg name="id" type="new_id" interface="wl_keyboard" summary="seat keyboard"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="get_touch">
|
||
|
<description summary="return touch object">
|
||
|
The ID provided will be initialized to the wl_touch interface
|
||
|
for this seat.
|
||
|
|
||
|
This request only takes effect if the seat has the touch
|
||
|
capability, or has had the touch capability in the past.
|
||
|
It is a protocol violation to issue this request on a seat that has
|
||
|
never had the touch capability.
|
||
|
</description>
|
||
|
<arg name="id" type="new_id" interface="wl_touch" summary="seat touch interface"/>
|
||
|
</request>
|
||
|
|
||
|
<!-- Version 2 additions -->
|
||
|
|
||
|
<event name="name" since="2">
|
||
|
<description summary="unique identifier for this seat">
|
||
|
In a multiseat configuration this can be used by the client to help
|
||
|
identify which physical devices the seat represents. Based on
|
||
|
the seat configuration used by the compositor.
|
||
|
</description>
|
||
|
<arg name="name" type="string" summary="seat identifier"/>
|
||
|
</event>
|
||
|
|
||
|
<!-- Version 5 additions -->
|
||
|
|
||
|
<request name="release" type="destructor" since="5">
|
||
|
<description summary="release the seat object">
|
||
|
Using this request a client can tell the server that it is not going to
|
||
|
use the seat object anymore.
|
||
|
</description>
|
||
|
</request>
|
||
|
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_pointer" version="6">
|
||
|
<description summary="pointer input device">
|
||
|
The wl_pointer interface represents one or more input devices,
|
||
|
such as mice, which control the pointer location and pointer_focus
|
||
|
of a seat.
|
||
|
|
||
|
The wl_pointer interface generates motion, enter and leave
|
||
|
events for the surfaces that the pointer is located over,
|
||
|
and button and axis events for button presses, button releases
|
||
|
and scrolling.
|
||
|
</description>
|
||
|
|
||
|
<enum name="error">
|
||
|
<entry name="role" value="0" summary="given wl_surface has another role"/>
|
||
|
</enum>
|
||
|
|
||
|
<request name="set_cursor">
|
||
|
<description summary="set the pointer surface">
|
||
|
Set the pointer surface, i.e., the surface that contains the
|
||
|
pointer image (cursor). This request gives the surface the role
|
||
|
of a cursor. If the surface already has another role, it raises
|
||
|
a protocol error.
|
||
|
|
||
|
The cursor actually changes only if the pointer
|
||
|
focus for this device is one of the requesting client's surfaces
|
||
|
or the surface parameter is the current pointer surface. If
|
||
|
there was a previous surface set with this request it is
|
||
|
replaced. If surface is NULL, the pointer image is hidden.
|
||
|
|
||
|
The parameters hotspot_x and hotspot_y define the position of
|
||
|
the pointer surface relative to the pointer location. Its
|
||
|
top-left corner is always at (x, y) - (hotspot_x, hotspot_y),
|
||
|
where (x, y) are the coordinates of the pointer location, in
|
||
|
surface-local coordinates.
|
||
|
|
||
|
On surface.attach requests to the pointer surface, hotspot_x
|
||
|
and hotspot_y are decremented by the x and y parameters
|
||
|
passed to the request. Attach must be confirmed by
|
||
|
wl_surface.commit as usual.
|
||
|
|
||
|
The hotspot can also be updated by passing the currently set
|
||
|
pointer surface to this request with new values for hotspot_x
|
||
|
and hotspot_y.
|
||
|
|
||
|
The current and pending input regions of the wl_surface are
|
||
|
cleared, and wl_surface.set_input_region is ignored until the
|
||
|
wl_surface is no longer used as the cursor. When the use as a
|
||
|
cursor ends, the current and pending input regions become
|
||
|
undefined, and the wl_surface is unmapped.
|
||
|
</description>
|
||
|
<arg name="serial" type="uint" summary="serial number of the enter event"/>
|
||
|
<arg name="surface" type="object" interface="wl_surface" allow-null="true"
|
||
|
summary="pointer surface"/>
|
||
|
<arg name="hotspot_x" type="int" summary="surface-local x coordinate"/>
|
||
|
<arg name="hotspot_y" type="int" summary="surface-local y coordinate"/>
|
||
|
</request>
|
||
|
|
||
|
<event name="enter">
|
||
|
<description summary="enter event">
|
||
|
Notification that this seat's pointer is focused on a certain
|
||
|
surface.
|
||
|
|
||
|
When a seat's focus enters a surface, the pointer image
|
||
|
is undefined and a client should respond to this event by setting
|
||
|
an appropriate pointer image with the set_cursor request.
|
||
|
</description>
|
||
|
<arg name="serial" type="uint" summary="serial number of the enter event"/>
|
||
|
<arg name="surface" type="object" interface="wl_surface" summary="surface entered by the pointer"/>
|
||
|
<arg name="surface_x" type="fixed" summary="surface-local x coordinate"/>
|
||
|
<arg name="surface_y" type="fixed" summary="surface-local y coordinate"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="leave">
|
||
|
<description summary="leave event">
|
||
|
Notification that this seat's pointer is no longer focused on
|
||
|
a certain surface.
|
||
|
|
||
|
The leave notification is sent before the enter notification
|
||
|
for the new focus.
|
||
|
</description>
|
||
|
<arg name="serial" type="uint" summary="serial number of the leave event"/>
|
||
|
<arg name="surface" type="object" interface="wl_surface" summary="surface left by the pointer"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="motion">
|
||
|
<description summary="pointer motion event">
|
||
|
Notification of pointer location change. The arguments
|
||
|
surface_x and surface_y are the location relative to the
|
||
|
focused surface.
|
||
|
</description>
|
||
|
<arg name="time" type="uint" summary="timestamp with millisecond granularity"/>
|
||
|
<arg name="surface_x" type="fixed" summary="surface-local x coordinate"/>
|
||
|
<arg name="surface_y" type="fixed" summary="surface-local y coordinate"/>
|
||
|
</event>
|
||
|
|
||
|
<enum name="button_state">
|
||
|
<description summary="physical button state">
|
||
|
Describes the physical state of a button that produced the button
|
||
|
event.
|
||
|
</description>
|
||
|
<entry name="released" value="0" summary="the button is not pressed"/>
|
||
|
<entry name="pressed" value="1" summary="the button is pressed"/>
|
||
|
</enum>
|
||
|
|
||
|
<event name="button">
|
||
|
<description summary="pointer button event">
|
||
|
Mouse button click and release notifications.
|
||
|
|
||
|
The location of the click is given by the last motion or
|
||
|
enter event.
|
||
|
The time argument is a timestamp with millisecond
|
||
|
granularity, with an undefined base.
|
||
|
|
||
|
The button is a button code as defined in the Linux kernel's
|
||
|
linux/input-event-codes.h header file, e.g. BTN_LEFT.
|
||
|
|
||
|
Any 16-bit button code value is reserved for future additions to the
|
||
|
kernel's event code list. All other button codes above 0xFFFF are
|
||
|
currently undefined but may be used in future versions of this
|
||
|
protocol.
|
||
|
</description>
|
||
|
<arg name="serial" type="uint" summary="serial number of the button event"/>
|
||
|
<arg name="time" type="uint" summary="timestamp with millisecond granularity"/>
|
||
|
<arg name="button" type="uint" summary="button that produced the event"/>
|
||
|
<arg name="state" type="uint" enum="button_state" summary="physical state of the button"/>
|
||
|
</event>
|
||
|
|
||
|
<enum name="axis">
|
||
|
<description summary="axis types">
|
||
|
Describes the axis types of scroll events.
|
||
|
</description>
|
||
|
<entry name="vertical_scroll" value="0" summary="vertical axis"/>
|
||
|
<entry name="horizontal_scroll" value="1" summary="horizontal axis"/>
|
||
|
</enum>
|
||
|
|
||
|
<event name="axis">
|
||
|
<description summary="axis event">
|
||
|
Scroll and other axis notifications.
|
||
|
|
||
|
For scroll events (vertical and horizontal scroll axes), the
|
||
|
value parameter is the length of a vector along the specified
|
||
|
axis in a coordinate space identical to those of motion events,
|
||
|
representing a relative movement along the specified axis.
|
||
|
|
||
|
For devices that support movements non-parallel to axes multiple
|
||
|
axis events will be emitted.
|
||
|
|
||
|
When applicable, for example for touch pads, the server can
|
||
|
choose to emit scroll events where the motion vector is
|
||
|
equivalent to a motion event vector.
|
||
|
|
||
|
When applicable, a client can transform its content relative to the
|
||
|
scroll distance.
|
||
|
</description>
|
||
|
<arg name="time" type="uint" summary="timestamp with millisecond granularity"/>
|
||
|
<arg name="axis" type="uint" enum="axis" summary="axis type"/>
|
||
|
<arg name="value" type="fixed" summary="length of vector in surface-local coordinate space"/>
|
||
|
</event>
|
||
|
|
||
|
<!-- Version 3 additions -->
|
||
|
|
||
|
<request name="release" type="destructor" since="3">
|
||
|
<description summary="release the pointer object">
|
||
|
Using this request a client can tell the server that it is not going to
|
||
|
use the pointer object anymore.
|
||
|
|
||
|
This request destroys the pointer proxy object, so clients must not call
|
||
|
wl_pointer_destroy() after using this request.
|
||
|
</description>
|
||
|
</request>
|
||
|
|
||
|
<!-- Version 5 additions -->
|
||
|
|
||
|
<event name="frame" since="5">
|
||
|
<description summary="end of a pointer event sequence">
|
||
|
Indicates the end of a set of events that logically belong together.
|
||
|
A client is expected to accumulate the data in all events within the
|
||
|
frame before proceeding.
|
||
|
|
||
|
All wl_pointer events before a wl_pointer.frame event belong
|
||
|
logically together. For example, in a diagonal scroll motion the
|
||
|
compositor will send an optional wl_pointer.axis_source event, two
|
||
|
wl_pointer.axis events (horizontal and vertical) and finally a
|
||
|
wl_pointer.frame event. The client may use this information to
|
||
|
calculate a diagonal vector for scrolling.
|
||
|
|
||
|
When multiple wl_pointer.axis events occur within the same frame,
|
||
|
the motion vector is the combined motion of all events.
|
||
|
When a wl_pointer.axis and a wl_pointer.axis_stop event occur within
|
||
|
the same frame, this indicates that axis movement in one axis has
|
||
|
stopped but continues in the other axis.
|
||
|
When multiple wl_pointer.axis_stop events occur within the same
|
||
|
frame, this indicates that these axes stopped in the same instance.
|
||
|
|
||
|
A wl_pointer.frame event is sent for every logical event group,
|
||
|
even if the group only contains a single wl_pointer event.
|
||
|
Specifically, a client may get a sequence: motion, frame, button,
|
||
|
frame, axis, frame, axis_stop, frame.
|
||
|
|
||
|
The wl_pointer.enter and wl_pointer.leave events are logical events
|
||
|
generated by the compositor and not the hardware. These events are
|
||
|
also grouped by a wl_pointer.frame. When a pointer moves from one
|
||
|
surface to another, a compositor should group the
|
||
|
wl_pointer.leave event within the same wl_pointer.frame.
|
||
|
However, a client must not rely on wl_pointer.leave and
|
||
|
wl_pointer.enter being in the same wl_pointer.frame.
|
||
|
Compositor-specific policies may require the wl_pointer.leave and
|
||
|
wl_pointer.enter event being split across multiple wl_pointer.frame
|
||
|
groups.
|
||
|
</description>
|
||
|
</event>
|
||
|
|
||
|
<enum name="axis_source">
|
||
|
<description summary="axis source types">
|
||
|
Describes the source types for axis events. This indicates to the
|
||
|
client how an axis event was physically generated; a client may
|
||
|
adjust the user interface accordingly. For example, scroll events
|
||
|
from a "finger" source may be in a smooth coordinate space with
|
||
|
kinetic scrolling whereas a "wheel" source may be in discrete steps
|
||
|
of a number of lines.
|
||
|
|
||
|
The "continuous" axis source is a device generating events in a
|
||
|
continuous coordinate space, but using something other than a
|
||
|
finger. One example for this source is button-based scrolling where
|
||
|
the vertical motion of a device is converted to scroll events while
|
||
|
a button is held down.
|
||
|
|
||
|
The "wheel tilt" axis source indicates that the actual device is a
|
||
|
wheel but the scroll event is not caused by a rotation but a
|
||
|
(usually sideways) tilt of the wheel.
|
||
|
</description>
|
||
|
<entry name="wheel" value="0" summary="a physical wheel rotation" />
|
||
|
<entry name="finger" value="1" summary="finger on a touch surface" />
|
||
|
<entry name="continuous" value="2" summary="continuous coordinate space"/>
|
||
|
<entry name="wheel_tilt" value="3" summary="a physical wheel tilt" since="6"/>
|
||
|
</enum>
|
||
|
|
||
|
<event name="axis_source" since="5">
|
||
|
<description summary="axis source event">
|
||
|
Source information for scroll and other axes.
|
||
|
|
||
|
This event does not occur on its own. It is sent before a
|
||
|
wl_pointer.frame event and carries the source information for
|
||
|
all events within that frame.
|
||
|
|
||
|
The source specifies how this event was generated. If the source is
|
||
|
wl_pointer.axis_source.finger, a wl_pointer.axis_stop event will be
|
||
|
sent when the user lifts the finger off the device.
|
||
|
|
||
|
If the source is wl_pointer.axis_source.wheel,
|
||
|
wl_pointer.axis_source.wheel_tilt or
|
||
|
wl_pointer.axis_source.continuous, a wl_pointer.axis_stop event may
|
||
|
or may not be sent. Whether a compositor sends an axis_stop event
|
||
|
for these sources is hardware-specific and implementation-dependent;
|
||
|
clients must not rely on receiving an axis_stop event for these
|
||
|
scroll sources and should treat scroll sequences from these scroll
|
||
|
sources as unterminated by default.
|
||
|
|
||
|
This event is optional. If the source is unknown for a particular
|
||
|
axis event sequence, no event is sent.
|
||
|
Only one wl_pointer.axis_source event is permitted per frame.
|
||
|
|
||
|
The order of wl_pointer.axis_discrete and wl_pointer.axis_source is
|
||
|
not guaranteed.
|
||
|
</description>
|
||
|
<arg name="axis_source" type="uint" enum="axis_source" summary="source of the axis event"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="axis_stop" since="5">
|
||
|
<description summary="axis stop event">
|
||
|
Stop notification for scroll and other axes.
|
||
|
|
||
|
For some wl_pointer.axis_source types, a wl_pointer.axis_stop event
|
||
|
is sent to notify a client that the axis sequence has terminated.
|
||
|
This enables the client to implement kinetic scrolling.
|
||
|
See the wl_pointer.axis_source documentation for information on when
|
||
|
this event may be generated.
|
||
|
|
||
|
Any wl_pointer.axis events with the same axis_source after this
|
||
|
event should be considered as the start of a new axis motion.
|
||
|
|
||
|
The timestamp is to be interpreted identical to the timestamp in the
|
||
|
wl_pointer.axis event. The timestamp value may be the same as a
|
||
|
preceding wl_pointer.axis event.
|
||
|
</description>
|
||
|
<arg name="time" type="uint" summary="timestamp with millisecond granularity"/>
|
||
|
<arg name="axis" type="uint" enum="axis" summary="the axis stopped with this event"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="axis_discrete" since="5">
|
||
|
<description summary="axis click event">
|
||
|
Discrete step information for scroll and other axes.
|
||
|
|
||
|
This event carries the axis value of the wl_pointer.axis event in
|
||
|
discrete steps (e.g. mouse wheel clicks).
|
||
|
|
||
|
This event does not occur on its own, it is coupled with a
|
||
|
wl_pointer.axis event that represents this axis value on a
|
||
|
continuous scale. The protocol guarantees that each axis_discrete
|
||
|
event is always followed by exactly one axis event with the same
|
||
|
axis number within the same wl_pointer.frame. Note that the protocol
|
||
|
allows for other events to occur between the axis_discrete and
|
||
|
its coupled axis event, including other axis_discrete or axis
|
||
|
events.
|
||
|
|
||
|
This event is optional; continuous scrolling devices
|
||
|
like two-finger scrolling on touchpads do not have discrete
|
||
|
steps and do not generate this event.
|
||
|
|
||
|
The discrete value carries the directional information. e.g. a value
|
||
|
of -2 is two steps towards the negative direction of this axis.
|
||
|
|
||
|
The axis number is identical to the axis number in the associated
|
||
|
axis event.
|
||
|
|
||
|
The order of wl_pointer.axis_discrete and wl_pointer.axis_source is
|
||
|
not guaranteed.
|
||
|
</description>
|
||
|
<arg name="axis" type="uint" enum="axis" summary="axis type"/>
|
||
|
<arg name="discrete" type="int" summary="number of steps"/>
|
||
|
</event>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_keyboard" version="6">
|
||
|
<description summary="keyboard input device">
|
||
|
The wl_keyboard interface represents one or more keyboards
|
||
|
associated with a seat.
|
||
|
</description>
|
||
|
|
||
|
<enum name="keymap_format">
|
||
|
<description summary="keyboard mapping format">
|
||
|
This specifies the format of the keymap provided to the
|
||
|
client with the wl_keyboard.keymap event.
|
||
|
</description>
|
||
|
<entry name="no_keymap" value="0"
|
||
|
summary="no keymap; client must understand how to interpret the raw keycode"/>
|
||
|
<entry name="xkb_v1" value="1"
|
||
|
summary="libxkbcommon compatible; to determine the xkb keycode, clients must add 8 to the key event keycode"/>
|
||
|
</enum>
|
||
|
|
||
|
<event name="keymap">
|
||
|
<description summary="keyboard mapping">
|
||
|
This event provides a file descriptor to the client which can be
|
||
|
memory-mapped to provide a keyboard mapping description.
|
||
|
</description>
|
||
|
<arg name="format" type="uint" enum="keymap_format" summary="keymap format"/>
|
||
|
<arg name="fd" type="fd" summary="keymap file descriptor"/>
|
||
|
<arg name="size" type="uint" summary="keymap size, in bytes"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="enter">
|
||
|
<description summary="enter event">
|
||
|
Notification that this seat's keyboard focus is on a certain
|
||
|
surface.
|
||
|
</description>
|
||
|
<arg name="serial" type="uint" summary="serial number of the enter event"/>
|
||
|
<arg name="surface" type="object" interface="wl_surface" summary="surface gaining keyboard focus"/>
|
||
|
<arg name="keys" type="array" summary="the currently pressed keys"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="leave">
|
||
|
<description summary="leave event">
|
||
|
Notification that this seat's keyboard focus is no longer on
|
||
|
a certain surface.
|
||
|
|
||
|
The leave notification is sent before the enter notification
|
||
|
for the new focus.
|
||
|
</description>
|
||
|
<arg name="serial" type="uint" summary="serial number of the leave event"/>
|
||
|
<arg name="surface" type="object" interface="wl_surface" summary="surface that lost keyboard focus"/>
|
||
|
</event>
|
||
|
|
||
|
<enum name="key_state">
|
||
|
<description summary="physical key state">
|
||
|
Describes the physical state of a key that produced the key event.
|
||
|
</description>
|
||
|
<entry name="released" value="0" summary="key is not pressed"/>
|
||
|
<entry name="pressed" value="1" summary="key is pressed"/>
|
||
|
</enum>
|
||
|
|
||
|
<event name="key">
|
||
|
<description summary="key event">
|
||
|
A key was pressed or released.
|
||
|
The time argument is a timestamp with millisecond
|
||
|
granularity, with an undefined base.
|
||
|
</description>
|
||
|
<arg name="serial" type="uint" summary="serial number of the key event"/>
|
||
|
<arg name="time" type="uint" summary="timestamp with millisecond granularity"/>
|
||
|
<arg name="key" type="uint" summary="key that produced the event"/>
|
||
|
<arg name="state" type="uint" enum="key_state" summary="physical state of the key"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="modifiers">
|
||
|
<description summary="modifier and group state">
|
||
|
Notifies clients that the modifier and/or group state has
|
||
|
changed, and it should update its local state.
|
||
|
</description>
|
||
|
<arg name="serial" type="uint" summary="serial number of the modifiers event"/>
|
||
|
<arg name="mods_depressed" type="uint" summary="depressed modifiers"/>
|
||
|
<arg name="mods_latched" type="uint" summary="latched modifiers"/>
|
||
|
<arg name="mods_locked" type="uint" summary="locked modifiers"/>
|
||
|
<arg name="group" type="uint" summary="keyboard layout"/>
|
||
|
</event>
|
||
|
|
||
|
<!-- Version 3 additions -->
|
||
|
|
||
|
<request name="release" type="destructor" since="3">
|
||
|
<description summary="release the keyboard object"/>
|
||
|
</request>
|
||
|
|
||
|
<!-- Version 4 additions -->
|
||
|
|
||
|
<event name="repeat_info" since="4">
|
||
|
<description summary="repeat rate and delay">
|
||
|
Informs the client about the keyboard's repeat rate and delay.
|
||
|
|
||
|
This event is sent as soon as the wl_keyboard object has been created,
|
||
|
and is guaranteed to be received by the client before any key press
|
||
|
event.
|
||
|
|
||
|
Negative values for either rate or delay are illegal. A rate of zero
|
||
|
will disable any repeating (regardless of the value of delay).
|
||
|
|
||
|
This event can be sent later on as well with a new value if necessary,
|
||
|
so clients should continue listening for the event past the creation
|
||
|
of wl_keyboard.
|
||
|
</description>
|
||
|
<arg name="rate" type="int"
|
||
|
summary="the rate of repeating keys in characters per second"/>
|
||
|
<arg name="delay" type="int"
|
||
|
summary="delay in milliseconds since key down until repeating starts"/>
|
||
|
</event>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_touch" version="6">
|
||
|
<description summary="touchscreen input device">
|
||
|
The wl_touch interface represents a touchscreen
|
||
|
associated with a seat.
|
||
|
|
||
|
Touch interactions can consist of one or more contacts.
|
||
|
For each contact, a series of events is generated, starting
|
||
|
with a down event, followed by zero or more motion events,
|
||
|
and ending with an up event. Events relating to the same
|
||
|
contact point can be identified by the ID of the sequence.
|
||
|
</description>
|
||
|
|
||
|
<event name="down">
|
||
|
<description summary="touch down event and beginning of a touch sequence">
|
||
|
A new touch point has appeared on the surface. This touch point is
|
||
|
assigned a unique ID. Future events from this touch point reference
|
||
|
this ID. The ID ceases to be valid after a touch up event and may be
|
||
|
reused in the future.
|
||
|
</description>
|
||
|
<arg name="serial" type="uint" summary="serial number of the touch down event"/>
|
||
|
<arg name="time" type="uint" summary="timestamp with millisecond granularity"/>
|
||
|
<arg name="surface" type="object" interface="wl_surface" summary="surface touched"/>
|
||
|
<arg name="id" type="int" summary="the unique ID of this touch point"/>
|
||
|
<arg name="x" type="fixed" summary="surface-local x coordinate"/>
|
||
|
<arg name="y" type="fixed" summary="surface-local y coordinate"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="up">
|
||
|
<description summary="end of a touch event sequence">
|
||
|
The touch point has disappeared. No further events will be sent for
|
||
|
this touch point and the touch point's ID is released and may be
|
||
|
reused in a future touch down event.
|
||
|
</description>
|
||
|
<arg name="serial" type="uint" summary="serial number of the touch up event"/>
|
||
|
<arg name="time" type="uint" summary="timestamp with millisecond granularity"/>
|
||
|
<arg name="id" type="int" summary="the unique ID of this touch point"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="motion">
|
||
|
<description summary="update of touch point coordinates">
|
||
|
A touch point has changed coordinates.
|
||
|
</description>
|
||
|
<arg name="time" type="uint" summary="timestamp with millisecond granularity"/>
|
||
|
<arg name="id" type="int" summary="the unique ID of this touch point"/>
|
||
|
<arg name="x" type="fixed" summary="surface-local x coordinate"/>
|
||
|
<arg name="y" type="fixed" summary="surface-local y coordinate"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="frame">
|
||
|
<description summary="end of touch frame event">
|
||
|
Indicates the end of a set of events that logically belong together.
|
||
|
A client is expected to accumulate the data in all events within the
|
||
|
frame before proceeding.
|
||
|
|
||
|
A wl_touch.frame terminates at least one event but otherwise no
|
||
|
guarantee is provided about the set of events within a frame. A client
|
||
|
must assume that any state not updated in a frame is unchanged from the
|
||
|
previously known state.
|
||
|
</description>
|
||
|
</event>
|
||
|
|
||
|
<event name="cancel">
|
||
|
<description summary="touch session cancelled">
|
||
|
Sent if the compositor decides the touch stream is a global
|
||
|
gesture. No further events are sent to the clients from that
|
||
|
particular gesture. Touch cancellation applies to all touch points
|
||
|
currently active on this client's surface. The client is
|
||
|
responsible for finalizing the touch points, future touch points on
|
||
|
this surface may reuse the touch point ID.
|
||
|
</description>
|
||
|
</event>
|
||
|
|
||
|
<!-- Version 3 additions -->
|
||
|
|
||
|
<request name="release" type="destructor" since="3">
|
||
|
<description summary="release the touch object"/>
|
||
|
</request>
|
||
|
|
||
|
<!-- Version 6 additions -->
|
||
|
|
||
|
<event name="shape" since="6">
|
||
|
<description summary="update shape of touch point">
|
||
|
Sent when a touchpoint has changed its shape.
|
||
|
|
||
|
This event does not occur on its own. It is sent before a
|
||
|
wl_touch.frame event and carries the new shape information for
|
||
|
any previously reported, or new touch points of that frame.
|
||
|
|
||
|
Other events describing the touch point such as wl_touch.down,
|
||
|
wl_touch.motion or wl_touch.orientation may be sent within the
|
||
|
same wl_touch.frame. A client should treat these events as a single
|
||
|
logical touch point update. The order of wl_touch.shape,
|
||
|
wl_touch.orientation and wl_touch.motion is not guaranteed.
|
||
|
A wl_touch.down event is guaranteed to occur before the first
|
||
|
wl_touch.shape event for this touch ID but both events may occur within
|
||
|
the same wl_touch.frame.
|
||
|
|
||
|
A touchpoint shape is approximated by an ellipse through the major and
|
||
|
minor axis length. The major axis length describes the longer diameter
|
||
|
of the ellipse, while the minor axis length describes the shorter
|
||
|
diameter. Major and minor are orthogonal and both are specified in
|
||
|
surface-local coordinates. The center of the ellipse is always at the
|
||
|
touchpoint location as reported by wl_touch.down or wl_touch.move.
|
||
|
|
||
|
This event is only sent by the compositor if the touch device supports
|
||
|
shape reports. The client has to make reasonable assumptions about the
|
||
|
shape if it did not receive this event.
|
||
|
</description>
|
||
|
<arg name="id" type="int" summary="the unique ID of this touch point"/>
|
||
|
<arg name="major" type="fixed" summary="length of the major axis in surface-local coordinates"/>
|
||
|
<arg name="minor" type="fixed" summary="length of the minor axis in surface-local coordinates"/>
|
||
|
</event>
|
||
|
|
||
|
<event name="orientation" since="6">
|
||
|
<description summary="update orientation of touch point">
|
||
|
Sent when a touchpoint has changed its orientation.
|
||
|
|
||
|
This event does not occur on its own. It is sent before a
|
||
|
wl_touch.frame event and carries the new shape information for
|
||
|
any previously reported, or new touch points of that frame.
|
||
|
|
||
|
Other events describing the touch point such as wl_touch.down,
|
||
|
wl_touch.motion or wl_touch.shape may be sent within the
|
||
|
same wl_touch.frame. A client should treat these events as a single
|
||
|
logical touch point update. The order of wl_touch.shape,
|
||
|
wl_touch.orientation and wl_touch.motion is not guaranteed.
|
||
|
A wl_touch.down event is guaranteed to occur before the first
|
||
|
wl_touch.orientation event for this touch ID but both events may occur
|
||
|
within the same wl_touch.frame.
|
||
|
|
||
|
The orientation describes the clockwise angle of a touchpoint's major
|
||
|
axis to the positive surface y-axis and is normalized to the -180 to
|
||
|
+180 degree range. The granularity of orientation depends on the touch
|
||
|
device, some devices only support binary rotation values between 0 and
|
||
|
90 degrees.
|
||
|
|
||
|
This event is only sent by the compositor if the touch device supports
|
||
|
orientation reports.
|
||
|
</description>
|
||
|
<arg name="id" type="int" summary="the unique ID of this touch point"/>
|
||
|
<arg name="orientation" type="fixed" summary="angle between major axis and positive surface y-axis in degrees"/>
|
||
|
</event>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_output" version="3">
|
||
|
<description summary="compositor output region">
|
||
|
An output describes part of the compositor geometry. The
|
||
|
compositor works in the 'compositor coordinate system' and an
|
||
|
output corresponds to a rectangular area in that space that is
|
||
|
actually visible. This typically corresponds to a monitor that
|
||
|
displays part of the compositor space. This object is published
|
||
|
as global during start up, or when a monitor is hotplugged.
|
||
|
</description>
|
||
|
|
||
|
<enum name="subpixel">
|
||
|
<description summary="subpixel geometry information">
|
||
|
This enumeration describes how the physical
|
||
|
pixels on an output are laid out.
|
||
|
</description>
|
||
|
<entry name="unknown" value="0" summary="unknown geometry"/>
|
||
|
<entry name="none" value="1" summary="no geometry"/>
|
||
|
<entry name="horizontal_rgb" value="2" summary="horizontal RGB"/>
|
||
|
<entry name="horizontal_bgr" value="3" summary="horizontal BGR"/>
|
||
|
<entry name="vertical_rgb" value="4" summary="vertical RGB"/>
|
||
|
<entry name="vertical_bgr" value="5" summary="vertical BGR"/>
|
||
|
</enum>
|
||
|
|
||
|
<enum name="transform">
|
||
|
<description summary="transform from framebuffer to output">
|
||
|
This describes the transform that a compositor will apply to a
|
||
|
surface to compensate for the rotation or mirroring of an
|
||
|
output device.
|
||
|
|
||
|
The flipped values correspond to an initial flip around a
|
||
|
vertical axis followed by rotation.
|
||
|
|
||
|
The purpose is mainly to allow clients to render accordingly and
|
||
|
tell the compositor, so that for fullscreen surfaces, the
|
||
|
compositor will still be able to scan out directly from client
|
||
|
surfaces.
|
||
|
</description>
|
||
|
<entry name="normal" value="0" summary="no transform"/>
|
||
|
<entry name="90" value="1" summary="90 degrees counter-clockwise"/>
|
||
|
<entry name="180" value="2" summary="180 degrees counter-clockwise"/>
|
||
|
<entry name="270" value="3" summary="270 degrees counter-clockwise"/>
|
||
|
<entry name="flipped" value="4" summary="180 degree flip around a vertical axis"/>
|
||
|
<entry name="flipped_90" value="5" summary="flip and rotate 90 degrees counter-clockwise"/>
|
||
|
<entry name="flipped_180" value="6" summary="flip and rotate 180 degrees counter-clockwise"/>
|
||
|
<entry name="flipped_270" value="7" summary="flip and rotate 270 degrees counter-clockwise"/>
|
||
|
</enum>
|
||
|
|
||
|
<event name="geometry">
|
||
|
<description summary="properties of the output">
|
||
|
The geometry event describes geometric properties of the output.
|
||
|
The event is sent when binding to the output object and whenever
|
||
|
any of the properties change.
|
||
|
</description>
|
||
|
<arg name="x" type="int"
|
||
|
summary="x position within the global compositor space"/>
|
||
|
<arg name="y" type="int"
|
||
|
summary="y position within the global compositor space"/>
|
||
|
<arg name="physical_width" type="int"
|
||
|
summary="width in millimeters of the output"/>
|
||
|
<arg name="physical_height" type="int"
|
||
|
summary="height in millimeters of the output"/>
|
||
|
<arg name="subpixel" type="int" enum="subpixel"
|
||
|
summary="subpixel orientation of the output"/>
|
||
|
<arg name="make" type="string"
|
||
|
summary="textual description of the manufacturer"/>
|
||
|
<arg name="model" type="string"
|
||
|
summary="textual description of the model"/>
|
||
|
<arg name="transform" type="int" enum="transform"
|
||
|
summary="transform that maps framebuffer to output"/>
|
||
|
</event>
|
||
|
|
||
|
<enum name="mode" bitfield="true">
|
||
|
<description summary="mode information">
|
||
|
These flags describe properties of an output mode.
|
||
|
They are used in the flags bitfield of the mode event.
|
||
|
</description>
|
||
|
<entry name="current" value="0x1"
|
||
|
summary="indicates this is the current mode"/>
|
||
|
<entry name="preferred" value="0x2"
|
||
|
summary="indicates this is the preferred mode"/>
|
||
|
</enum>
|
||
|
|
||
|
<event name="mode">
|
||
|
<description summary="advertise available modes for the output">
|
||
|
The mode event describes an available mode for the output.
|
||
|
|
||
|
The event is sent when binding to the output object and there
|
||
|
will always be one mode, the current mode. The event is sent
|
||
|
again if an output changes mode, for the mode that is now
|
||
|
current. In other words, the current mode is always the last
|
||
|
mode that was received with the current flag set.
|
||
|
|
||
|
The size of a mode is given in physical hardware units of
|
||
|
the output device. This is not necessarily the same as
|
||
|
the output size in the global compositor space. For instance,
|
||
|
the output may be scaled, as described in wl_output.scale,
|
||
|
or transformed, as described in wl_output.transform.
|
||
|
</description>
|
||
|
<arg name="flags" type="uint" enum="mode" summary="bitfield of mode flags"/>
|
||
|
<arg name="width" type="int" summary="width of the mode in hardware units"/>
|
||
|
<arg name="height" type="int" summary="height of the mode in hardware units"/>
|
||
|
<arg name="refresh" type="int" summary="vertical refresh rate in mHz"/>
|
||
|
</event>
|
||
|
|
||
|
<!-- Version 2 additions -->
|
||
|
|
||
|
<event name="done" since="2">
|
||
|
<description summary="sent all information about output">
|
||
|
This event is sent after all other properties have been
|
||
|
sent after binding to the output object and after any
|
||
|
other property changes done after that. This allows
|
||
|
changes to the output properties to be seen as
|
||
|
atomic, even if they happen via multiple events.
|
||
|
</description>
|
||
|
</event>
|
||
|
|
||
|
<event name="scale" since="2">
|
||
|
<description summary="output scaling properties">
|
||
|
This event contains scaling geometry information
|
||
|
that is not in the geometry event. It may be sent after
|
||
|
binding the output object or if the output scale changes
|
||
|
later. If it is not sent, the client should assume a
|
||
|
scale of 1.
|
||
|
|
||
|
A scale larger than 1 means that the compositor will
|
||
|
automatically scale surface buffers by this amount
|
||
|
when rendering. This is used for very high resolution
|
||
|
displays where applications rendering at the native
|
||
|
resolution would be too small to be legible.
|
||
|
|
||
|
It is intended that scaling aware clients track the
|
||
|
current output of a surface, and if it is on a scaled
|
||
|
output it should use wl_surface.set_buffer_scale with
|
||
|
the scale of the output. That way the compositor can
|
||
|
avoid scaling the surface, and the client can supply
|
||
|
a higher detail image.
|
||
|
</description>
|
||
|
<arg name="factor" type="int" summary="scaling factor of output"/>
|
||
|
</event>
|
||
|
|
||
|
<!-- Version 3 additions -->
|
||
|
|
||
|
<request name="release" type="destructor" since="3">
|
||
|
<description summary="release the output object">
|
||
|
Using this request a client can tell the server that it is not going to
|
||
|
use the output object anymore.
|
||
|
</description>
|
||
|
</request>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_region" version="1">
|
||
|
<description summary="region interface">
|
||
|
A region object describes an area.
|
||
|
|
||
|
Region objects are used to describe the opaque and input
|
||
|
regions of a surface.
|
||
|
</description>
|
||
|
|
||
|
<request name="destroy" type="destructor">
|
||
|
<description summary="destroy region">
|
||
|
Destroy the region. This will invalidate the object ID.
|
||
|
</description>
|
||
|
</request>
|
||
|
|
||
|
<request name="add">
|
||
|
<description summary="add rectangle to region">
|
||
|
Add the specified rectangle to the region.
|
||
|
</description>
|
||
|
<arg name="x" type="int" summary="region-local x coordinate"/>
|
||
|
<arg name="y" type="int" summary="region-local y coordinate"/>
|
||
|
<arg name="width" type="int" summary="rectangle width"/>
|
||
|
<arg name="height" type="int" summary="rectangle height"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="subtract">
|
||
|
<description summary="subtract rectangle from region">
|
||
|
Subtract the specified rectangle from the region.
|
||
|
</description>
|
||
|
<arg name="x" type="int" summary="region-local x coordinate"/>
|
||
|
<arg name="y" type="int" summary="region-local y coordinate"/>
|
||
|
<arg name="width" type="int" summary="rectangle width"/>
|
||
|
<arg name="height" type="int" summary="rectangle height"/>
|
||
|
</request>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_subcompositor" version="1">
|
||
|
<description summary="sub-surface compositing">
|
||
|
The global interface exposing sub-surface compositing capabilities.
|
||
|
A wl_surface, that has sub-surfaces associated, is called the
|
||
|
parent surface. Sub-surfaces can be arbitrarily nested and create
|
||
|
a tree of sub-surfaces.
|
||
|
|
||
|
The root surface in a tree of sub-surfaces is the main
|
||
|
surface. The main surface cannot be a sub-surface, because
|
||
|
sub-surfaces must always have a parent.
|
||
|
|
||
|
A main surface with its sub-surfaces forms a (compound) window.
|
||
|
For window management purposes, this set of wl_surface objects is
|
||
|
to be considered as a single window, and it should also behave as
|
||
|
such.
|
||
|
|
||
|
The aim of sub-surfaces is to offload some of the compositing work
|
||
|
within a window from clients to the compositor. A prime example is
|
||
|
a video player with decorations and video in separate wl_surface
|
||
|
objects. This should allow the compositor to pass YUV video buffer
|
||
|
processing to dedicated overlay hardware when possible.
|
||
|
</description>
|
||
|
|
||
|
<request name="destroy" type="destructor">
|
||
|
<description summary="unbind from the subcompositor interface">
|
||
|
Informs the server that the client will not be using this
|
||
|
protocol object anymore. This does not affect any other
|
||
|
objects, wl_subsurface objects included.
|
||
|
</description>
|
||
|
</request>
|
||
|
|
||
|
<enum name="error">
|
||
|
<entry name="bad_surface" value="0"
|
||
|
summary="the to-be sub-surface is invalid"/>
|
||
|
</enum>
|
||
|
|
||
|
<request name="get_subsurface">
|
||
|
<description summary="give a surface the role sub-surface">
|
||
|
Create a sub-surface interface for the given surface, and
|
||
|
associate it with the given parent surface. This turns a
|
||
|
plain wl_surface into a sub-surface.
|
||
|
|
||
|
The to-be sub-surface must not already have another role, and it
|
||
|
must not have an existing wl_subsurface object. Otherwise a protocol
|
||
|
error is raised.
|
||
|
</description>
|
||
|
<arg name="id" type="new_id" interface="wl_subsurface"
|
||
|
summary="the new sub-surface object ID"/>
|
||
|
<arg name="surface" type="object" interface="wl_surface"
|
||
|
summary="the surface to be turned into a sub-surface"/>
|
||
|
<arg name="parent" type="object" interface="wl_surface"
|
||
|
summary="the parent surface"/>
|
||
|
</request>
|
||
|
</interface>
|
||
|
|
||
|
<interface name="wl_subsurface" version="1">
|
||
|
<description summary="sub-surface interface to a wl_surface">
|
||
|
An additional interface to a wl_surface object, which has been
|
||
|
made a sub-surface. A sub-surface has one parent surface. A
|
||
|
sub-surface's size and position are not limited to that of the parent.
|
||
|
Particularly, a sub-surface is not automatically clipped to its
|
||
|
parent's area.
|
||
|
|
||
|
A sub-surface becomes mapped, when a non-NULL wl_buffer is applied
|
||
|
and the parent surface is mapped. The order of which one happens
|
||
|
first is irrelevant. A sub-surface is hidden if the parent becomes
|
||
|
hidden, or if a NULL wl_buffer is applied. These rules apply
|
||
|
recursively through the tree of surfaces.
|
||
|
|
||
|
The behaviour of a wl_surface.commit request on a sub-surface
|
||
|
depends on the sub-surface's mode. The possible modes are
|
||
|
synchronized and desynchronized, see methods
|
||
|
wl_subsurface.set_sync and wl_subsurface.set_desync. Synchronized
|
||
|
mode caches the wl_surface state to be applied when the parent's
|
||
|
state gets applied, and desynchronized mode applies the pending
|
||
|
wl_surface state directly. A sub-surface is initially in the
|
||
|
synchronized mode.
|
||
|
|
||
|
Sub-surfaces have also other kind of state, which is managed by
|
||
|
wl_subsurface requests, as opposed to wl_surface requests. This
|
||
|
state includes the sub-surface position relative to the parent
|
||
|
surface (wl_subsurface.set_position), and the stacking order of
|
||
|
the parent and its sub-surfaces (wl_subsurface.place_above and
|
||
|
.place_below). This state is applied when the parent surface's
|
||
|
wl_surface state is applied, regardless of the sub-surface's mode.
|
||
|
As the exception, set_sync and set_desync are effective immediately.
|
||
|
|
||
|
The main surface can be thought to be always in desynchronized mode,
|
||
|
since it does not have a parent in the sub-surfaces sense.
|
||
|
|
||
|
Even if a sub-surface is in desynchronized mode, it will behave as
|
||
|
in synchronized mode, if its parent surface behaves as in
|
||
|
synchronized mode. This rule is applied recursively throughout the
|
||
|
tree of surfaces. This means, that one can set a sub-surface into
|
||
|
synchronized mode, and then assume that all its child and grand-child
|
||
|
sub-surfaces are synchronized, too, without explicitly setting them.
|
||
|
|
||
|
If the wl_surface associated with the wl_subsurface is destroyed, the
|
||
|
wl_subsurface object becomes inert. Note, that destroying either object
|
||
|
takes effect immediately. If you need to synchronize the removal
|
||
|
of a sub-surface to the parent surface update, unmap the sub-surface
|
||
|
first by attaching a NULL wl_buffer, update parent, and then destroy
|
||
|
the sub-surface.
|
||
|
|
||
|
If the parent wl_surface object is destroyed, the sub-surface is
|
||
|
unmapped.
|
||
|
</description>
|
||
|
|
||
|
<request name="destroy" type="destructor">
|
||
|
<description summary="remove sub-surface interface">
|
||
|
The sub-surface interface is removed from the wl_surface object
|
||
|
that was turned into a sub-surface with a
|
||
|
wl_subcompositor.get_subsurface request. The wl_surface's association
|
||
|
to the parent is deleted, and the wl_surface loses its role as
|
||
|
a sub-surface. The wl_surface is unmapped.
|
||
|
</description>
|
||
|
</request>
|
||
|
|
||
|
<enum name="error">
|
||
|
<entry name="bad_surface" value="0"
|
||
|
summary="wl_surface is not a sibling or the parent"/>
|
||
|
</enum>
|
||
|
|
||
|
<request name="set_position">
|
||
|
<description summary="reposition the sub-surface">
|
||
|
This schedules a sub-surface position change.
|
||
|
The sub-surface will be moved so that its origin (top left
|
||
|
corner pixel) will be at the location x, y of the parent surface
|
||
|
coordinate system. The coordinates are not restricted to the parent
|
||
|
surface area. Negative values are allowed.
|
||
|
|
||
|
The scheduled coordinates will take effect whenever the state of the
|
||
|
parent surface is applied. When this happens depends on whether the
|
||
|
parent surface is in synchronized mode or not. See
|
||
|
wl_subsurface.set_sync and wl_subsurface.set_desync for details.
|
||
|
|
||
|
If more than one set_position request is invoked by the client before
|
||
|
the commit of the parent surface, the position of a new request always
|
||
|
replaces the scheduled position from any previous request.
|
||
|
|
||
|
The initial position is 0, 0.
|
||
|
</description>
|
||
|
<arg name="x" type="int" summary="x coordinate in the parent surface"/>
|
||
|
<arg name="y" type="int" summary="y coordinate in the parent surface"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="place_above">
|
||
|
<description summary="restack the sub-surface">
|
||
|
This sub-surface is taken from the stack, and put back just
|
||
|
above the reference surface, changing the z-order of the sub-surfaces.
|
||
|
The reference surface must be one of the sibling surfaces, or the
|
||
|
parent surface. Using any other surface, including this sub-surface,
|
||
|
will cause a protocol error.
|
||
|
|
||
|
The z-order is double-buffered. Requests are handled in order and
|
||
|
applied immediately to a pending state. The final pending state is
|
||
|
copied to the active state the next time the state of the parent
|
||
|
surface is applied. When this happens depends on whether the parent
|
||
|
surface is in synchronized mode or not. See wl_subsurface.set_sync and
|
||
|
wl_subsurface.set_desync for details.
|
||
|
|
||
|
A new sub-surface is initially added as the top-most in the stack
|
||
|
of its siblings and parent.
|
||
|
</description>
|
||
|
<arg name="sibling" type="object" interface="wl_surface"
|
||
|
summary="the reference surface"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="place_below">
|
||
|
<description summary="restack the sub-surface">
|
||
|
The sub-surface is placed just below the reference surface.
|
||
|
See wl_subsurface.place_above.
|
||
|
</description>
|
||
|
<arg name="sibling" type="object" interface="wl_surface"
|
||
|
summary="the reference surface"/>
|
||
|
</request>
|
||
|
|
||
|
<request name="set_sync">
|
||
|
<description summary="set sub-surface to synchronized mode">
|
||
|
Change the commit behaviour of the sub-surface to synchronized
|
||
|
mode, also described as the parent dependent mode.
|
||
|
|
||
|
In synchronized mode, wl_surface.commit on a sub-surface will
|
||
|
accumulate the committed state in a cache, but the state will
|
||
|
not be applied and hence will not change the compositor output.
|
||
|
The cached state is applied to the sub-surface immediately after
|
||
|
the parent surface's state is applied. This ensures atomic
|
||
|
updates of the parent and all its synchronized sub-surfaces.
|
||
|
Applying the cached state will invalidate the cache, so further
|
||
|
parent surface commits do not (re-)apply old state.
|
||
|
|
||
|
See wl_subsurface for the recursive effect of this mode.
|
||
|
</description>
|
||
|
</request>
|
||
|
|
||
|
<request name="set_desync">
|
||
|
<description summary="set sub-surface to desynchronized mode">
|
||
|
Change the commit behaviour of the sub-surface to desynchronized
|
||
|
mode, also described as independent or freely running mode.
|
||
|
|
||
|
In desynchronized mode, wl_surface.commit on a sub-surface will
|
||
|
apply the pending state directly, without caching, as happens
|
||
|
normally with a wl_surface. Calling wl_surface.commit on the
|
||
|
parent surface has no effect on the sub-surface's wl_surface
|
||
|
state. This mode allows a sub-surface to be updated on its own.
|
||
|
|
||
|
If cached state exists when wl_surface.commit is called in
|
||
|
desynchronized mode, the pending state is added to the cached
|
||
|
state, and applied as a whole. This invalidates the cache.
|
||
|
|
||
|
Note: even if a sub-surface is set to desynchronized, a parent
|
||
|
sub-surface may override it to behave as synchronized. For details,
|
||
|
see wl_subsurface.
|
||
|
|
||
|
If a surface's parent surface behaves as desynchronized, then
|
||
|
the cached state is applied on set_desync.
|
||
|
</description>
|
||
|
</request>
|
||
|
</interface>
|
||
|
|
||
|
</protocol>
|