source-engine/vtf/vtf.cpp

3494 lines
96 KiB
C++
Raw Normal View History

2020-04-22 16:56:21 +00:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: The VTF file format I/O class to help simplify access to VTF files
//
//=====================================================================================//
#undef fopen
#include "bitmap/imageformat.h"
#include "cvtf.h"
#include "utlbuffer.h"
#include "tier0/dbg.h"
#include "mathlib/vector.h"
#include "mathlib/mathlib.h"
#include "tier1/strtools.h"
#include "tier0/mem.h"
#include "s3tc_decode.h"
#include "utlvector.h"
#include "vprof_telemetry.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
// byteswap data descriptions
BEGIN_BYTESWAP_DATADESC( VTFFileBaseHeader_t )
DEFINE_ARRAY( fileTypeString, FIELD_CHARACTER, 4 ),
DEFINE_ARRAY( version, FIELD_INTEGER, 2 ),
DEFINE_FIELD( headerSize, FIELD_INTEGER ),
END_DATADESC()
BEGIN_BYTESWAP_DATADESC_( VTFFileHeaderV7_1_t, VTFFileBaseHeader_t )
DEFINE_FIELD( width, FIELD_SHORT ),
DEFINE_FIELD( height, FIELD_SHORT ),
DEFINE_FIELD( flags, FIELD_INTEGER ),
DEFINE_FIELD( numFrames, FIELD_SHORT ),
DEFINE_FIELD( startFrame, FIELD_SHORT ),
DEFINE_FIELD( reflectivity, FIELD_VECTOR ),
DEFINE_FIELD( bumpScale, FIELD_FLOAT ),
DEFINE_FIELD( imageFormat, FIELD_INTEGER ),
DEFINE_FIELD( numMipLevels, FIELD_CHARACTER ),
DEFINE_FIELD( lowResImageFormat, FIELD_INTEGER ),
DEFINE_FIELD( lowResImageWidth, FIELD_CHARACTER ),
DEFINE_FIELD( lowResImageHeight, FIELD_CHARACTER ),
END_DATADESC()
BEGIN_BYTESWAP_DATADESC_( VTFFileHeaderV7_2_t, VTFFileHeaderV7_1_t )
DEFINE_FIELD( depth, FIELD_SHORT ),
END_DATADESC()
BEGIN_BYTESWAP_DATADESC_( VTFFileHeaderV7_3_t, VTFFileHeaderV7_2_t )
DEFINE_FIELD( numResources, FIELD_INTEGER ),
END_DATADESC()
BEGIN_BYTESWAP_DATADESC_( VTFFileHeader_t, VTFFileHeaderV7_2_t )
END_DATADESC()
BEGIN_BYTESWAP_DATADESC_( VTFFileHeaderX360_t, VTFFileBaseHeader_t )
DEFINE_FIELD( flags, FIELD_INTEGER ),
DEFINE_FIELD( width, FIELD_SHORT ),
DEFINE_FIELD( height, FIELD_SHORT ),
DEFINE_FIELD( depth, FIELD_SHORT ),
DEFINE_FIELD( numFrames, FIELD_SHORT ),
DEFINE_FIELD( preloadDataSize, FIELD_SHORT ),
DEFINE_FIELD( mipSkipCount, FIELD_CHARACTER ),
DEFINE_FIELD( numResources, FIELD_CHARACTER ),
DEFINE_FIELD( reflectivity, FIELD_VECTOR ),
DEFINE_FIELD( bumpScale, FIELD_FLOAT ),
DEFINE_FIELD( imageFormat, FIELD_INTEGER ),
DEFINE_ARRAY( lowResImageSample, FIELD_CHARACTER, 4 ),
DEFINE_FIELD( compressedSize, FIELD_INTEGER ),
END_DATADESC()
#if defined( POSIX ) || defined( _X360 )
// stub functions
const char* S3TC_GetBlock(
const void *pCompressed,
ImageFormat format,
int nBlocksWide, // How many blocks wide is the image (pixels wide / 4).
int xBlock,
int yBlock )
{
return NULL;
}
char* S3TC_GetBlock(
void *pCompressed,
ImageFormat format,
int nBlocksWide, // How many blocks wide is the image (pixels wide / 4).
int xBlock,
int yBlock )
{
return NULL;
}
S3PaletteIndex S3TC_GetPaletteIndex(
unsigned char *pFaceData,
ImageFormat format,
int imageWidth,
int x,
int y )
{
S3PaletteIndex nullPalette;
memset(&nullPalette, 0x0, sizeof(nullPalette));
return nullPalette;
}
// Merge the two palettes and copy the colors
void S3TC_MergeBlocks(
char **blocks,
S3RGBA **pOriginals,
int nBlocks,
int lPitch, // (in BYTES)
ImageFormat format
)
{
}
// Note: width, x, and y are in texels, not S3 blocks.
void S3TC_SetPaletteIndex(
unsigned char *pFaceData,
ImageFormat format,
int imageWidth,
int x,
int y,
S3PaletteIndex paletteIndex )
{
}
#endif
// This gives a vertex number to each of the 4 verts on each face.
// We use this to match the verts and determine which edges need to be blended together.
// The vert ordering is lower-left, top-left, top-right, bottom-right.
int g_leftFaceVerts[4] = { 2, 6, 7, 3 };
int g_frontFaceVerts[4] = { 2, 3, 5, 4 };
int g_downFaceVerts[4] = { 4, 0, 6, 2 };
int g_rightFaceVerts[4] = { 5, 1, 0, 4 };
int g_backFaceVerts[4] = { 7, 6, 0, 1 };
int g_upFaceVerts[4] = { 3, 7, 1, 5 };
int *g_FaceVerts[6] =
{
g_rightFaceVerts,
g_leftFaceVerts,
g_backFaceVerts,
g_frontFaceVerts,
g_upFaceVerts,
g_downFaceVerts
};
// For skyboxes..
// These were constructed for the engine skybox, which looks like this
// (assuming X goes forward, Y goes left, and Z goes up).
//
// 6 ------------- 5
// / /
// / | / |
// / | / |
// 2 ------------- 1 |
// | |
// | |
// | 7 ------|------ 4
// | / | /
// | / | /
// / /
// 3 ------------- 0
//
int g_skybox_rightFaceVerts[4] = { 7, 6, 5, 4 };
int g_skybox_leftFaceVerts[4] = { 0, 1, 2, 3 };
int g_skybox_backFaceVerts[4] = { 3, 2, 6, 7 };
int g_skybox_frontFaceVerts[4] = { 4, 5, 1, 0 };
int g_skybox_upFaceVerts[4] = { 6, 2, 1, 5 };
int g_skybox_downFaceVerts[4] = { 3, 7, 4, 0 };
int *g_skybox_FaceVerts[6] =
{
g_skybox_rightFaceVerts,
g_skybox_leftFaceVerts,
g_skybox_backFaceVerts,
g_skybox_frontFaceVerts,
g_skybox_upFaceVerts,
g_skybox_downFaceVerts
};
//-----------------------------------------------------------------------------
// Class factory
//-----------------------------------------------------------------------------
IVTFTexture *CreateVTFTexture()
{
return new CVTFTexture;
}
void DestroyVTFTexture( IVTFTexture *pTexture )
{
delete pTexture;
}
//-----------------------------------------------------------------------------
// Allows us to only load in the first little bit of the VTF file to get info
//-----------------------------------------------------------------------------
int VTFFileHeaderSize( int nMajorVersion, int nMinorVersion )
{
if ( nMajorVersion == -1 )
{
nMajorVersion = VTF_MAJOR_VERSION;
}
if ( nMinorVersion == -1 )
{
nMinorVersion = VTF_MINOR_VERSION;
}
switch ( nMajorVersion )
{
case VTF_MAJOR_VERSION:
switch ( nMinorVersion )
{
case 0: // fall through
case 1:
return sizeof( VTFFileHeaderV7_1_t );
case 2:
return sizeof( VTFFileHeaderV7_2_t );
case 3:
return sizeof( VTFFileHeaderV7_3_t ) + sizeof( ResourceEntryInfo ) * MAX_RSRC_DICTIONARY_ENTRIES;
case VTF_MINOR_VERSION:
int size1 = sizeof( VTFFileHeader_t );
int size2 = sizeof( ResourceEntryInfo ) * MAX_RSRC_DICTIONARY_ENTRIES;
int result = size1 + size2;
//printf("\n VTFFileHeaderSize (%i %i) is %i + %i -> %i",nMajorVersion,nMinorVersion, size1, size2, result );
return result;
}
break;
case VTF_X360_MAJOR_VERSION:
return sizeof( VTFFileHeaderX360_t ) + sizeof( ResourceEntryInfo ) * MAX_X360_RSRC_DICTIONARY_ENTRIES;
}
return 0;
}
//-----------------------------------------------------------------------------
// Constructor, destructor
//-----------------------------------------------------------------------------
CVTFTexture::CVTFTexture()
{
m_nVersion[0] = 0;
m_nVersion[1] = 0;
m_nWidth = 0;
m_nHeight = 0;
m_nDepth = 1;
m_Format = IMAGE_FORMAT_UNKNOWN;
m_nMipCount = 0;
m_nFaceCount = 0;
m_nFrameCount = 0;
// FIXME: Is the start frame needed?
m_iStartFrame = 0;
m_flAlphaThreshhold = -1.0f;
m_flAlphaHiFreqThreshhold = -1.0f;
m_flBumpScale = 1.0f;
m_vecReflectivity.Init( 1.0, 1.0, 1.0f );
m_nFlags = 0;
m_pImageData = NULL;
m_nImageAllocSize = 0;
// LowRes data
m_LowResImageFormat = IMAGE_FORMAT_UNKNOWN;
m_nLowResImageWidth = 0;
m_nLowResImageHeight = 0;
m_pLowResImageData = NULL;
m_nLowResImageAllocSize = 0;
#if defined( _X360 )
m_nMipSkipCount = 0;
*(unsigned int *)m_LowResImageSample = 0;
#endif
Assert( m_arrResourcesInfo.Count() == 0 );
Assert( m_arrResourcesData.Count() == 0 );
Assert( m_arrResourcesData_ForReuse.Count() == 0 );
memset( &m_Options, 0, sizeof( m_Options ) );
m_Options.cbSize = sizeof( m_Options );
m_nFinestMipmapLevel = 0;
m_nCoarsestMipmapLevel = 0;
}
CVTFTexture::~CVTFTexture()
{
Shutdown();
}
//-----------------------------------------------------------------------------
// Compute the mip count based on the size + flags
//-----------------------------------------------------------------------------
int CVTFTexture::ComputeMipCount() const
{
if ( IsX360() && ( m_nVersion[0] == VTF_X360_MAJOR_VERSION ) && ( m_nFlags & TEXTUREFLAGS_NOMIP ) )
{
// 360 vtf format culled unused mips at conversion time
return 1;
}
// NOTE: No matter what, all mip levels should be created because
// we have to worry about various fallbacks
return ImageLoader::GetNumMipMapLevels( m_nWidth, m_nHeight, m_nDepth );
}
//-----------------------------------------------------------------------------
// Allocate data blocks with an eye toward re-using memory
//-----------------------------------------------------------------------------
static bool GenericAllocateReusableData( unsigned char **ppData, int *pNumAllocated, int numRequested )
{
// If we're asking for memory and we have way more than we expect, free some.
if ( *pNumAllocated < numRequested || ( numRequested > 0 && *pNumAllocated > 16 * numRequested ) )
{
delete [] *ppData;
*ppData = new unsigned char[ numRequested ];
if ( *ppData )
{
*pNumAllocated = numRequested;
return true;
}
*pNumAllocated = 0;
return false;
}
return true;
}
bool CVTFTexture::AllocateImageData( int nMemorySize )
{
return GenericAllocateReusableData( &m_pImageData, &m_nImageAllocSize, nMemorySize );
}
bool CVTFTexture::ResourceMemorySection::AllocateData( int nMemorySize )
{
if ( GenericAllocateReusableData( &m_pData, &m_nDataAllocSize, nMemorySize ) )
{
m_nDataLength = nMemorySize;
return true;
}
return false;
}
bool CVTFTexture::AllocateLowResImageData( int nMemorySize )
{
return GenericAllocateReusableData( &m_pLowResImageData, &m_nLowResImageAllocSize, nMemorySize );
}
inline bool IsMultipleOf4( int value )
{
// NOTE: This catches powers of 2 less than 4 also
return ( value <= 2 ) || ( (value & 0x3) == 0 );
}
//-----------------------------------------------------------------------------
// Initialization
//-----------------------------------------------------------------------------
bool CVTFTexture::Init( int nWidth, int nHeight, int nDepth, ImageFormat fmt, int iFlags, int iFrameCount, int nForceMipCount )
{
if ( nDepth == 0 )
{
nDepth = 1;
}
if (iFlags & TEXTUREFLAGS_ENVMAP)
{
if (nWidth != nHeight)
{
Warning( "Height and width must be equal for cubemaps!\n" );
return false;
}
if (nDepth != 1)
{
Warning( "Depth must be 1 for cubemaps!\n" );
return false;
}
}
if ( !IsMultipleOf4( nWidth ) || !IsMultipleOf4( nHeight ) || !IsMultipleOf4( nDepth ) )
{
Warning( "Image dimensions must be multiple of 4!\n" );
return false;
}
if ( fmt == IMAGE_FORMAT_DEFAULT )
{
fmt = IMAGE_FORMAT_RGBA8888;
}
m_nWidth = nWidth;
m_nHeight = nHeight;
m_nDepth = nDepth;
m_Format = fmt;
m_nFlags = iFlags;
// THIS CAUSED A BUG!!! We want all of the mip levels in the vtf file even with nomip in case we have lod.
// NOTE: But we don't want more than 1 mip level for procedural textures
if ( (iFlags & (TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_PROCEDURAL)) == (TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_PROCEDURAL) )
{
nForceMipCount = 1;
}
if ( nForceMipCount == -1 )
{
m_nMipCount = ComputeMipCount();
}
else
{
m_nMipCount = nForceMipCount;
}
m_nFrameCount = iFrameCount;
m_nFaceCount = (iFlags & TEXTUREFLAGS_ENVMAP) ? CUBEMAP_FACE_COUNT : 1;
if ( IsX360() && ( iFlags & TEXTUREFLAGS_ENVMAP ) )
{
// 360 has no reason to support sphere map
m_nFaceCount = CUBEMAP_FACE_COUNT-1;
}
#if defined( _X360 )
m_nMipSkipCount = 0;
#endif
// Need to do this because Shutdown deallocates the low-res image
m_nLowResImageWidth = m_nLowResImageHeight = 0;
// Allocate me some bits!
int iMemorySize = ComputeTotalSize();
if ( !AllocateImageData( iMemorySize ) )
return false;
// As soon as we have image indicate so in the resources
if ( iMemorySize )
FindOrCreateResourceEntryInfo( VTF_LEGACY_RSRC_IMAGE );
else
RemoveResourceEntryInfo( VTF_LEGACY_RSRC_IMAGE );
return true;
}
//-----------------------------------------------------------------------------
// Methods to initialize the low-res image
//-----------------------------------------------------------------------------
void CVTFTexture::InitLowResImage( int nWidth, int nHeight, ImageFormat fmt )
{
m_nLowResImageWidth = nWidth;
m_nLowResImageHeight = nHeight;
m_LowResImageFormat = fmt;
// Allocate low-res bits
int iLowResImageSize = ImageLoader::GetMemRequired( m_nLowResImageWidth,
m_nLowResImageHeight, 1, m_LowResImageFormat, false );
if ( !AllocateLowResImageData( iLowResImageSize ) )
return;
// As soon as we have low-res image indicate so in the resources
if ( iLowResImageSize )
FindOrCreateResourceEntryInfo( VTF_LEGACY_RSRC_LOW_RES_IMAGE );
else
RemoveResourceEntryInfo( VTF_LEGACY_RSRC_LOW_RES_IMAGE );
}
//-----------------------------------------------------------------------------
// Methods to set other texture fields
//-----------------------------------------------------------------------------
void CVTFTexture::SetBumpScale( float flScale )
{
m_flBumpScale = flScale;
}
void CVTFTexture::SetReflectivity( const Vector &vecReflectivity )
{
VectorCopy( vecReflectivity, m_vecReflectivity );
}
// Sets threshhold values for alphatest mipmapping
void CVTFTexture::SetAlphaTestThreshholds( float flBase, float flHighFreq )
{
m_flAlphaThreshhold = flBase;
m_flAlphaHiFreqThreshhold = flHighFreq;
}
//-----------------------------------------------------------------------------
// Release and reset the resources.
//-----------------------------------------------------------------------------
void CVTFTexture::ReleaseResources()
{
m_arrResourcesInfo.RemoveAll();
for ( ResourceMemorySection *pRms = m_arrResourcesData.Base(),
*pRmsEnd = pRms + m_arrResourcesData.Count(); pRms < pRmsEnd; ++pRms )
{
delete [] pRms->m_pData;
}
m_arrResourcesData.RemoveAll();
for ( ResourceMemorySection *pRms = m_arrResourcesData_ForReuse.Base(),
*pRmsEnd = pRms + m_arrResourcesData_ForReuse.Count(); pRms < pRmsEnd; ++pRms )
{
delete [] pRms->m_pData;
}
m_arrResourcesData_ForReuse.RemoveAll();
}
//-----------------------------------------------------------------------------
// Shutdown
//-----------------------------------------------------------------------------
void CVTFTexture::Shutdown()
{
#if defined( _X360 )
// must be first to ensure X360 aliased pointers are unhooked, otherwise memory corruption
ReleaseImageMemory();
#endif
delete[] m_pImageData;
m_pImageData = NULL;
m_nImageAllocSize = 0;
delete[] m_pLowResImageData;
m_pLowResImageData = NULL;
m_nLowResImageAllocSize = 0;
ReleaseResources();
}
//-----------------------------------------------------------------------------
// These are methods to help with optimization of file access
//-----------------------------------------------------------------------------
void CVTFTexture::LowResFileInfo( int *pStartLocation, int *pSizeInBytes ) const
{
// Once the header is read in, they indicate where to start reading
// other data, and how many bytes to read....
if ( ResourceEntryInfo const *pLowResData = FindResourceEntryInfo( VTF_LEGACY_RSRC_LOW_RES_IMAGE ) )
{
*pStartLocation = pLowResData->resData;
*pSizeInBytes = ImageLoader::GetMemRequired( m_nLowResImageWidth,
m_nLowResImageHeight, 1, m_LowResImageFormat, false );
}
else
{
*pStartLocation = 0;
*pSizeInBytes = 0;
}
}
void CVTFTexture::ImageFileInfo( int nFrame, int nFace, int nMipLevel, int *pStartLocation, int *pSizeInBytes) const
{
int i;
int iMipWidth;
int iMipHeight;
int iMipDepth;
ResourceEntryInfo const *pImageDataInfo = FindResourceEntryInfo( VTF_LEGACY_RSRC_IMAGE );
if ( pImageDataInfo == NULL )
{
// This should never happen for real, but can happen if someone intentionally fed us a bad VTF.
Assert( pImageDataInfo );
( *pStartLocation ) = 0;
( *pSizeInBytes ) = 0;
return;
}
// The image data start offset
int nOffset = pImageDataInfo->resData;
// get to the right miplevel
for( i = m_nMipCount - 1; i > nMipLevel; --i )
{
ComputeMipLevelDimensions( i, &iMipWidth, &iMipHeight, &iMipDepth );
int iMipLevelSize = ImageLoader::GetMemRequired( iMipWidth, iMipHeight, iMipDepth, m_Format, false );
nOffset += iMipLevelSize * m_nFrameCount * m_nFaceCount;
}
// get to the right frame
ComputeMipLevelDimensions( nMipLevel, &iMipWidth, &iMipHeight, &iMipDepth );
int nFaceSize = ImageLoader::GetMemRequired( iMipWidth, iMipHeight, iMipDepth, m_Format, false );
// For backwards compatibility, we don't read in the spheremap fallback on
// older format .VTF files...
int nFacesToRead = m_nFaceCount;
if ( IsCubeMap() )
{
if ((m_nVersion[0] == 7) && (m_nVersion[1] < 1))
{
nFacesToRead = 6;
if (nFace == CUBEMAP_FACE_SPHEREMAP)
{
--nFace;
}
}
}
int nFrameSize = nFacesToRead * nFaceSize;
nOffset += nFrameSize * nFrame;
// get to the right face
nOffset += nFace * nFaceSize;
*pStartLocation = nOffset;
*pSizeInBytes = nFaceSize;
}
int CVTFTexture::FileSize( int nMipSkipCount ) const
{
ResourceEntryInfo const *pImageDataInfo = FindResourceEntryInfo( VTF_LEGACY_RSRC_IMAGE );
// Can be null when someone gives us an intentionally malformed VTF.
if ( pImageDataInfo == NULL )
{
// Still do the assert so we can catch this in debug--we don't expect this for well formed files.
Assert( pImageDataInfo != NULL );
return 0;
}
int nOffset = pImageDataInfo->resData;
int nFaceSize = ComputeFaceSize( nMipSkipCount );
int nImageSize = nFaceSize * m_nFaceCount * m_nFrameCount;
return nOffset + nImageSize;
}
//-----------------------------------------------------------------------------
// Unserialization of low-res data
//-----------------------------------------------------------------------------
bool CVTFTexture::LoadLowResData( CUtlBuffer &buf )
{
// Allocate low-res bits
InitLowResImage( m_nLowResImageWidth, m_nLowResImageHeight, m_LowResImageFormat );
int nLowResImageSize = ImageLoader::GetMemRequired( m_nLowResImageWidth,
m_nLowResImageHeight, 1, m_LowResImageFormat, false );
buf.Get( m_pLowResImageData, nLowResImageSize );
bool bValid = buf.IsValid();
return bValid;
}
//-----------------------------------------------------------------------------
// Unserialization of image data
//-----------------------------------------------------------------------------
bool CVTFTexture::LoadImageData( CUtlBuffer &buf, const VTFFileHeader_t &header, int nSkipMipLevels )
{
// Fix up the mip count + size based on how many mip levels we skip...
if (nSkipMipLevels > 0)
{
Assert( m_nMipCount > nSkipMipLevels );
if (header.numMipLevels < nSkipMipLevels)
{
// NOTE: This can only happen with older format .vtf files
Warning("Warning! Encountered old format VTF file; please rebuild it!\n");
return false;
}
ComputeMipLevelDimensions( nSkipMipLevels, &m_nWidth, &m_nHeight, &m_nDepth );
m_nMipCount -= nSkipMipLevels;
}
// read the texture image (including mipmaps if they are there and needed.)
int iImageSize = ComputeFaceSize();
iImageSize *= m_nFaceCount * m_nFrameCount;
// For backwards compatibility, we don't read in the spheremap fallback on
// older format .VTF files...
int nFacesToRead = m_nFaceCount;
if ( IsCubeMap() )
{
if ((header.version[0] == 7) && (header.version[1] < 1))
nFacesToRead = 6;
}
// Even if we are preloading partial data, always do the full allocation here. We'll use LOD clamping to ensure we only
// reference data that is available.
if ( !AllocateImageData( iImageSize ) )
return false;
// We may only have part of the data available--if so we will stream in the rest later.
// If we have the data available but we're ignoring it (for example during development), then we
// need to skip over the data we're ignoring below, otherwise we'll be sad pandas.
bool bMipDataPresent = true;
int nFirstAvailableMip = 0;
int nLastAvailableMip = m_nMipCount - 1;
TextureStreamSettings_t const *pStreamSettings = ( TextureStreamSettings_t const * ) GetResourceData( VTF_RSRC_TEXTURE_STREAM_SETTINGS, NULL );
if ( pStreamSettings )
{
nFirstAvailableMip = Max( 0, pStreamSettings->m_firstAvailableMip - nSkipMipLevels );
nLastAvailableMip = Max( 0, pStreamSettings->m_lastAvailableMip - nSkipMipLevels );
bMipDataPresent = false;
}
// If we have coarse mips but not the fine mips (yet)
if ( ( header.flags & TEXTUREFLAGS_STREAMABLE ) == TEXTUREFLAGS_STREAMABLE_COARSE )
{
nFirstAvailableMip = Max( 0, Max( nFirstAvailableMip, STREAMING_START_MIPMAP ) - nSkipMipLevels );
}
if ( header.flags & TEXTUREFLAGS_STREAMABLE_FINE )
{
// Don't need to subtract nSkipMipLevels: m_nMipCount has subtracted that above--assuming this assert doesn't fire.
Assert( m_nMipCount == header.numMipLevels - nSkipMipLevels );
nLastAvailableMip = Min( nLastAvailableMip, STREAMING_START_MIPMAP - 1 );
}
// Valid settings?
Assert( nFirstAvailableMip >= 0 && nFirstAvailableMip <= nLastAvailableMip && nLastAvailableMip < m_nMipCount );
// Store the clamp settings
m_nFinestMipmapLevel = nFirstAvailableMip;
m_nCoarsestMipmapLevel = nLastAvailableMip;
// NOTE: The mip levels are stored ascending from smallest (1x1) to largest (NxN)
// in order to allow for truncated reads of the minimal required data
for (int iMip = m_nMipCount; --iMip >= 0; )
{
// NOTE: This is for older versions...
if (header.numMipLevels - nSkipMipLevels <= iMip)
continue;
int iMipSize = ComputeMipSize( iMip );
// Skip over any levels we don't have data for--we'll get them later.
if ( iMip > nLastAvailableMip || iMip < nFirstAvailableMip )
{
// If the data is there but we're ignoring it, need to update the get pointer.
if ( bMipDataPresent )
{
for ( int iFrame = 0; iFrame < m_nFrameCount; ++iFrame )
for ( int iFace = 0; iFace < nFacesToRead; ++iFace )
buf.SeekGet( CUtlBuffer::SEEK_CURRENT, iMipSize );
}
continue;
}
for (int iFrame = 0; iFrame < m_nFrameCount; ++iFrame)
{
for (int iFace = 0; iFace < nFacesToRead; ++iFace)
{
// printf("\n tex %p mip %i frame %i face %i size %i buf offset %i", this, iMip, iFrame, iFace, iMipSize, buf.TellGet() );
unsigned char *pMipBits = ImageData( iFrame, iFace, iMip );
buf.Get( pMipBits, iMipSize );
}
}
}
return buf.IsValid();
}
void *CVTFTexture::SetResourceData( uint32 eType, void const *pData, size_t nNumBytes )
{
Assert( ( eType & RSRCF_MASK ) == 0 );
eType &= ~RSRCF_MASK;
// Very inefficient to set less than 4 bytes of data
Assert( !nNumBytes || ( nNumBytes >= sizeof( uint32 ) ) );
if ( nNumBytes )
{
ResourceEntryInfo *pInfo = FindOrCreateResourceEntryInfo( eType );
int idx = pInfo - m_arrResourcesInfo.Base();
ResourceMemorySection &rms = m_arrResourcesData[ idx ];
if ( nNumBytes == sizeof( pInfo->resData ) )
{
// store 4 bytes directly
pInfo->eType |= RSRCF_HAS_NO_DATA_CHUNK;
if ( pData )
pInfo->resData = reinterpret_cast< const int * >( pData )[0];
return &pInfo->resData;
}
else
{
if ( !rms.AllocateData( nNumBytes ) )
{
RemoveResourceEntryInfo( eType );
return NULL;
}
if ( pData )
memcpy( rms.m_pData, pData, nNumBytes );
return rms.m_pData;
}
}
else
{
RemoveResourceEntryInfo( eType );
return NULL;
}
}
void *CVTFTexture::GetResourceData( uint32 eType, size_t *pDataSize ) const
{
Assert( ( eType & RSRCF_MASK ) == 0 );
eType &= ~RSRCF_MASK;
ResourceEntryInfo const *pInfo = FindResourceEntryInfo( eType );
if ( pInfo )
{
if ( ( pInfo->eType & RSRCF_HAS_NO_DATA_CHUNK ) == 0 )
{
int idx = pInfo - m_arrResourcesInfo.Base();
ResourceMemorySection const &rms = m_arrResourcesData[ idx ];
if ( pDataSize )
{
*pDataSize = rms.m_nDataLength;
}
return rms.m_pData;
}
else
{
if ( pDataSize )
{
*pDataSize = sizeof( pInfo->resData );
}
return (void *)&pInfo->resData;
}
}
else
{
if ( pDataSize )
*pDataSize = 0;
}
return NULL;
}
bool CVTFTexture::HasResourceEntry( uint32 eType ) const
{
return ( FindResourceEntryInfo( eType ) != NULL );
}
unsigned int CVTFTexture::GetResourceTypes( unsigned int *arrTypesBuffer, int numTypesBufferElems ) const
{
for ( ResourceEntryInfo const *pInfo = m_arrResourcesInfo.Base(),
*pInfoEnd = pInfo + m_arrResourcesInfo.Count();
numTypesBufferElems-- > 0 && pInfo < pInfoEnd; )
{
*( arrTypesBuffer++ ) = ( ( pInfo++ )->eType & ~RSRCF_MASK );
}
return m_arrResourcesInfo.Count();
}
//-----------------------------------------------------------------------------
// Serialization/Unserialization of resource data
//-----------------------------------------------------------------------------
bool CVTFTexture::ResourceMemorySection::LoadData( CUtlBuffer &buf, CByteswap &byteSwap )
{
// Read the size
int iDataSize = 0;
buf.Get( &iDataSize, sizeof( iDataSize ) );
byteSwap.SwapBufferToTargetEndian( &iDataSize );
// Read the actual data
if ( !AllocateData( iDataSize ) )
return false;
buf.Get( m_pData, iDataSize );
// Test valid
bool bValid = buf.IsValid();
return bValid;
}
bool CVTFTexture::ResourceMemorySection::WriteData( CUtlBuffer &buf ) const
{
Assert( m_nDataLength && m_pData );
int iBufSize = m_nDataLength;
buf.Put( &iBufSize, sizeof( iBufSize ) );
buf.Put( m_pData, m_nDataLength );
return buf.IsValid();
}
//-----------------------------------------------------------------------------
// Checks if the file data needs to be swapped
//-----------------------------------------------------------------------------
bool CVTFTexture::SetupByteSwap( CUtlBuffer &buf )
{
VTFFileBaseHeader_t *header = (VTFFileBaseHeader_t*)buf.PeekGet();
if ( header->version[0] == SwapLong( VTF_MAJOR_VERSION ) )
{
m_Swap.ActivateByteSwapping( true );
return true;
}
return false;
}
//-----------------------------------------------------------------------------
// Unserialization
//-----------------------------------------------------------------------------
static bool ReadHeaderFromBufferPastBaseHeader( CUtlBuffer &buf, VTFFileHeader_t &header )
{
unsigned char *pBuf = (unsigned char*)(&header) + sizeof(VTFFileBaseHeader_t);
if ( header.version[1] == VTF_MINOR_VERSION )
{
buf.Get( pBuf, sizeof(VTFFileHeader_t) - sizeof(VTFFileBaseHeader_t) );
}
else if ( header.version[1] == 3 )
{
buf.Get( pBuf, sizeof(VTFFileHeaderV7_3_t) - sizeof(VTFFileBaseHeader_t) );
}
else if ( header.version[1] == 2 )
{
buf.Get( pBuf, sizeof(VTFFileHeaderV7_2_t) - sizeof(VTFFileBaseHeader_t) );
#if defined( _X360 ) || defined (POSIX)
// read 15 dummy bytes to be properly positioned with 7.2 PC data
byte dummy[15];
buf.Get( dummy, 15 );
#endif
}
else if ( header.version[1] == 1 || header.version[1] == 0 )
{
// previous version 7.0 or 7.1
buf.Get( pBuf, sizeof(VTFFileHeaderV7_1_t) - sizeof(VTFFileBaseHeader_t) );
#if defined( _X360 ) || defined (POSIX)
// read a dummy byte to be properly positioned with 7.0/1 PC data
byte dummy;
buf.Get( &dummy, 1 );
#endif
}
else
{
Warning( "*** Encountered VTF file with an invalid minor version!\n" );
return false;
}
return buf.IsValid();
}
bool CVTFTexture::ReadHeader( CUtlBuffer &buf, VTFFileHeader_t &header )
{
if ( IsX360() && SetupByteSwap( buf ) )
{
VTFFileBaseHeader_t baseHeader;
m_Swap.SwapFieldsToTargetEndian( &baseHeader, (VTFFileBaseHeader_t*)buf.PeekGet() );
// Swap the header inside the UtlBuffer
if ( baseHeader.version[0] == VTF_MAJOR_VERSION )
{
if ( baseHeader.version[1] == 0 || baseHeader.version[1] == 1 )
{
// version 7.0 or 7.1
m_Swap.SwapFieldsToTargetEndian( (VTFFileHeaderV7_1_t*)buf.PeekGet() );
}
else if ( baseHeader.version[1] == 2 )
{
// version 7.2
m_Swap.SwapFieldsToTargetEndian( (VTFFileHeaderV7_2_t*)buf.PeekGet() );
}
else if ( baseHeader.version[1] == 3 )
{
m_Swap.SwapFieldsToTargetEndian( (VTFFileHeaderV7_3_t*)buf.PeekGet() );
}
else if ( baseHeader.version[1] == VTF_MINOR_VERSION )
{
m_Swap.SwapFieldsToTargetEndian( (VTFFileHeader_t*)buf.PeekGet() );
}
}
}
memset( &header, 0, sizeof(VTFFileHeader_t) );
buf.Get( &header, sizeof(VTFFileBaseHeader_t) );
if ( !buf.IsValid() )
{
Warning( "*** Error unserializing VTF file... is the file empty?\n" );
return false;
}
// Validity check
if ( Q_strncmp( header.fileTypeString, "VTF", 4 ) )
{
Warning( "*** Tried to load a non-VTF file as a VTF file!\n" );
return false;
}
if ( header.version[0] != VTF_MAJOR_VERSION )
{
Warning( "*** Encountered VTF file with an invalid version!\n" );
return false;
}
if ( !ReadHeaderFromBufferPastBaseHeader( buf, header ) )
{
Warning( "*** Encountered VTF file with an invalid full header!\n" );
return false;
}
// version fixups
switch ( header.version[1] )
{
case 0:
case 1:
header.depth = 1;
// fall-through
case 2:
header.numResources = 0;
// fall-through
case 3:
header.flags &= VERSIONED_VTF_FLAGS_MASK_7_3;
// fall-through
case VTF_MINOR_VERSION:
break;
}
return true;
}
//-----------------------------------------------------------------------------
// Unserialization
//-----------------------------------------------------------------------------
bool CVTFTexture::Unserialize( CUtlBuffer &buf, bool bHeaderOnly, int nSkipMipLevels )
{
return UnserializeEx( buf, bHeaderOnly, 0, nSkipMipLevels );
}
bool CVTFTexture::UnserializeEx( CUtlBuffer &buf, bool bHeaderOnly, int nForceFlags, int nSkipMipLevels )
{
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s (header only: %d, nForceFlags: %d, skipMips: %d)", __FUNCTION__, bHeaderOnly ? 1 : 0, nForceFlags, nSkipMipLevels );
// When unserializing, we can skip a certain number of mip levels,
// and we also can just load everything but the image data
VTFFileHeader_t header;
if ( !ReadHeader( buf, header ) )
return false;
// Pretend these flags are also set.
header.flags |= nForceFlags;
if ( (header.flags & TEXTUREFLAGS_ENVMAP) && (header.width != header.height) )
{
Warning( "*** Encountered VTF non-square cubemap!\n" );
return false;
}
if ( (header.flags & TEXTUREFLAGS_ENVMAP) && (header.depth != 1) )
{
Warning( "*** Encountered VTF volume texture cubemap!\n" );
return false;
}
if ( header.width <= 0 || header.height <= 0 || header.depth <= 0 )
{
Warning( "*** Encountered VTF invalid texture size!\n" );
return false;
}
if ( ( header.imageFormat < IMAGE_FORMAT_UNKNOWN ) || ( header.imageFormat >= NUM_IMAGE_FORMATS ) )
{
Warning( "*** Encountered VTF invalid image format!\n" );
return false;
}
// If the header says we should be doing a texture allocation of more than 32M, just tell the caller we failed.
const int cMaxImageSizeLog2 = Q_log2( 32 * 1024 * 1024 );
if ( ( Q_log2( header.width ) + Q_log2( header.height ) + Q_log2( header.depth ) + Q_log2( header.numFrames ) > cMaxImageSizeLog2 ) || ( header.numResources > MAX_RSRC_DICTIONARY_ENTRIES ) )
{
STAGING_ONLY_EXEC( DevWarning( "Asked for a large texture to be created (%d h x %d w x %d d x %d f). Nope.\n", header.width, header.height, header.depth, header.numFrames ) );
return false;
}
m_nWidth = header.width;
m_nHeight = header.height;
m_nDepth = header.depth;
m_Format = header.imageFormat;
m_nFlags = header.flags;
m_nFrameCount = header.numFrames;
m_nFaceCount = (m_nFlags & TEXTUREFLAGS_ENVMAP) ? CUBEMAP_FACE_COUNT : 1;
// NOTE: We're going to store space for all mip levels, even if we don't
// have data on disk for them. This is for backward compatibility
m_nMipCount = ComputeMipCount();
m_nFinestMipmapLevel = 0;
m_nCoarsestMipmapLevel = m_nMipCount - 1;
m_vecReflectivity = header.reflectivity;
m_flBumpScale = header.bumpScale;
// FIXME: Why is this needed?
m_iStartFrame = header.startFrame;
// This is to make sure old-format .vtf files are read properly
m_nVersion[0] = header.version[0];
m_nVersion[1] = header.version[1];
if ( header.lowResImageWidth == 0 || header.lowResImageHeight == 0 )
{
m_nLowResImageWidth = 0;
m_nLowResImageHeight = 0;
}
else
{
m_nLowResImageWidth = header.lowResImageWidth;
m_nLowResImageHeight = header.lowResImageHeight;
}
m_LowResImageFormat = header.lowResImageFormat;
// invalid image format
if ( ( m_LowResImageFormat < IMAGE_FORMAT_UNKNOWN ) || ( m_LowResImageFormat >= NUM_IMAGE_FORMATS ) )
return false;
// Keep the allocated memory chunks of data
if ( int( header.numResources ) < m_arrResourcesData.Count() )
{
m_arrResourcesData_ForReuse.EnsureCapacity( m_arrResourcesData_ForReuse.Count() + m_arrResourcesData.Count() - header.numResources );
for ( ResourceMemorySection const *pRms = &m_arrResourcesData[ header.numResources ],
*pRmsEnd = m_arrResourcesData.Base() + m_arrResourcesData.Count(); pRms < pRmsEnd; ++ pRms )
{
if ( pRms->m_pData )
{
int idxReuse = m_arrResourcesData_ForReuse.AddToTail( *pRms );
m_arrResourcesData_ForReuse[ idxReuse ].m_nDataLength = 0; // Data for reuse shouldn't have length set
}
}
}
m_arrResourcesData.SetCount( header.numResources );
// Read the dictionary of resources info
if ( header.numResources > 0 )
{
m_arrResourcesInfo.RemoveAll();
m_arrResourcesInfo.SetCount( header.numResources );
buf.Get( m_arrResourcesInfo.Base(), m_arrResourcesInfo.Count() * sizeof( ResourceEntryInfo ) );
if ( !buf.IsValid() )
return false;
if ( IsX360() )
{
// Byte-swap the dictionary data offsets
for ( int k = 0; k < m_arrResourcesInfo.Count(); ++ k )
{
ResourceEntryInfo &rei = m_arrResourcesInfo[k];
if ( ( rei.eType & RSRCF_HAS_NO_DATA_CHUNK ) == 0 )
{
m_Swap.SwapBufferToTargetEndian( &rei.resData );
}
}
}
}
else
{
// Older version (7.0 - 7.2):
// - low-res image data first (optional)
// - then image data
m_arrResourcesInfo.RemoveAll();
// Low-res image data
int nLowResImageSize = ImageLoader::GetMemRequired( m_nLowResImageWidth,
m_nLowResImageHeight, 1, m_LowResImageFormat, false );
if ( nLowResImageSize )
{
ResourceEntryInfo &rei = *FindOrCreateResourceEntryInfo( VTF_LEGACY_RSRC_LOW_RES_IMAGE );
rei.resData = buf.TellGet();
}
// Image data
ResourceEntryInfo &rei = *FindOrCreateResourceEntryInfo( VTF_LEGACY_RSRC_IMAGE );
rei.resData = buf.TellGet() + nLowResImageSize;
}
// Caller wants the header component only, avoids reading large image data sets
if ( bHeaderOnly )
return true;
// Load the low res image
if ( ResourceEntryInfo const *pLowResDataInfo = FindResourceEntryInfo( VTF_LEGACY_RSRC_LOW_RES_IMAGE ) )
{
buf.SeekGet( CUtlBuffer::SEEK_HEAD, pLowResDataInfo->resData );
if ( !LoadLowResData( buf ) )
return false;
}
// Load any new resources
if ( !LoadNewResources( buf ) )
{
return false;
}
// Load the image data
if ( ResourceEntryInfo const *pImageDataInfo = FindResourceEntryInfo( VTF_LEGACY_RSRC_IMAGE ) )
{
buf.SeekGet( CUtlBuffer::SEEK_HEAD, pImageDataInfo->resData );
if ( !LoadImageData( buf, header, nSkipMipLevels ) )
return false;
}
else
{
// No image data
return false;
}
return true;
}
void CVTFTexture::GetMipmapRange( int* pOutFinest, int* pOutCoarsest )
{
if ( pOutFinest )
*pOutFinest = m_nFinestMipmapLevel;
if ( pOutCoarsest )
*pOutCoarsest = m_nCoarsestMipmapLevel;
}
bool CVTFTexture::LoadNewResources( CUtlBuffer &buf )
{
// Load the new resources
for ( int idxRsrc = 0; idxRsrc < m_arrResourcesInfo.Count(); ++idxRsrc )
{
ResourceEntryInfo &rei = m_arrResourcesInfo[ idxRsrc ];
ResourceMemorySection &rms = m_arrResourcesData[ idxRsrc ];
if ( ( rei.eType & RSRCF_HAS_NO_DATA_CHUNK ) == 0 )
{
switch( rei.eType )
{
case VTF_LEGACY_RSRC_LOW_RES_IMAGE:
case VTF_LEGACY_RSRC_IMAGE:
// these legacy resources are loaded differently
continue;
default:
buf.SeekGet( CUtlBuffer::SEEK_HEAD, rei.resData );
if ( !rms.LoadData( buf, m_Swap ) )
return false;
}
}
}
return true;
}
ResourceEntryInfo const *CVTFTexture::FindResourceEntryInfo( uint32 eType ) const
{
Assert( ( eType & RSRCF_MASK ) == 0 );
ResourceEntryInfo const *pRange[2];
pRange[0] = m_arrResourcesInfo.Base();
pRange[1] = pRange[0] + m_arrResourcesInfo.Count();
if ( IsPC() )
{
// Quick-search in a sorted array
ResourceEntryInfo const *pMid;
find_routine:
if ( pRange[0] != pRange[1] )
{
pMid = pRange[0] + ( pRange[1] - pRange[0] ) / 2;
if ( int diff = int( pMid->eType & ~RSRCF_MASK ) - int( eType ) )
{
int off = !( diff > 0 );
pRange[ !off ] = pMid + off;
goto find_routine;
}
else
return pMid;
}
else
return NULL;
}
else
{
// 360 eschews a sorted format due to endian issues
// use a linear search for compatibility with reading pc formats
for ( ; pRange[0] < pRange[1]; ++pRange[0] )
{
if ( ( pRange[0]->eType & ~RSRCF_MASK ) == eType )
return pRange[0];
}
}
return NULL;
}
ResourceEntryInfo * CVTFTexture::FindResourceEntryInfo( uint32 eType )
{
return const_cast< ResourceEntryInfo * >(
( ( CVTFTexture const * ) this )->FindResourceEntryInfo( eType ) );
}
ResourceEntryInfo * CVTFTexture::FindOrCreateResourceEntryInfo( uint32 eType )
{
Assert( ( eType & RSRCF_MASK ) == 0 );
int k = 0;
for ( ; k < m_arrResourcesInfo.Count(); ++ k )
{
uint32 rsrcType = ( m_arrResourcesInfo[ k ].eType & ~RSRCF_MASK );
if ( rsrcType == eType )
{
// found
return &m_arrResourcesInfo[ k ];
}
// sort for PC only, 360 uses linear sort for compatibility with PC endian
if ( IsPC() )
{
if ( rsrcType > eType )
break;
}
}
ResourceEntryInfo rei;
memset( &rei, 0, sizeof( rei ) );
rei.eType = eType;
// Inserting before "k"
if ( m_arrResourcesData_ForReuse.Count() )
{
m_arrResourcesData.InsertBefore( k, m_arrResourcesData_ForReuse[ m_arrResourcesData_ForReuse.Count() - 1 ] );
m_arrResourcesData_ForReuse.FastRemove( m_arrResourcesData_ForReuse.Count() - 1 );
}
else
{
m_arrResourcesData.InsertBefore( k );
}
m_arrResourcesInfo.InsertBefore( k, rei );
return &m_arrResourcesInfo[k];
}
bool CVTFTexture::RemoveResourceEntryInfo( uint32 eType )
{
Assert( ( eType & RSRCF_MASK ) == 0 );
for ( int k = 0; k < m_arrResourcesInfo.Count(); ++ k )
{
if ( ( m_arrResourcesInfo[ k ].eType & ~RSRCF_MASK ) == eType )
{
m_arrResourcesInfo.Remove( k );
if ( m_arrResourcesData[k].m_pData )
{
int idxReuse = m_arrResourcesData_ForReuse.AddToTail( m_arrResourcesData[k] );
m_arrResourcesData_ForReuse[ idxReuse ].m_nDataLength = 0; // Data for reuse shouldn't have length set
}
m_arrResourcesData.Remove( k );
return true;
}
}
return false;
}
//-----------------------------------------------------------------------------
// Serialization of image data
//-----------------------------------------------------------------------------
bool CVTFTexture::WriteImageData( CUtlBuffer &buf )
{
// NOTE: We load the bits this way because we store the bits in memory
// differently that the way they are stored on disk; we store on disk
// differently so we can only load up
// NOTE: The smallest mip levels are stored first!!
for (int iMip = m_nMipCount; --iMip >= 0; )
{
int iMipSize = ComputeMipSize( iMip );
for (int iFrame = 0; iFrame < m_nFrameCount; ++iFrame)
{
for (int iFace = 0; iFace < m_nFaceCount; ++iFace)
{
unsigned char *pMipBits = ImageData( iFrame, iFace, iMip );
buf.Put( pMipBits, iMipSize );
}
}
}
return buf.IsValid();
}
// Inserts padding to have a multiple of "iAlignment" bytes in the buffer
// Returns number of pad bytes written
static int PadBuffer( CUtlBuffer &buf, int iAlignment )
{
unsigned int uiCurrentBytes = buf.TellPut();
int iPadBytes = AlignValue( uiCurrentBytes, iAlignment ) - uiCurrentBytes;
// Fill data
for ( int i=0; i<iPadBytes; i++ )
{
buf.PutChar( '\0' );
}
buf.SeekPut( CUtlBuffer::SEEK_HEAD, uiCurrentBytes + iPadBytes );
return iPadBytes;
}
//-----------------------------------------------------------------------------
// Serialization
//-----------------------------------------------------------------------------
bool CVTFTexture::Serialize( CUtlBuffer &buf )
{
if ( IsX360() )
{
// Unsupported path, 360 has no reason and cannot serialize
Assert( 0 );
return false;
}
if ( !m_pImageData )
{
Warning("*** Unable to serialize... have no image data!\n");
return false;
}
VTFFileHeader_t header;
memset( &header, 0, sizeof( header ) );
Q_strncpy( header.fileTypeString, "VTF", 4 );
header.version[0] = VTF_MAJOR_VERSION;
header.version[1] = VTF_MINOR_VERSION;
header.headerSize = sizeof(VTFFileHeader_t) + m_arrResourcesInfo.Count() * sizeof( ResourceEntryInfo );
header.width = m_nWidth;
header.height = m_nHeight;
header.depth = m_nDepth;
header.flags = m_nFlags;
header.numFrames = m_nFrameCount;
header.numMipLevels = m_nMipCount;
header.imageFormat = m_Format;
VectorCopy( m_vecReflectivity, header.reflectivity );
header.bumpScale = m_flBumpScale;
// FIXME: Why is this needed?
header.startFrame = m_iStartFrame;
header.lowResImageWidth = m_nLowResImageWidth;
header.lowResImageHeight = m_nLowResImageHeight;
header.lowResImageFormat = m_LowResImageFormat;
header.numResources = m_arrResourcesInfo.Count();
buf.Put( &header, sizeof(VTFFileHeader_t) );
if ( !buf.IsValid() )
return false;
// Write the dictionary of resource entry infos
int iSeekOffsetResInfoFixup = buf.TellPut();
buf.Put( m_arrResourcesInfo.Base(), m_arrResourcesInfo.Count() * sizeof( ResourceEntryInfo ) );
if ( !buf.IsValid() )
return false;
// Write the low res image first
if ( ResourceEntryInfo *pRei = FindResourceEntryInfo( VTF_LEGACY_RSRC_LOW_RES_IMAGE ) )
{
pRei->resData = buf.TellPut();
Assert( m_pLowResImageData );
int iLowResImageSize = ImageLoader::GetMemRequired( m_nLowResImageWidth,
m_nLowResImageHeight, 1, m_LowResImageFormat, false );
buf.Put( m_pLowResImageData, iLowResImageSize );
if ( !buf.IsValid() )
return false;
}
// Serialize the new resources
for ( int iRsrc = 0; iRsrc < m_arrResourcesInfo.Count(); ++ iRsrc )
{
ResourceEntryInfo &rei = m_arrResourcesInfo[ iRsrc ];
switch ( rei.eType )
{
case VTF_LEGACY_RSRC_LOW_RES_IMAGE:
case VTF_LEGACY_RSRC_IMAGE:
// written differently
continue;
default:
{
if ( rei.eType & RSRCF_HAS_NO_DATA_CHUNK )
continue;
rei.resData = buf.TellPut();
ResourceMemorySection &rms = m_arrResourcesData[ iRsrc ];
if ( !rms.WriteData( buf ) )
return false;
}
}
}
// Write image data last
if ( ResourceEntryInfo *pRei = FindResourceEntryInfo( VTF_LEGACY_RSRC_IMAGE ) )
{
pRei->resData = buf.TellPut();
WriteImageData( buf );
}
else
return false;
// Now fixup the resources dictionary
int iTotalBytesPut = buf.TellPut();
buf.SeekPut( CUtlBuffer::SEEK_HEAD, iSeekOffsetResInfoFixup );
buf.Put( m_arrResourcesInfo.Base(), m_arrResourcesInfo.Count() * sizeof( ResourceEntryInfo ) );
buf.SeekPut( CUtlBuffer::SEEK_HEAD, iTotalBytesPut );
// Return if the buffer is valid
return buf.IsValid();
}
//-----------------------------------------------------------------------------
// Attributes...
//-----------------------------------------------------------------------------
int CVTFTexture::Width() const
{
return m_nWidth;
}
int CVTFTexture::Height() const
{
return m_nHeight;
}
int CVTFTexture::Depth() const
{
return m_nDepth;
}
int CVTFTexture::MipCount() const
{
return m_nMipCount;
}
ImageFormat CVTFTexture::Format() const
{
return m_Format;
}
int CVTFTexture::FaceCount() const
{
return m_nFaceCount;
}
int CVTFTexture::FrameCount() const
{
return m_nFrameCount;
}
int CVTFTexture::Flags() const
{
return m_nFlags;
}
bool CVTFTexture::IsCubeMap() const
{
return (m_nFlags & TEXTUREFLAGS_ENVMAP) != 0;
}
bool CVTFTexture::IsNormalMap() const
{
return (m_nFlags & TEXTUREFLAGS_NORMAL) != 0;
}
bool CVTFTexture::IsVolumeTexture() const
{
return (m_nDepth > 1);
}
float CVTFTexture::BumpScale() const
{
return m_flBumpScale;
}
const Vector &CVTFTexture::Reflectivity() const
{
return m_vecReflectivity;
}
unsigned char *CVTFTexture::ImageData()
{
return m_pImageData;
}
int CVTFTexture::LowResWidth() const
{
return m_nLowResImageWidth;
}
int CVTFTexture::LowResHeight() const
{
return m_nLowResImageHeight;
}
ImageFormat CVTFTexture::LowResFormat() const
{
return m_LowResImageFormat;
}
unsigned char *CVTFTexture::LowResImageData()
{
return m_pLowResImageData;
}
int CVTFTexture::RowSizeInBytes( int nMipLevel ) const
{
int nWidth = (m_nWidth >> nMipLevel);
if (nWidth < 1)
{
nWidth = 1;
}
return ImageLoader::SizeInBytes( m_Format ) * nWidth;
}
//-----------------------------------------------------------------------------
// returns the size of one face of a particular mip level
//-----------------------------------------------------------------------------
int CVTFTexture::FaceSizeInBytes( int nMipLevel ) const
{
int nWidth = (m_nWidth >> nMipLevel);
if (nWidth < 1)
{
nWidth = 1;
}
int nHeight = (m_nHeight >> nMipLevel);
if (nHeight < 1)
{
nHeight = 1;
}
return ImageLoader::SizeInBytes( m_Format ) * nWidth * nHeight;
}
//-----------------------------------------------------------------------------
// Returns a pointer to the data associated with a particular frame, face, and mip level
//-----------------------------------------------------------------------------
unsigned char *CVTFTexture::ImageData( int iFrame, int iFace, int iMipLevel )
{
Assert( m_pImageData );
int iOffset = GetImageOffset( iFrame, iFace, iMipLevel, m_Format );
return &m_pImageData[iOffset];
}
//-----------------------------------------------------------------------------
// Returns a pointer to the data associated with a particular frame, face, mip level, and offset
//-----------------------------------------------------------------------------
unsigned char *CVTFTexture::ImageData( int iFrame, int iFace, int iMipLevel, int x, int y, int z )
{
#ifdef _DEBUG
int nWidth, nHeight, nDepth;
ComputeMipLevelDimensions( iMipLevel, &nWidth, &nHeight, &nDepth );
Assert( (x >= 0) && (x <= nWidth) && (y >= 0) && (y <= nHeight) && (z >= 0) && (z <= nDepth) );
#endif
int nFaceBytes = FaceSizeInBytes( iMipLevel );
int nRowBytes = RowSizeInBytes( iMipLevel );
int nTexelBytes = ImageLoader::SizeInBytes( m_Format );
unsigned char *pMipBits = ImageData( iFrame, iFace, iMipLevel );
pMipBits += z * nFaceBytes + y * nRowBytes + x * nTexelBytes;
return pMipBits;
}
//-----------------------------------------------------------------------------
// Computes the size (in bytes) of a single mipmap of a single face of a single frame
//-----------------------------------------------------------------------------
inline int CVTFTexture::ComputeMipSize( int iMipLevel, ImageFormat fmt ) const
{
Assert( iMipLevel < m_nMipCount );
int w, h, d;
ComputeMipLevelDimensions( iMipLevel, &w, &h, &d );
return ImageLoader::GetMemRequired( w, h, d, fmt, false );
}
int CVTFTexture::ComputeMipSize( int iMipLevel ) const
{
// Version for the public interface; don't want to expose the fmt parameter
return ComputeMipSize( iMipLevel, m_Format );
}
//-----------------------------------------------------------------------------
// Computes the size of a single face of a single frame
// All mip levels starting at the specified mip level are included
//-----------------------------------------------------------------------------
inline int CVTFTexture::ComputeFaceSize( int iStartingMipLevel, ImageFormat fmt ) const
{
int iSize = 0;
int w = m_nWidth;
int h = m_nHeight;
int d = m_nDepth;
for( int i = 0; i < m_nMipCount; ++i )
{
if (i >= iStartingMipLevel)
{
iSize += ImageLoader::GetMemRequired( w, h, d, fmt, false );
}
w >>= 1;
h >>= 1;
d >>= 1;
if ( w < 1 )
{
w = 1;
}
if ( h < 1 )
{
h = 1;
}
if ( d < 1 )
{
d = 1;
}
}
return iSize;
}
int CVTFTexture::ComputeFaceSize( int iStartingMipLevel ) const
{
// Version for the public interface; don't want to expose the fmt parameter
return ComputeFaceSize( iStartingMipLevel, m_Format );
}
//-----------------------------------------------------------------------------
// Computes the total size of all faces, all frames
//-----------------------------------------------------------------------------
inline int CVTFTexture::ComputeTotalSize( ImageFormat fmt ) const
{
// Compute the number of bytes required to store a single face/frame
int iMemRequired = ComputeFaceSize( 0, fmt );
// Now compute the total image size
return m_nFaceCount * m_nFrameCount * iMemRequired;
}
int CVTFTexture::ComputeTotalSize( ) const
{
// Version for the public interface; don't want to expose the fmt parameter
return ComputeTotalSize( m_Format );
}
//-----------------------------------------------------------------------------
// Computes the location of a particular frame, face, and mip level
//-----------------------------------------------------------------------------
int CVTFTexture::GetImageOffset( int iFrame, int iFace, int iMipLevel, ImageFormat fmt ) const
{
Assert( iFrame < m_nFrameCount );
Assert( iFace < m_nFaceCount );
Assert( iMipLevel < m_nMipCount );
int i;
int iOffset = 0;
if ( IsX360() && ( m_nVersion[0] == VTF_X360_MAJOR_VERSION ) )
{
// 360 data is stored same as disk, 1x1 up to NxN
// get to the right miplevel
int iMipWidth, iMipHeight, iMipDepth;
for ( i = m_nMipCount - 1; i > iMipLevel; --i )
{
ComputeMipLevelDimensions( i, &iMipWidth, &iMipHeight, &iMipDepth );
int iMipLevelSize = ImageLoader::GetMemRequired( iMipWidth, iMipHeight, iMipDepth, fmt, false );
iOffset += m_nFrameCount * m_nFaceCount * iMipLevelSize;
}
// get to the right frame
ComputeMipLevelDimensions( iMipLevel, &iMipWidth, &iMipHeight, &iMipDepth );
int nFaceSize = ImageLoader::GetMemRequired( iMipWidth, iMipHeight, iMipDepth, fmt, false );
iOffset += iFrame * m_nFaceCount * nFaceSize;
// get to the right face
iOffset += iFace * nFaceSize;
return iOffset;
}
// get to the right frame
int iFaceSize = ComputeFaceSize( 0, fmt );
iOffset = iFrame * m_nFaceCount * iFaceSize;
// Get to the right face
iOffset += iFace * iFaceSize;
// Get to the right mip level
for (i = 0; i < iMipLevel; ++i)
{
iOffset += ComputeMipSize( i, fmt );
}
return iOffset;
}
//-----------------------------------------------------------------------------
// Computes the dimensions of a particular mip level
//-----------------------------------------------------------------------------
void CVTFTexture::ComputeMipLevelDimensions( int iMipLevel, int *pMipWidth, int *pMipHeight, int *pMipDepth ) const
{
Assert( iMipLevel < m_nMipCount );
*pMipWidth = m_nWidth >> iMipLevel;
*pMipHeight = m_nHeight >> iMipLevel;
*pMipDepth = m_nDepth >> iMipLevel;
if ( *pMipWidth < 1 )
{
*pMipWidth = 1;
}
if ( *pMipHeight < 1 )
{
*pMipHeight = 1;
}
if ( *pMipDepth < 1 )
{
*pMipDepth = 1;
}
}
//-----------------------------------------------------------------------------
// Computes the size of a subrect at a particular mip level
//-----------------------------------------------------------------------------
void CVTFTexture::ComputeMipLevelSubRect( Rect_t *pSrcRect, int nMipLevel, Rect_t *pSubRect ) const
{
Assert( pSrcRect->x >= 0 && pSrcRect->y >= 0 &&
(pSrcRect->x + pSrcRect->width <= m_nWidth) &&
(pSrcRect->y + pSrcRect->height <= m_nHeight) );
if (nMipLevel == 0)
{
*pSubRect = *pSrcRect;
return;
}
float flInvShrink = 1.0f / (float)(1 << nMipLevel);
pSubRect->x = pSrcRect->x * flInvShrink;
pSubRect->y = pSrcRect->y * flInvShrink;
pSubRect->width = (int)ceil( (pSrcRect->x + pSrcRect->width) * flInvShrink ) - pSubRect->x;
pSubRect->height = (int)ceil( (pSrcRect->y + pSrcRect->height) * flInvShrink ) - pSubRect->y;
}
//-----------------------------------------------------------------------------
// Converts the texture's image format. Use IMAGE_FORMAT_DEFAULT
// if you want to be able to use various tool functions below
//-----------------------------------------------------------------------------
void CVTFTexture::ConvertImageFormat( ImageFormat fmt, bool bNormalToDUDV )
{
if ( !m_pImageData )
{
return;
}
if ( fmt == IMAGE_FORMAT_DEFAULT )
{
fmt = IMAGE_FORMAT_RGBA8888;
}
if ( bNormalToDUDV && !( fmt == IMAGE_FORMAT_UV88 || fmt == IMAGE_FORMAT_UVWQ8888 || fmt == IMAGE_FORMAT_UVLX8888 ) )
{
Assert( 0 );
return;
}
if ( m_Format == fmt )
{
return;
}
if ( IsX360() && ( m_nVersion[0] == VTF_X360_MAJOR_VERSION ) )
{
// 360 textures should be baked in final format
Assert( 0 );
return;
}
// FIXME: Should this be re-written to not do an allocation?
int iConvertedSize = ComputeTotalSize( fmt );
unsigned char *pConvertedImage = new unsigned char[ iConvertedSize ];
// This can happen for large, bogus textures.
if ( !pConvertedImage )
return;
for (int iMip = 0; iMip < m_nMipCount; ++iMip)
{
int nMipWidth, nMipHeight, nMipDepth;
ComputeMipLevelDimensions( iMip, &nMipWidth, &nMipHeight, &nMipDepth );
int nSrcFaceStride = ImageLoader::GetMemRequired( nMipWidth, nMipHeight, 1, m_Format, false );
int nDstFaceStride = ImageLoader::GetMemRequired( nMipWidth, nMipHeight, 1, fmt, false );
for (int iFrame = 0; iFrame < m_nFrameCount; ++iFrame)
{
for (int iFace = 0; iFace < m_nFaceCount; ++iFace)
{
unsigned char *pSrcData = ImageData( iFrame, iFace, iMip );
unsigned char *pDstData = pConvertedImage +
GetImageOffset( iFrame, iFace, iMip, fmt );
for ( int z = 0; z < nMipDepth; ++z, pSrcData += nSrcFaceStride, pDstData += nDstFaceStride )
{
if( bNormalToDUDV )
{
if( fmt == IMAGE_FORMAT_UV88 )
{
ImageLoader::ConvertNormalMapRGBA8888ToDUDVMapUV88( pSrcData,
nMipWidth, nMipHeight, pDstData );
}
else if( fmt == IMAGE_FORMAT_UVWQ8888 )
{
ImageLoader::ConvertNormalMapRGBA8888ToDUDVMapUVWQ8888( pSrcData,
nMipWidth, nMipHeight, pDstData );
}
else if ( fmt == IMAGE_FORMAT_UVLX8888 )
{
ImageLoader::ConvertNormalMapRGBA8888ToDUDVMapUVLX8888( pSrcData,
nMipWidth, nMipHeight, pDstData );
}
else
{
Assert( 0 );
return;
}
}
else
{
ImageLoader::ConvertImageFormat( pSrcData, m_Format,
pDstData, fmt, nMipWidth, nMipHeight );
}
}
}
}
}
if ( !AllocateImageData(iConvertedSize) )
return;
memcpy( m_pImageData, pConvertedImage, iConvertedSize );
m_Format = fmt;
if ( !ImageLoader::IsCompressed( fmt ) )
{
int nAlphaBits = ImageLoader::ImageFormatInfo( fmt ).m_NumAlphaBits;
if ( nAlphaBits > 1 )
{
m_nFlags |= TEXTUREFLAGS_EIGHTBITALPHA;
m_nFlags &= ~TEXTUREFLAGS_ONEBITALPHA;
}
if ( nAlphaBits <= 1 )
{
m_nFlags &= ~TEXTUREFLAGS_EIGHTBITALPHA;
if ( nAlphaBits == 0 )
{
m_nFlags &= ~TEXTUREFLAGS_ONEBITALPHA;
}
}
}
else
{
// Only DXT5 has alpha bits
if ( ( fmt == IMAGE_FORMAT_DXT1 ) || ( fmt == IMAGE_FORMAT_ATI2N ) || ( fmt == IMAGE_FORMAT_ATI1N ) )
{
m_nFlags &= ~(TEXTUREFLAGS_ONEBITALPHA|TEXTUREFLAGS_EIGHTBITALPHA);
}
}
delete [] pConvertedImage;
}
//-----------------------------------------------------------------------------
// Enums + structures related to conversion from cube to spheremap
//-----------------------------------------------------------------------------
struct SphereCalc_t
{
Vector dir;
float m_flRadius;
float m_flOORadius;
float m_flRadiusSq;
LookDir_t m_LookDir;
Vector m_vecLookDir;
unsigned char m_pColor[4];
unsigned char **m_ppCubeFaces;
int m_iSize;
};
//-----------------------------------------------------------------------------
//
// Methods associated with computing a spheremap from a cubemap
//
//-----------------------------------------------------------------------------
static void CalcInit( SphereCalc_t *pCalc, int iSize, unsigned char **ppCubeFaces, LookDir_t lookDir = LOOK_DOWN_Z )
{
// NOTE: Width + height should be the same
pCalc->m_flRadius = iSize * 0.5f;
pCalc->m_flRadiusSq = pCalc->m_flRadius * pCalc->m_flRadius;
pCalc->m_flOORadius = 1.0f / pCalc->m_flRadius;
pCalc->m_LookDir = lookDir;
pCalc->m_ppCubeFaces = ppCubeFaces;
pCalc->m_iSize = iSize;
switch( lookDir)
{
case LOOK_DOWN_X:
pCalc->m_vecLookDir.Init( 1, 0, 0 );
break;
case LOOK_DOWN_NEGX:
pCalc->m_vecLookDir.Init( -1, 0, 0 );
break;
case LOOK_DOWN_Y:
pCalc->m_vecLookDir.Init( 0, 1, 0 );
break;
case LOOK_DOWN_NEGY:
pCalc->m_vecLookDir.Init( 0, -1, 0 );
break;
case LOOK_DOWN_Z:
pCalc->m_vecLookDir.Init( 0, 0, 1 );
break;
case LOOK_DOWN_NEGZ:
pCalc->m_vecLookDir.Init( 0, 0, -1 );
break;
}
}
static void TransformNormal( SphereCalc_t *pCalc, Vector& normal )
{
Vector vecTemp = normal;
switch( pCalc->m_LookDir)
{
// Look down +x
case LOOK_DOWN_X:
normal[0] = vecTemp[2];
normal[2] = -vecTemp[0];
break;
// Look down -x
case LOOK_DOWN_NEGX:
normal[0] = -vecTemp[2];
normal[2] = vecTemp[0];
break;
// Look down +y
case LOOK_DOWN_Y:
normal[0] = -vecTemp[0];
normal[1] = vecTemp[2];
normal[2] = vecTemp[1];
break;
// Look down -y
case LOOK_DOWN_NEGY:
normal[0] = vecTemp[0];
normal[1] = -vecTemp[2];
normal[2] = vecTemp[1];
break;
// Look down +z
case LOOK_DOWN_Z:
return;
// Look down -z
case LOOK_DOWN_NEGZ:
normal[0] = -vecTemp[0];
normal[2] = -vecTemp[2];
break;
}
}
//-----------------------------------------------------------------------------
// Given a iFace normal, determine which cube iFace to sample
//-----------------------------------------------------------------------------
static int CalcFaceIndex( const Vector& normal )
{
float absx, absy, absz;
absx = normal[0] >= 0 ? normal[0] : -normal[0];
absy = normal[1] >= 0 ? normal[1] : -normal[1];
absz = normal[2] >= 0 ? normal[2] : -normal[2];
if ( absx > absy )
{
if ( absx > absz )
{
// left/right
if ( normal[0] >= 0 )
return CUBEMAP_FACE_RIGHT;
return CUBEMAP_FACE_LEFT;
}
}
else
{
if ( absy > absz )
{
// front / back
if ( normal[1] >= 0 )
return CUBEMAP_FACE_BACK;
return CUBEMAP_FACE_FRONT;
}
}
// top / bottom
if ( normal[2] >= 0 )
return CUBEMAP_FACE_UP;
return CUBEMAP_FACE_DOWN;
}
static void CalcColor( SphereCalc_t *pCalc, int iFace, const Vector &normal, unsigned char *color )
{
float x, y, w;
int size = pCalc->m_iSize;
float hw = 0.5 * size;
if ( (iFace == CUBEMAP_FACE_LEFT) || (iFace == CUBEMAP_FACE_RIGHT) )
{
w = hw / normal[0];
x = -normal[2];
y = -normal[1];
if ( iFace == CUBEMAP_FACE_LEFT )
y = -y;
}
else if ( (iFace == CUBEMAP_FACE_FRONT) || (iFace == CUBEMAP_FACE_BACK) )
{
w = hw / normal[1];
x = normal[0];
y = normal[2];
if ( iFace == CUBEMAP_FACE_FRONT )
x = -x;
}
else
{
w = hw / normal[2];
x = -normal[0];
y = -normal[1];
if ( iFace == CUBEMAP_FACE_UP )
x = -x;
}
x = (x * w) + hw - 0.5;
y = (y * w) + hw - 0.5;
int u = (int)(x+0.5);
int v = (int)(y+0.5);
if ( u < 0 ) u = 0;
else if ( u > (size-1) ) u = (size-1);
if ( v < 0 ) v = 0;
else if ( v > (size-1) ) v = (size-1);
int offset = (v * size + u) * 4;
unsigned char *pPix = pCalc->m_ppCubeFaces[iFace] + offset;
color[0] = pPix[0];
color[1] = pPix[1];
color[2] = pPix[2];
color[3] = pPix[3];
}
//-----------------------------------------------------------------------------
// Computes the spheremap color at a particular (x,y) texcoord
//-----------------------------------------------------------------------------
static void CalcSphereColor( SphereCalc_t *pCalc, float x, float y )
{
Vector normal;
float flRadiusSq = x*x + y*y;
if (flRadiusSq > pCalc->m_flRadiusSq)
{
// Force a glancing reflection
normal.Init( 0, 1, 0 );
}
else
{
// Compute the z distance based on x*x + y*y + z*z = r*r
float z = sqrt( pCalc->m_flRadiusSq - flRadiusSq );
// Here's the untransformed surface normal
normal.Init( x, y, z );
normal *= pCalc->m_flOORadius;
}
// Transform the normal based on the actual view direction
TransformNormal( pCalc, normal );
// Compute the reflection vector (full spheremap solution)
// R = 2 * (N dot L)N - L
Vector vecReflect;
float nDotL = DotProduct( normal, pCalc->m_vecLookDir );
VectorMA( pCalc->m_vecLookDir, -2.0f * nDotL, normal, vecReflect );
vecReflect *= -1.0f;
int iFace = CalcFaceIndex( vecReflect );
CalcColor( pCalc, iFace, vecReflect, pCalc->m_pColor );
}
//-----------------------------------------------------------------------------
// Computes the spheremap color at a particular (x,y) texcoord
//-----------------------------------------------------------------------------
static void CalcHemisphereColor( SphereCalc_t *pCalc, float x, float y )
{
Vector normal;
float flRadiusSq = x*x + y*y;
if (flRadiusSq > pCalc->m_flRadiusSq)
{
normal.Init( x, y, 0.0f );
VectorNormalize( normal );
normal *= pCalc->m_flRadiusSq;
flRadiusSq = pCalc->m_flRadiusSq;
}
// Compute the z distance based on x*x + y*y + z*z = r*r
float z = sqrt( pCalc->m_flRadiusSq - flRadiusSq );
// Here's the untransformed surface normal
normal.Init( x, y, z );
normal *= pCalc->m_flOORadius;
// Transform the normal based on the actual view direction
TransformNormal( pCalc, normal );
// printf( "x: %f y: %f normal: %f %f %f\n", x, y, normal.x, normal.y, normal.z );
/*
// Compute the reflection vector (full spheremap solution)
// R = 2 * (N dot L)N - L
Vector vecReflect;
float nDotL = DotProduct( normal, pCalc->m_vecLookDir );
VectorMA( pCalc->m_vecLookDir, -2.0f * nDotL, normal, vecReflect );
vecReflect *= -1.0f;
*/
int iFace = CalcFaceIndex( normal );
CalcColor( pCalc, iFace, normal, pCalc->m_pColor );
#if 0
pCalc->m_pColor[0] = normal[0] * 127 + 127;
pCalc->m_pColor[1] = normal[1] * 127 + 127;
pCalc->m_pColor[2] = normal[2] * 127 + 127;
#endif
}
//-----------------------------------------------------------------------------
// Makes a single frame of spheremap
//-----------------------------------------------------------------------------
void CVTFTexture::ComputeSpheremapFrame( unsigned char **ppCubeFaces, unsigned char *pSpheremap, LookDir_t lookDir )
{
SphereCalc_t sphere;
CalcInit( &sphere, m_nWidth, ppCubeFaces, lookDir );
int offset = 0;
for ( int y = 0; y < m_nHeight; y++ )
{
for ( int x = 0; x < m_nWidth; x++ )
{
int r = 0, g = 0, b = 0, a = 0;
float u = (float)x - m_nWidth * 0.5f;
float v = m_nHeight * 0.5f - (float)y;
CalcSphereColor( &sphere, u, v );
r += sphere.m_pColor[0];
g += sphere.m_pColor[1];
b += sphere.m_pColor[2];
a += sphere.m_pColor[3];
CalcSphereColor( &sphere, u + 0.25, v );
r += sphere.m_pColor[0];
g += sphere.m_pColor[1];
b += sphere.m_pColor[2];
a += sphere.m_pColor[3];
v += 0.25;
CalcSphereColor( &sphere, u + 0.25, v );
r += sphere.m_pColor[0];
g += sphere.m_pColor[1];
b += sphere.m_pColor[2];
a += sphere.m_pColor[3];
CalcSphereColor( &sphere, u, v );
r += sphere.m_pColor[0];
g += sphere.m_pColor[1];
b += sphere.m_pColor[2];
a += sphere.m_pColor[3];
pSpheremap[ offset + 0 ] = r >> 2;
pSpheremap[ offset + 1 ] = g >> 2;
pSpheremap[ offset + 2 ] = b >> 2;
pSpheremap[ offset + 3 ] = a >> 2;
offset += 4;
}
}
}
void CVTFTexture::ComputeHemispheremapFrame( unsigned char **ppCubeFaces, unsigned char *pSpheremap, LookDir_t lookDir )
{
SphereCalc_t sphere;
CalcInit( &sphere, m_nWidth, ppCubeFaces, lookDir );
int offset = 0;
for ( int y = 0; y < m_nHeight; y++ )
{
for ( int x = 0; x < m_nWidth; x++ )
{
int r = 0, g = 0, b = 0, a = 0;
float u = (float)x - m_nWidth * 0.5f;
float v = m_nHeight * 0.5f - (float)y;
CalcHemisphereColor( &sphere, u, v );
r += sphere.m_pColor[0];
g += sphere.m_pColor[1];
b += sphere.m_pColor[2];
a += sphere.m_pColor[3];
CalcHemisphereColor( &sphere, u + 0.25, v );
r += sphere.m_pColor[0];
g += sphere.m_pColor[1];
b += sphere.m_pColor[2];
a += sphere.m_pColor[3];
v += 0.25;
CalcHemisphereColor( &sphere, u + 0.25, v );
r += sphere.m_pColor[0];
g += sphere.m_pColor[1];
b += sphere.m_pColor[2];
a += sphere.m_pColor[3];
CalcHemisphereColor( &sphere, u, v );
r += sphere.m_pColor[0];
g += sphere.m_pColor[1];
b += sphere.m_pColor[2];
a += sphere.m_pColor[3];
pSpheremap[ offset + 0 ] = r >> 2;
pSpheremap[ offset + 1 ] = g >> 2;
pSpheremap[ offset + 2 ] = b >> 2;
pSpheremap[ offset + 3 ] = a >> 2;
offset += 4;
}
}
}
//-----------------------------------------------------------------------------
// Generate spheremap based on the current images (only works for cubemaps)
// The look dir indicates the direction of the center of the sphere
//-----------------------------------------------------------------------------
void CVTFTexture::GenerateSpheremap( LookDir_t lookDir )
{
if (!IsCubeMap())
return;
// HDRFIXME: Need to re-enable this.
// Assert( m_Format == IMAGE_FORMAT_RGBA8888 );
// We'll be doing our work in IMAGE_FORMAT_RGBA8888 mode 'cause it's easier
unsigned char *pCubeMaps[6];
// Allocate the bits for the spheremap
Assert( m_nDepth == 1 );
int iMemRequired = ComputeFaceSize( 0, IMAGE_FORMAT_RGBA8888 );
unsigned char *pSphereMapBits = new unsigned char [ iMemRequired ];
// Generate a spheremap for each frame of the cubemap
for (int iFrame = 0; iFrame < m_nFrameCount; ++iFrame)
{
// Point to our own textures (highest mip level)
for (int iFace = 0; iFace < 6; ++iFace)
{
pCubeMaps[iFace] = ImageData( iFrame, iFace, 0 );
}
// Compute the spheremap of the top LOD
// HDRFIXME: Make this work?
if( m_Format == IMAGE_FORMAT_RGBA8888 )
{
ComputeSpheremapFrame( pCubeMaps, pSphereMapBits, lookDir );
}
// Compute the mip levels of the spheremap, converting from RGBA8888 to our format
unsigned char *pFinalSphereMapBits = ImageData( iFrame, CUBEMAP_FACE_SPHEREMAP, 0 );
ImageLoader::GenerateMipmapLevels( pSphereMapBits, pFinalSphereMapBits,
m_nWidth, m_nHeight, m_nDepth, m_Format, 2.2, 2.2, m_nMipCount );
}
// Free memory
delete [] pSphereMapBits;
}
void CVTFTexture::GenerateHemisphereMap( unsigned char *pSphereMapBitsRGBA, int targetWidth,
int targetHeight, LookDir_t lookDir, int iFrame )
{
Assert( m_Format == IMAGE_FORMAT_RGBA8888 );
unsigned char *pCubeMaps[6];
// Point to our own textures (highest mip level)
for (int iFace = 0; iFace < 6; ++iFace)
{
pCubeMaps[iFace] = ImageData( iFrame, iFace, 0 );
}
// Compute the spheremap of the top LOD
ComputeHemispheremapFrame( pCubeMaps, pSphereMapBitsRGBA, lookDir );
}
//-----------------------------------------------------------------------------
// Rotate the image depending on what iFace we've got...
// We need to do this because we define the cube textures in a different
// format from DX8.
//-----------------------------------------------------------------------------
static void FixCubeMapFacing( unsigned char* pImage, int cubeFaceID, int size, ImageFormat fmt )
{
int retVal;
switch( cubeFaceID )
{
case CUBEMAP_FACE_RIGHT: // +x
retVal = ImageLoader::RotateImageLeft( pImage, pImage, size, fmt );
Assert( retVal );
retVal = ImageLoader::FlipImageVertically( pImage, pImage, size, size, fmt );
Assert( retVal );
break;
case CUBEMAP_FACE_LEFT: // -x
retVal = ImageLoader::RotateImageLeft( pImage, pImage, size, fmt );
Assert( retVal );
retVal = ImageLoader::FlipImageHorizontally( pImage, pImage, size, size, fmt );
Assert( retVal );
break;
case CUBEMAP_FACE_BACK: // +y
retVal = ImageLoader::RotateImage180( pImage, pImage, size, fmt );
Assert( retVal );
retVal = ImageLoader::FlipImageHorizontally( pImage, pImage, size, size, fmt );
Assert( retVal );
break;
case CUBEMAP_FACE_FRONT: // -y
retVal = ImageLoader::FlipImageHorizontally( pImage, pImage, size, size, fmt );
Assert( retVal );
break;
case CUBEMAP_FACE_UP: // +z
retVal = ImageLoader::RotateImageLeft( pImage, pImage, size, fmt );
Assert( retVal );
retVal = ImageLoader::FlipImageVertically( pImage, pImage, size, size, fmt );
Assert( retVal );
break;
case CUBEMAP_FACE_DOWN: // -z
retVal = ImageLoader::FlipImageHorizontally( pImage, pImage, size, size, fmt );
Assert( retVal );
retVal = ImageLoader::RotateImageLeft( pImage, pImage, size, fmt );
Assert( retVal );
break;
}
}
//-----------------------------------------------------------------------------
// Fixes the cubemap faces orientation from our standard to what the material system needs
//-----------------------------------------------------------------------------
void CVTFTexture::FixCubemapFaceOrientation( )
{
if (!IsCubeMap())
return;
Assert( !ImageLoader::IsCompressed( m_Format ) );
for (int iMipLevel = 0; iMipLevel < m_nMipCount; ++iMipLevel)
{
int iMipSize, iTemp, nDepth;
ComputeMipLevelDimensions( iMipLevel, &iMipSize, &iTemp, &nDepth );
Assert( (iMipSize == iTemp) && (nDepth == 1) );
for (int iFrame = 0; iFrame < m_nFrameCount; ++iFrame)
{
for (int iFace = 0; iFace < 6; ++iFace)
{
FixCubeMapFacing( ImageData( iFrame, iFace, iMipLevel ), iFace, iMipSize, m_Format );
}
}
}
}
void CVTFTexture::NormalizeTopMipLevel()
{
if( !( m_nFlags & TEXTUREFLAGS_NORMAL ) )
return;
int nSrcWidth, nSrcHeight, nSrcDepth;
int srcMipLevel = 0;
ComputeMipLevelDimensions( srcMipLevel, &nSrcWidth, &nSrcHeight, &nSrcDepth );
for (int iFrame = 0; iFrame < m_nFrameCount; ++iFrame)
{
for (int iFace = 0; iFace < m_nFaceCount; ++iFace)
{
unsigned char *pSrcLevel = ImageData( iFrame, iFace, srcMipLevel );
ImageLoader::NormalizeNormalMapRGBA8888( pSrcLevel, nSrcWidth * nSrcHeight * nSrcDepth );
}
}
}
//-----------------------------------------------------------------------------
// Generates mipmaps from the base mip levels
//-----------------------------------------------------------------------------
void CVTFTexture::GenerateMipmaps()
{
// Go ahead and generate mipmaps even if we don't want 'em in the vtf.
// if( ( Flags() & ( TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_NOLOD ) ) == ( TEXTUREFLAGS_NOMIP | TEXTUREFLAGS_NOLOD ) )
// {
// return;
// }
Assert( m_Format == IMAGE_FORMAT_RGBA8888 || m_Format == IMAGE_FORMAT_RGB323232F );
// FIXME: Should we be doing anything special for normalmaps other than a final normalization pass?
ImageLoader::ResampleInfo_t info;
info.m_nSrcWidth = m_nWidth;
info.m_nSrcHeight = m_nHeight;
info.m_nSrcDepth = m_nDepth;
info.m_flSrcGamma = 2.2f;
info.m_flDestGamma = 2.2f;
info.m_nFlags = 0;
bool bNormalMap = ( Flags() & TEXTUREFLAGS_NORMAL ) || ( m_Options.flags0 & VtfProcessingOptions::OPT_NORMAL_DUDV );
bool bAlphaTest = ( ( m_Options.flags0 & VtfProcessingOptions::OPT_MIP_ALPHATEST ) != 0 );
if ( bAlphaTest )
{
info.m_nFlags |= ImageLoader::RESAMPLE_ALPHATEST;
if ( m_flAlphaThreshhold >= 0 )
{
info.m_flAlphaThreshhold = m_flAlphaThreshhold;
}
if ( m_flAlphaHiFreqThreshhold >= 0 )
{
info.m_flAlphaHiFreqThreshhold = m_flAlphaHiFreqThreshhold;
}
}
if ( m_Options.flags0 & VtfProcessingOptions::OPT_FILTER_NICE )
{
info.m_nFlags |= ImageLoader::RESAMPLE_NICE_FILTER;
}
if ( Flags() & TEXTUREFLAGS_CLAMPS )
{
info.m_nFlags |= ImageLoader::RESAMPLE_CLAMPS;
}
if ( Flags() & TEXTUREFLAGS_CLAMPT )
{
info.m_nFlags |= ImageLoader::RESAMPLE_CLAMPT;
}
if ( Flags() & TEXTUREFLAGS_CLAMPU )
{
info.m_nFlags |= ImageLoader::RESAMPLE_CLAMPU;
}
// Compute how many mips are above "visible mip0"
int numMipsClampedLod = 0;
if ( TextureLODControlSettings_t const *pLodSettings = ( TextureLODControlSettings_t const * ) GetResourceData( VTF_RSRC_TEXTURE_LOD_SETTINGS, NULL ) )
{
int iClampX = 1 << min( pLodSettings->m_ResolutionClampX, pLodSettings->m_ResolutionClampX_360 );
int iClampY = 1 << min( pLodSettings->m_ResolutionClampX, pLodSettings->m_ResolutionClampX_360 );
while ( iClampX < m_nWidth || iClampY < m_nHeight )
{
++ numMipsClampedLod;
iClampX <<= 1;
iClampY <<= 1;
}
}
for ( int iMipLevel = 1; iMipLevel < m_nMipCount; ++iMipLevel )
{
ComputeMipLevelDimensions( iMipLevel, &info.m_nDestWidth, &info.m_nDestHeight, &info.m_nDestDepth );
if ( m_Options.flags0 & VtfProcessingOptions::OPT_PREMULT_COLOR_ONEOVERMIP )
{
for ( int ch = 0; ch < 3; ++ ch )
info.m_flColorScale[ch] = 1.0f / ( float )( 1 << iMipLevel );
}
// don't use the 0th mip level since NICE filtering blows up!
int nSrcMipLevel = iMipLevel - 4;
if ( nSrcMipLevel < 0 )
nSrcMipLevel = 0;
// Decay options
bool bMipBlendActive = false;
char chChannels[4] = { 'R', 'G', 'B', 'A' };
for ( int ch = 0; ch < 4; ++ ch )
{
int iLastNonDecayMip = numMipsClampedLod + int( m_Options.numNotDecayMips[ch] );
if ( iLastNonDecayMip > m_nMipCount )
iLastNonDecayMip = m_nMipCount - 1;
int numDecayMips = m_nMipCount - iLastNonDecayMip - 1;
if ( numDecayMips < 1 )
numDecayMips = 1;
// Decay is only active starting from numDecayMips
if ( !( ( ( iMipLevel == m_nMipCount - 1 ) || ( iMipLevel > iLastNonDecayMip ) ) && // last 1x1 mip or past clamped and skipped
( m_Options.flags0 & ( VtfProcessingOptions::OPT_DECAY_R << ch ) ) ) ) // the channel has decay
continue;
// Color goal
info.m_flColorGoal[ch] = m_Options.clrDecayGoal[ch];
// Color scale
if ( iMipLevel == m_nMipCount - 1 )
{
info.m_flColorScale[ch] = 0.0f;
}
else if ( m_Options.flags0 & ( VtfProcessingOptions::OPT_DECAY_EXP_R << ch ) )
{
info.m_flColorScale[ch] = pow( m_Options.fDecayExponentBase[ch], iMipLevel - iLastNonDecayMip );
}
else
{
info.m_flColorScale[ch] = 1.0f - float( iMipLevel - iLastNonDecayMip ) / float( numDecayMips );
}
if ( !bMipBlendActive )
{
bMipBlendActive = true;
printf( "Blending mip%d %dx%d to", iMipLevel, info.m_nDestWidth, info.m_nDestHeight );
}
printf( " %c=%d ~%d%%", chChannels[ch], m_Options.clrDecayGoal[ch], int( (1.f - info.m_flColorScale[ch]) * 100.0f + 0.5f ) );
}
if ( bMipBlendActive )
printf( "\n" );
if ( bNormalMap )
{
info.m_nFlags |= ImageLoader::RESAMPLE_NORMALMAP;
// Normal maps xyz decays to 127.f
for ( int ch = 0; ch < 3; ++ ch )
info.m_flColorGoal[ch] = 127.0f;
}
for ( int iFrame = 0; iFrame < m_nFrameCount; ++iFrame )
{
for ( int iFace = 0; iFace < m_nFaceCount; ++iFace )
{
unsigned char *pSrcLevel = ImageData( iFrame, iFace, nSrcMipLevel );
unsigned char *pDstLevel = ImageData( iFrame, iFace, iMipLevel );
info.m_pSrc = pSrcLevel;
info.m_pDest = pDstLevel;
ComputeMipLevelDimensions( nSrcMipLevel, &info.m_nSrcWidth, &info.m_nSrcHeight, &info.m_nSrcDepth );
if( m_Format == IMAGE_FORMAT_RGB323232F )
{
ImageLoader::ResampleRGB323232F( info );
}
else
{
ImageLoader::ResampleRGBA8888( info );
}
if ( Flags() & TEXTUREFLAGS_NORMAL )
{
ImageLoader::NormalizeNormalMapRGBA8888( pDstLevel, info.m_nDestWidth * info.m_nDestHeight * info.m_nDestDepth );
}
}
}
}
}
void CVTFTexture::PutOneOverMipLevelInAlpha()
{
Assert( m_Format == IMAGE_FORMAT_RGBA8888 );
for (int iMipLevel = 0; iMipLevel < m_nMipCount; ++iMipLevel)
{
int nMipWidth, nMipHeight, nMipDepth;
ComputeMipLevelDimensions( iMipLevel, &nMipWidth, &nMipHeight, &nMipDepth );
int size = nMipWidth * nMipHeight * nMipDepth;
unsigned char ooMipLevel = ( unsigned char )( 255.0f * ( 1.0f / ( float )( 1 << iMipLevel ) ) );
for (int iFrame = 0; iFrame < m_nFrameCount; ++iFrame)
{
for (int iFace = 0; iFace < m_nFaceCount; ++iFace)
{
unsigned char *pDstLevel = ImageData( iFrame, iFace, iMipLevel );
unsigned char *pDst;
for( pDst = pDstLevel; pDst < pDstLevel + size * 4; pDst += 4 )
{
pDst[3] = ooMipLevel;
}
}
}
}
}
//-----------------------------------------------------------------------------
// Computes the reflectivity
//-----------------------------------------------------------------------------
void CVTFTexture::ComputeReflectivity( )
{
// HDRFIXME: fix this when we ahve a new intermediate format
if( m_Format != IMAGE_FORMAT_RGBA8888 )
{
m_vecReflectivity.Init( 0.2f, 0.2f, 0.2f );
return;
}
Assert( m_Format == IMAGE_FORMAT_RGBA8888 );
int divisor = 0;
m_vecReflectivity.Init( 0.0f, 0.0f, 0.0f );
for( int iFrame = 0; iFrame < m_nFrameCount; ++iFrame )
{
for( int iFace = 0; iFace < m_nFaceCount; ++iFace )
{
Vector vecFaceReflect;
unsigned char* pSrc = ImageData( iFrame, iFace, 0 );
int nNumPixels = m_nWidth * m_nHeight * m_nDepth;
VectorClear( vecFaceReflect );
for (int i = 0; i < nNumPixels; ++i, pSrc += 4 )
{
vecFaceReflect[0] += TextureToLinear( pSrc[0] );
vecFaceReflect[1] += TextureToLinear( pSrc[1] );
vecFaceReflect[2] += TextureToLinear( pSrc[2] );
}
vecFaceReflect /= nNumPixels;
m_vecReflectivity += vecFaceReflect;
++divisor;
}
}
m_vecReflectivity /= divisor;
}
//-----------------------------------------------------------------------------
// Computes the alpha flags
//-----------------------------------------------------------------------------
void CVTFTexture::ComputeAlphaFlags()
{
// HDRFIXME: hack hack hack
if( m_Format != IMAGE_FORMAT_RGBA8888 )
{
m_nFlags &= ~( TEXTUREFLAGS_EIGHTBITALPHA | TEXTUREFLAGS_ONEBITALPHA );
m_Options.flags0 &= ~( VtfProcessingOptions::OPT_MIP_ALPHATEST );
return;
}
Assert( m_Format == IMAGE_FORMAT_RGBA8888 );
m_nFlags &= ~(TEXTUREFLAGS_EIGHTBITALPHA | TEXTUREFLAGS_ONEBITALPHA);
if( m_Options.flags0 & VtfProcessingOptions::OPT_SET_ALPHA_ONEOVERMIP )
{
m_nFlags |= TEXTUREFLAGS_EIGHTBITALPHA;
return;
}
for( int iFrame = 0; iFrame < m_nFrameCount; ++iFrame )
{
for( int iFace = 0; iFace < m_nFaceCount; ++iFace )
{
for( int iMipLevel = 0; iMipLevel < m_nMipCount; ++iMipLevel )
{
// If we're all 0 or all 255, assume it's opaque
bool bHasZero = false;
bool bHas255 = false;
unsigned char* pSrcBits = ImageData( iFrame, iFace, iMipLevel );
int nMipWidth, nMipHeight, nMipDepth;
ComputeMipLevelDimensions( iMipLevel, &nMipWidth, &nMipHeight, &nMipDepth );
int nNumPixels = nMipWidth * nMipHeight * nMipDepth;
while ( --nNumPixels >= 0 )
{
if ( pSrcBits[3] == 0 )
{
bHasZero = true;
}
else if ( pSrcBits[3] == 255 )
{
bHas255 = true;
}
else
{
// Have grey at all? 8 bit alpha baby
m_nFlags &= ~TEXTUREFLAGS_ONEBITALPHA;
m_nFlags |= TEXTUREFLAGS_EIGHTBITALPHA;
return;
}
pSrcBits += 4;
}
// If we have both 0 at 255, we're at least one-bit alpha
if ( bHasZero && bHas255 )
{
m_nFlags |= TEXTUREFLAGS_ONEBITALPHA;
}
}
}
}
}
//-----------------------------------------------------------------------------
// Gets the texture all internally consistent assuming you've loaded
// mip 0 of all faces of all frames
//-----------------------------------------------------------------------------
void CVTFTexture::PostProcess( bool bGenerateSpheremap, LookDir_t lookDir, bool bAllowFixCubemapOrientation )
{
// HDRFIXME: Make sure that all of the below functions check for the proper formats if we get rid of this assert.
// Assert( m_Format == IMAGE_FORMAT_RGBA8888 );
// Set up the cube map faces
if (IsCubeMap())
{
// Rotate the cubemaps so they're appropriate for the material system
if ( bAllowFixCubemapOrientation )
FixCubemapFaceOrientation();
// FIXME: We could theoretically not compute spheremap mip levels
// in generate spheremaps; should we? The trick is when external
// clients can be expected to call it
// Compute the spheremap fallback for cubemaps if we weren't able to load up one...
if (bGenerateSpheremap)
GenerateSpheremap(lookDir);
}
// Normalize the top mip level if necessary.
NormalizeTopMipLevel();
// Generate mipmap levels
GenerateMipmaps();
if( m_Options.flags0 & VtfProcessingOptions::OPT_SET_ALPHA_ONEOVERMIP )
{
PutOneOverMipLevelInAlpha();
}
// Compute reflectivity
ComputeReflectivity();
// Are we 8-bit or 1-bit alpha?
// NOTE: We have to do this *after* computing the spheremap fallback for
// cubemaps or it'll throw the flags off
ComputeAlphaFlags();
}
void CVTFTexture::SetPostProcessingSettings( VtfProcessingOptions const *pOptions )
{
memset( &m_Options, 0, sizeof( m_Options ) );
memcpy( &m_Options, pOptions, min( (uint32)sizeof( m_Options ), pOptions->cbSize ) );
m_Options.cbSize = sizeof( m_Options );
// Optionally perform the fixups
}
//-----------------------------------------------------------------------------
// Generate the low-res image bits
//-----------------------------------------------------------------------------
bool CVTFTexture::ConstructLowResImage()
{
// HDRFIXME: hack hack hack
if( m_Format != IMAGE_FORMAT_RGBA8888 )
{
return true;
}
Assert( m_Format == IMAGE_FORMAT_RGBA8888 );
Assert( m_pLowResImageData );
CUtlMemory<unsigned char> lowResSizeImage;
lowResSizeImage.EnsureCapacity( m_nLowResImageWidth * m_nLowResImageHeight * 4 );
ImageLoader::ResampleInfo_t info;
info.m_pSrc = ImageData(0, 0, 0);
info.m_pDest = lowResSizeImage.Base();
info.m_nSrcWidth = m_nWidth;
info.m_nSrcHeight = m_nHeight;
info.m_nDestWidth = m_nLowResImageWidth;
info.m_nDestHeight = m_nLowResImageHeight;
info.m_flSrcGamma = 2.2f;
info.m_flDestGamma = 2.2f;
info.m_nFlags = ImageLoader::RESAMPLE_NICE_FILTER;
if( !ImageLoader::ResampleRGBA8888( info ) )
return false;
// convert to the low-res size version with the correct image format
unsigned char *tmpImage = lowResSizeImage.Base();
return ImageLoader::ConvertImageFormat( tmpImage, IMAGE_FORMAT_RGBA8888,
m_pLowResImageData, m_LowResImageFormat, m_nLowResImageWidth, m_nLowResImageHeight );
}
// -----------------------------------------------------------------------------
// Cubemap edge-filtering functions.
// -----------------------------------------------------------------------------
void CVTFTexture::SetupFaceVert( int iMipLevel, int iVert, CEdgePos &out )
{
int nMipWidth, nMipHeight, nMipDepth;
ComputeMipLevelDimensions( iMipLevel, &nMipWidth, &nMipHeight, &nMipDepth );
out.x = out.y = 0;
if ( iVert == 0 || iVert == 3 )
{
out.y = nMipHeight - 1;
}
if ( iVert == 2 || iVert == 3 )
{
out.x = nMipWidth - 1;
}
}
void CVTFTexture::SetupEdgeIncrement( CEdgePos &start, CEdgePos &end, CEdgePos &inc )
{
inc.x = inc.y = 0;
if ( start.x != end.x )
{
Assert( start.y == end.y );
inc.x = (start.x < end.x) ? 1 : -1;
}
else if ( start.y != end.y )
{
Assert( start.x == end.x );
inc.y = (start.y < end.y) ? 1 : -1;
}
else
{
Assert( false );
}
}
void CVTFTexture::SetupTextureEdgeIncrements(
int iMipLevel,
int iFace1Edge,
int iFace2Edge,
bool bFlipFace2Edge,
CEdgeIncrements *incs )
{
// Figure out the coordinates of the verts we're blending.
SetupFaceVert( iMipLevel, iFace1Edge, incs->iFace1Start );
SetupFaceVert( iMipLevel, (iFace1Edge+1)%4, incs->iFace1End );
if ( bFlipFace2Edge )
{
SetupFaceVert( iMipLevel, (iFace2Edge+1)%4, incs->iFace2Start );
SetupFaceVert( iMipLevel, iFace2Edge, incs->iFace2End );
}
else
{
SetupFaceVert( iMipLevel, iFace2Edge, incs->iFace2Start );
SetupFaceVert( iMipLevel, (iFace2Edge+1)%4, incs->iFace2End );
}
// Figure out the increments from start to end.
SetupEdgeIncrement( incs->iFace1Start, incs->iFace1End, incs->iFace1Inc );
SetupEdgeIncrement( incs->iFace2Start, incs->iFace2End, incs->iFace2Inc );
}
void BlendTexels( unsigned char **texels, int nTexels )
{
int sum[4] = { 0, 0, 0, 0 };
int i;
for ( i=0; i < nTexels; i++ )
{
sum[0] += texels[i][0];
sum[1] += texels[i][1];
sum[2] += texels[i][2];
sum[3] += texels[i][3];
}
for ( i=0; i < nTexels; i++ )
{
texels[i][0] = (unsigned char)( sum[0] / nTexels );
texels[i][1] = (unsigned char)( sum[1] / nTexels );
texels[i][2] = (unsigned char)( sum[2] / nTexels );
texels[i][3] = (unsigned char)( sum[3] / nTexels );
}
}
void CVTFTexture::BlendCubeMapFaceEdges(
int iFrame,
int iMipLevel,
const CEdgeMatch *pMatch )
{
int nMipWidth, nMipHeight, nMipDepth;
ComputeMipLevelDimensions( iMipLevel, &nMipWidth, &nMipHeight, &nMipDepth );
Assert( nMipDepth == 1 );
if ( nMipWidth <= 1 || nMipHeight <= 1 )
return;
unsigned char *pFace1Data = ImageData( iFrame, pMatch->m_iFaces[0], iMipLevel );
unsigned char *pFace2Data = ImageData( iFrame, pMatch->m_iFaces[1], iMipLevel );
CEdgeIncrements incs;
SetupTextureEdgeIncrements( iMipLevel, pMatch->m_iEdges[0], pMatch->m_iEdges[1], pMatch->m_bFlipFace2Edge, &incs );
// Do all pixels but the first and the last one (those will be handled when blending corners).
CEdgePos iFace1Cur = incs.iFace1Start + incs.iFace1Inc;
CEdgePos iFace2Cur = incs.iFace2Start + incs.iFace2Inc;
if ( m_Format == IMAGE_FORMAT_DXT1 || m_Format == IMAGE_FORMAT_DXT5 )
{
if ( iFace1Cur != incs.iFace1End )
{
while ( iFace1Cur != incs.iFace1End )
{
// Copy the palette index from image 1 to image 2.
S3PaletteIndex paletteIndex = S3TC_GetPaletteIndex( pFace1Data, m_Format, nMipWidth, iFace1Cur.x, iFace1Cur.y );
S3TC_SetPaletteIndex( pFace2Data, m_Format, nMipWidth, iFace2Cur.x, iFace2Cur.y, paletteIndex );
iFace1Cur += incs.iFace1Inc;
iFace2Cur += incs.iFace2Inc;
}
}
}
else if ( m_Format == IMAGE_FORMAT_RGBA8888 )
{
if ( iFace1Cur != incs.iFace1End )
{
while ( iFace1Cur != incs.iFace1End )
{
// Now we know the 2 pixels. Average them and copy the averaged value to both pixels.
unsigned char *texels[2] =
{
pFace1Data + ((iFace1Cur.y * nMipWidth) + iFace1Cur.x) * 4,
pFace2Data + ((iFace2Cur.y * nMipWidth) + iFace2Cur.x) * 4
};
BlendTexels( texels, 2 );
iFace1Cur += incs.iFace1Inc;
iFace2Cur += incs.iFace2Inc;
}
}
}
else
{
Error( "BlendCubeMapFaceEdges: unsupported image format (%d)", (int)m_Format );
}
}
void CVTFTexture::BlendCubeMapFaceCorners(
int iFrame,
int iMipLevel,
const CCornerMatch *pMatch )
{
int nMipWidth, nMipHeight, nMipDepth;
ComputeMipLevelDimensions( iMipLevel, &nMipWidth, &nMipHeight, &nMipDepth );
Assert( nMipDepth == 1 );
// Setup the coordinates of each texel.
CEdgePos texelPos[3];
unsigned char *pImageData[3];
int iEdge;
for ( iEdge=0; iEdge < 3; iEdge++ )
{
SetupFaceVert( iMipLevel, pMatch->m_iFaceEdges[iEdge], texelPos[iEdge] );
pImageData[iEdge] = ImageData( iFrame, pMatch->m_iFaces[iEdge], iMipLevel );
}
if ( m_Format == IMAGE_FORMAT_DXT1 || m_Format == IMAGE_FORMAT_DXT5 )
{
if ( nMipWidth < 4 || nMipHeight < 4 )
return;
// Copy the first palette index to the other blocks.
S3PaletteIndex paletteIndex = S3TC_GetPaletteIndex( pImageData[0], m_Format, nMipWidth, texelPos[0].x, texelPos[0].y );
S3TC_SetPaletteIndex( pImageData[1], m_Format, nMipWidth, texelPos[1].x, texelPos[1].y, paletteIndex );
S3TC_SetPaletteIndex( pImageData[2], m_Format, nMipWidth, texelPos[2].x, texelPos[2].y, paletteIndex );
}
else if ( m_Format == IMAGE_FORMAT_RGBA8888 )
{
// Setup pointers to the 3 corner texels.
unsigned char *texels[3];
for ( iEdge=0; iEdge < 3; iEdge++ )
{
CEdgePos facePos;
SetupFaceVert( iMipLevel, pMatch->m_iFaceEdges[iEdge], facePos );
texels[iEdge] = pImageData[iEdge];
texels[iEdge] += (facePos.y * nMipWidth + facePos.x) * 4;
}
// Now blend the texels.
BlendTexels( texels, 3 );
}
else
{
Assert( false );
}
}
void CVTFTexture::BuildCubeMapMatchLists(
CEdgeMatch edgeMatches[NUM_EDGE_MATCHES],
CCornerMatch cornerMatches[NUM_CORNER_MATCHES],
bool bSkybox )
{
int **faceVertsList = bSkybox ? g_skybox_FaceVerts : g_FaceVerts;
// For each face, look for matching edges on other faces.
int nTotalEdgesMatched = 0;
for ( int iFace = 0; iFace < 6; iFace++ )
{
for ( int iEdge=0; iEdge < 4; iEdge++ )
{
int i1 = faceVertsList[iFace][iEdge];
int i2 = faceVertsList[iFace][(iEdge+1)%4];
// Only look for faces with indices < what we have so we don't do each edge twice.
for ( int iOtherFace=0; iOtherFace < iFace; iOtherFace++ )
{
for ( int iOtherEdge=0; iOtherEdge < 4; iOtherEdge++ )
{
int o1 = faceVertsList[iOtherFace][iOtherEdge];
int o2 = faceVertsList[iOtherFace][(iOtherEdge+1)%4];
if ( (i1 == o1 && i2 == o2) || (i2 == o1 && i1 == o2) )
{
CEdgeMatch *pMatch = &edgeMatches[nTotalEdgesMatched];
pMatch->m_iFaces[0] = iFace;
pMatch->m_iEdges[0] = iEdge;
pMatch->m_iFaces[1] = iOtherFace;
pMatch->m_iEdges[1] = iOtherEdge;
pMatch->m_iCubeVerts[0] = o1;
pMatch->m_iCubeVerts[1] = o2;
pMatch->m_bFlipFace2Edge = i1 != o1;
++nTotalEdgesMatched;
}
}
}
}
}
Assert( nTotalEdgesMatched == 12 );
// For each corner vert, find the 3 edges touching it.
for ( int iVert=0; iVert < NUM_CORNER_MATCHES; iVert++ )
{
int iTouchingFace = 0;
for ( int iFace=0; iFace < 6; iFace++ )
{
for ( int iFaceVert=0; iFaceVert < 4; iFaceVert++ )
{
if ( faceVertsList[iFace][iFaceVert] == iVert )
{
cornerMatches[iVert].m_iFaces[iTouchingFace] = iFace;
cornerMatches[iVert].m_iFaceEdges[iTouchingFace] = iFaceVert;
++iTouchingFace;
}
}
}
Assert( iTouchingFace == 3 );
}
}
void CVTFTexture::BlendCubeMapEdgePalettes(
int iFrame,
int iMipLevel,
const CEdgeMatch *pMatch )
{
Assert( m_Format == IMAGE_FORMAT_DXT1 || m_Format == IMAGE_FORMAT_DXT5 );
int nMipWidth, nMipHeight, nMipDepth;
ComputeMipLevelDimensions( iMipLevel, &nMipWidth, &nMipHeight, &nMipDepth );
Assert( nMipDepth == 1 );
if ( nMipWidth <= 8 || nMipHeight <= 8 )
return;
unsigned char *pFace1Data = ImageData( iFrame, pMatch->m_iFaces[0], iMipLevel );
unsigned char *pFace2Data = ImageData( iFrame, pMatch->m_iFaces[1], iMipLevel );
S3RGBA *pFace1Original = &m_OriginalData[ GetImageOffset( iFrame, pMatch->m_iFaces[0], iMipLevel, IMAGE_FORMAT_RGBA8888 ) / 4 ];
S3RGBA *pFace2Original = &m_OriginalData[ GetImageOffset( iFrame, pMatch->m_iFaces[1], iMipLevel, IMAGE_FORMAT_RGBA8888 ) / 4 ];
CEdgeIncrements incs;
SetupTextureEdgeIncrements( iMipLevel, pMatch->m_iEdges[0], pMatch->m_iEdges[1], pMatch->m_bFlipFace2Edge, &incs );
// Divide the coordinates by 4 since we're dealing with S3 blocks here.
incs.iFace1Start /= 4; incs.iFace1End /= 4; incs.iFace2Start /= 4; incs.iFace2End /= 4;
// Now walk along the edges, blending the edge pixels.
CEdgePos iFace1Cur = incs.iFace1Start + incs.iFace1Inc;
CEdgePos iFace2Cur = incs.iFace2Start + incs.iFace2Inc;
while ( iFace1Cur != incs.iFace1End ) // We intentionally want to not process the last block here..
{
// Merge the palette of these two blocks.
char *blocks[2] =
{
S3TC_GetBlock( pFace1Data, m_Format, nMipWidth>>2, iFace1Cur.x, iFace1Cur.y ),
S3TC_GetBlock( pFace2Data, m_Format, nMipWidth>>2, iFace2Cur.x, iFace2Cur.y )
};
S3RGBA *originals[2] =
{
&pFace1Original[(iFace1Cur.y * 4 * nMipWidth) + iFace1Cur.x * 4],
&pFace2Original[(iFace2Cur.y * 4 * nMipWidth) + iFace2Cur.x * 4]
};
S3TC_MergeBlocks(
blocks,
originals,
2,
nMipWidth*4,
m_Format );
iFace1Cur += incs.iFace1Inc;
iFace2Cur += incs.iFace2Inc;
}
}
void CVTFTexture::BlendCubeMapCornerPalettes(
int iFrame,
int iMipLevel,
const CCornerMatch *pMatch )
{
int nMipWidth, nMipHeight, nMipDepth;
ComputeMipLevelDimensions( iMipLevel, &nMipWidth, &nMipHeight, &nMipDepth );
Assert( nMipDepth == 1 );
if ( nMipWidth < 4 || nMipHeight < 4 )
return;
// Now setup an S3TC block pointer for each of the corner blocks on each face.
char *blocks[3];
S3RGBA *originals[3];
for ( int iEdge=0; iEdge < 3; iEdge++ )
{
CEdgePos facePos;
SetupFaceVert( iMipLevel, pMatch->m_iFaceEdges[iEdge], facePos );
facePos /= 4; // To get the S3 block index.
int iFaceIndex = pMatch->m_iFaces[iEdge];
unsigned char *pFaceData = ImageData( iFrame, iFaceIndex, iMipLevel );
S3RGBA *pFaceOriginal = &m_OriginalData[ GetImageOffset( iFrame, iFaceIndex, iMipLevel, IMAGE_FORMAT_RGBA8888 ) / 4 ];
blocks[iEdge] = S3TC_GetBlock( pFaceData, m_Format, nMipWidth>>2, facePos.x, facePos.y );
originals[iEdge] = &pFaceOriginal[ (facePos.y * 4 * nMipWidth) + facePos.x * 4 ];
}
S3TC_MergeBlocks(
blocks,
originals,
3,
nMipWidth*4,
m_Format );
}
void CVTFTexture::MatchCubeMapS3TCPalettes(
CEdgeMatch edgeMatches[NUM_EDGE_MATCHES],
CCornerMatch cornerMatches[NUM_CORNER_MATCHES]
)
{
for (int iMipLevel = 0; iMipLevel < m_nMipCount; ++iMipLevel)
{
for (int iFrame = 0; iFrame < m_nFrameCount; ++iFrame)
{
// First, match all the edge palettes (this part skips the first and last 4 texels
// along the edge since those S3 blocks are handled in the corner case).
for ( int iEdgeMatch=0; iEdgeMatch < NUM_EDGE_MATCHES; iEdgeMatch++ )
{
BlendCubeMapEdgePalettes(
iFrame,
iMipLevel,
&edgeMatches[iEdgeMatch] );
}
for ( int iCornerMatch=0; iCornerMatch < NUM_CORNER_MATCHES; iCornerMatch++ )
{
BlendCubeMapCornerPalettes(
iFrame,
iMipLevel,
&cornerMatches[iCornerMatch] );
}
}
}
}
void CVTFTexture::MatchCubeMapBorders( int iStage, ImageFormat finalFormat, bool bSkybox )
{
// HDRFIXME: hack hack hack
if( m_Format != IMAGE_FORMAT_RGBA8888 )
{
return;
}
if ( !IsCubeMap() )
return;
Assert( IsCubeMap() );
Assert( m_nFaceCount >= 6 );
if ( iStage == 1 )
{
// Stage 1 is while the image is still RGBA8888. If we're not going to S3 compress the image,
// then it is easiest to match the borders now.
Assert( m_Format == IMAGE_FORMAT_RGBA8888 );
if ( finalFormat == IMAGE_FORMAT_DXT1 || finalFormat == IMAGE_FORMAT_DXT5 )
{
// If we're going to S3 compress the image eventually, then store off the original version
// because we can use that while matching the S3 compressed edges (we have to do some tricky
// repalettizing).
int nTotalBytes = ComputeTotalSize();
m_OriginalData.SetSize( nTotalBytes / 4 );
memcpy( m_OriginalData.Base(), ImageData(), nTotalBytes );
// Swap R and B in these because IMAGE_FORMAT_RGBA8888 is swapped from the way S3RGBAs are.
for ( int i=0; i < nTotalBytes/4; i++ )
V_swap( m_OriginalData[i].r, m_OriginalData[i].b );
return;
}
else
{
// Drop down below and do the edge matching.
}
}
else
{
if ( finalFormat == IMAGE_FORMAT_DXT1 || finalFormat == IMAGE_FORMAT_DXT5 )
{
Assert( m_Format == finalFormat );
}
else
{
// If we're not winding up S3 compressed, then we already fixed the cubemap borders.
return;
}
}
// Figure out
CEdgeMatch edgeMatches[NUM_EDGE_MATCHES];
CCornerMatch cornerMatches[NUM_CORNER_MATCHES];
BuildCubeMapMatchLists( edgeMatches, cornerMatches, bSkybox );
// If we're S3 compressed, then during the first pass, we need to match the palettes of all
// bordering S3 blocks.
if ( m_Format == IMAGE_FORMAT_DXT1 || m_Format == IMAGE_FORMAT_DXT5 )
{
MatchCubeMapS3TCPalettes( edgeMatches, cornerMatches );
}
for (int iMipLevel = 0; iMipLevel < m_nMipCount; ++iMipLevel)
{
for (int iFrame = 0; iFrame < m_nFrameCount; ++iFrame)
{
for ( int iEdgeMatch=0; iEdgeMatch < NUM_EDGE_MATCHES; iEdgeMatch++ )
{
BlendCubeMapFaceEdges(
iFrame,
iMipLevel,
&edgeMatches[iEdgeMatch] );
}
for ( int iCornerMatch=0; iCornerMatch < NUM_CORNER_MATCHES; iCornerMatch++ )
{
BlendCubeMapFaceCorners(
iFrame,
iMipLevel,
&cornerMatches[iCornerMatch] );
}
}
}
}
/*
Test code used to draw the cubemap into a scratchpad file. Useful for debugging, or at least
it was once.
IScratchPad3D *pPad = ScratchPad3D_Create();
int nMipWidth, nMipHeight;
ComputeMipLevelDimensions( 0, &nMipWidth, &nMipHeight );
CUtlVector<unsigned char> data;
data.SetSize( nMipWidth*nMipHeight );
float cubeSize = 200;
Vector vertPositions[8] =
{
Vector( 0, cubeSize, 0 ),
Vector( 0, cubeSize, cubeSize ),
Vector( cubeSize, 0, 0 ),
Vector( cubeSize, 0, cubeSize ),
Vector( 0, 0, 0 ),
Vector( 0, 0, cubeSize ),
Vector( cubeSize, cubeSize, 0 ),
Vector( cubeSize, cubeSize, cubeSize )
};
char *faceNames[6] = { "right","left","back","front","up","down" };
for ( int iVert=0; iVert < 8; iVert++ )
{
char str[512];
Q_snprintf( str, sizeof( str ), "%d", iVert );
CTextParams params;
params.m_flLetterWidth = 20;
params.m_vPos = vertPositions[iVert];
pPad->DrawText( str, params );
}
for ( int iFace=0; iFace < 6; iFace++ )
{
unsigned char *pFace1Data = ImageData( 0, iFace, 0 );
for ( int y=0; y < nMipHeight; y++ )
{
for( int x=0; x < nMipWidth; x++ )
{
S3PaletteIndex index = S3TC_GetPaletteIndex(
pFace1Data,
m_Format,
nMipWidth,
x, y );
const char *pBlock = S3TC_GetBlock( pFace1Data, m_Format, nMipWidth/4, x/4, y/4 );
unsigned char a0 = pBlock[0];
unsigned char a1 = pBlock[1];
if ( index.m_AlphaIndex == 0 )
{
data[y*nMipWidth+x] = a0;
}
else if ( index.m_AlphaIndex == 1 )
{
data[y*nMipWidth+x] = a1;
}
else if ( a0 > a1 )
{
data[y*nMipWidth+x] = ((8-(int)index.m_AlphaIndex)*a0 + ((int)index.m_AlphaIndex-1)*a1) / 7;
}
else
{
if ( index.m_AlphaIndex == 6 )
data[y*nMipWidth+x] = 0;
else if ( index.m_AlphaIndex == 7 )
data[y*nMipWidth+x] = 255;
else
data[y*nMipWidth+x] = ((6-(int)index.m_AlphaIndex)*a0 + ((int)index.m_AlphaIndex-1)*a1) / 5;
}
}
}
Vector vCorners[4];
for ( int iCorner=0; iCorner < 4; iCorner++ )
vCorners[iCorner] = vertPositions[g_FaceVerts[iFace][iCorner]];
pPad->DrawImageBW( data.Base(), nMipWidth, nMipHeight, nMipWidth, false, true, vCorners );
CTextParams params;
params.m_vPos = (vCorners[0] + vCorners[1] + vCorners[2] + vCorners[3]) / 4;
params.m_bCentered = true;
params.m_vColor.Init( 1, 0, 0 );
params.m_bTwoSided = true;
params.m_flLetterWidth = 10;
Vector vNormal = (vCorners[1] - vCorners[0]).Cross( vCorners[2] - vCorners[1] );
VectorNormalize( vNormal );
params.m_vPos += vNormal*5;
VectorAngles( vNormal, params.m_vAngles );
pPad->DrawText( faceNames[iFace], params );
pPad->Flush();
}
*/