mirror of
https://github.com/nillerusr/source-engine.git
synced 2024-12-23 06:36:54 +00:00
239 lines
6.4 KiB
C++
239 lines
6.4 KiB
C++
|
//========= Copyright Valve Corporation, All rights reserved. ============//
|
||
|
//
|
||
|
// Purpose:
|
||
|
//
|
||
|
// $NoKeywords: $
|
||
|
//
|
||
|
//=============================================================================//
|
||
|
#include "cbase.h"
|
||
|
#include "physics.h"
|
||
|
#include "te_effect_dispatch.h"
|
||
|
|
||
|
// memdbgon must be the last include file in a .cpp file!!!
|
||
|
#include "tier0/memdbgon.h"
|
||
|
|
||
|
static int BestAxisMatchingNormal( matrix3x4_t &matrix, const Vector &normal )
|
||
|
{
|
||
|
float bestDot = -1;
|
||
|
int best = 0;
|
||
|
for ( int i = 0; i < 3; i++ )
|
||
|
{
|
||
|
Vector tmp;
|
||
|
MatrixGetColumn( matrix, i, tmp );
|
||
|
float dot = fabs(DotProduct( tmp, normal ));
|
||
|
if ( dot > bestDot )
|
||
|
{
|
||
|
bestDot = dot;
|
||
|
best = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return best;
|
||
|
}
|
||
|
|
||
|
void PhysicsSplash( IPhysicsFluidController *pFluid, IPhysicsObject *pObject, CBaseEntity *pEntity )
|
||
|
{
|
||
|
Vector normal;
|
||
|
float dist;
|
||
|
pFluid->GetSurfacePlane( &normal, &dist );
|
||
|
|
||
|
matrix3x4_t &matrix = pEntity->EntityToWorldTransform();
|
||
|
|
||
|
// Find the local axis that best matches the water surface normal
|
||
|
int bestAxis = BestAxisMatchingNormal( matrix, normal );
|
||
|
|
||
|
Vector tangent, binormal;
|
||
|
MatrixGetColumn( matrix, (bestAxis+1)%3, tangent );
|
||
|
binormal = CrossProduct( normal, tangent );
|
||
|
VectorNormalize( binormal );
|
||
|
tangent = CrossProduct( binormal, normal );
|
||
|
VectorNormalize( tangent );
|
||
|
|
||
|
// Now we have a basis tangent to the surface that matches the object's local orientation as well as possible
|
||
|
// compute an OBB using this basis
|
||
|
|
||
|
// Get object extents in basis
|
||
|
Vector tanPts[2], binPts[2];
|
||
|
tanPts[0] = physcollision->CollideGetExtent( pObject->GetCollide(), pEntity->GetAbsOrigin(), pEntity->GetAbsAngles(), -tangent );
|
||
|
tanPts[1] = physcollision->CollideGetExtent( pObject->GetCollide(), pEntity->GetAbsOrigin(), pEntity->GetAbsAngles(), tangent );
|
||
|
binPts[0] = physcollision->CollideGetExtent( pObject->GetCollide(), pEntity->GetAbsOrigin(), pEntity->GetAbsAngles(), -binormal );
|
||
|
binPts[1] = physcollision->CollideGetExtent( pObject->GetCollide(), pEntity->GetAbsOrigin(), pEntity->GetAbsAngles(), binormal );
|
||
|
|
||
|
// now compute the centered bbox
|
||
|
float mins[2], maxs[2], center[2], extents[2];
|
||
|
mins[0] = DotProduct( tanPts[0], tangent );
|
||
|
maxs[0] = DotProduct( tanPts[1], tangent );
|
||
|
|
||
|
mins[1] = DotProduct( binPts[0], binormal );
|
||
|
maxs[1] = DotProduct( binPts[1], binormal );
|
||
|
|
||
|
center[0] = 0.5 * (mins[0] + maxs[0]);
|
||
|
center[1] = 0.5 * (mins[1] + maxs[1]);
|
||
|
|
||
|
extents[0] = maxs[0] - center[0];
|
||
|
extents[1] = maxs[1] - center[1];
|
||
|
|
||
|
Vector centerPoint = center[0] * tangent + center[1] * binormal + dist * normal;
|
||
|
|
||
|
Vector axes[2];
|
||
|
axes[0] = (maxs[0] - center[0]) * tangent;
|
||
|
axes[1] = (maxs[1] - center[1]) * binormal;
|
||
|
|
||
|
// visualize OBB hit
|
||
|
/*
|
||
|
Vector corner1 = centerPoint - axes[0] - axes[1];
|
||
|
Vector corner2 = centerPoint + axes[0] - axes[1];
|
||
|
Vector corner3 = centerPoint + axes[0] + axes[1];
|
||
|
Vector corner4 = centerPoint - axes[0] + axes[1];
|
||
|
NDebugOverlay::Line( corner1, corner2, 0, 0, 255, false, 10 );
|
||
|
NDebugOverlay::Line( corner2, corner3, 0, 0, 255, false, 10 );
|
||
|
NDebugOverlay::Line( corner3, corner4, 0, 0, 255, false, 10 );
|
||
|
NDebugOverlay::Line( corner4, corner1, 0, 0, 255, false, 10 );
|
||
|
*/
|
||
|
|
||
|
Vector corner[4];
|
||
|
|
||
|
corner[0] = centerPoint - axes[0] - axes[1];
|
||
|
corner[1] = centerPoint + axes[0] - axes[1];
|
||
|
corner[2] = centerPoint + axes[0] + axes[1];
|
||
|
corner[3] = centerPoint - axes[0] + axes[1];
|
||
|
|
||
|
CEffectData data;
|
||
|
|
||
|
if ( pObject->GetGameFlags() & FVPHYSICS_PART_OF_RAGDOLL )
|
||
|
{
|
||
|
/*
|
||
|
data.m_vOrigin = centerPoint;
|
||
|
data.m_vNormal = normal;
|
||
|
VectorAngles( normal, data.m_vAngles );
|
||
|
data.m_flScale = random->RandomFloat( 8, 10 );
|
||
|
|
||
|
DispatchEffect( "watersplash", data );
|
||
|
|
||
|
int splashes = 4;
|
||
|
Vector point;
|
||
|
|
||
|
for ( int i = 0; i < splashes; i++ )
|
||
|
{
|
||
|
point = RandomVector( -32.0f, 32.0f );
|
||
|
point[2] = 0.0f;
|
||
|
|
||
|
point += corner[i];
|
||
|
|
||
|
data.m_vOrigin = point;
|
||
|
data.m_vNormal = normal;
|
||
|
VectorAngles( normal, data.m_vAngles );
|
||
|
data.m_flScale = random->RandomFloat( 4, 6 );
|
||
|
|
||
|
DispatchEffect( "watersplash", data );
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
//FIXME: This code will not work correctly given how the ragdoll/fluid collision is acting currently
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
Vector vel;
|
||
|
pObject->GetVelocity( &vel, NULL );
|
||
|
float rawSpeed = -DotProduct( normal, vel );
|
||
|
|
||
|
// proportional to cross-sectional area times velocity squared (fluid pressure)
|
||
|
float speed = rawSpeed * rawSpeed * extents[0] * extents[1] * (1.0f / 2500000.0f) * pObject->GetMass() * (0.01f);
|
||
|
|
||
|
speed = clamp( speed, 0.f, 50.f );
|
||
|
|
||
|
bool bRippleOnly = false;
|
||
|
|
||
|
// allow the entity to perform a custom splash effect
|
||
|
if ( pEntity->PhysicsSplash( centerPoint, normal, rawSpeed, speed ) )
|
||
|
return;
|
||
|
|
||
|
//Deny really weak hits
|
||
|
//FIXME: We still need to ripple the surface in this case
|
||
|
if ( speed <= 0.35f )
|
||
|
{
|
||
|
if ( speed <= 0.1f )
|
||
|
return;
|
||
|
|
||
|
bRippleOnly = true;
|
||
|
}
|
||
|
|
||
|
float size = RemapVal( speed, 0.35, 50, 8, 18 );
|
||
|
|
||
|
//Find the surface area
|
||
|
float radius = extents[0] * extents[1];
|
||
|
//int splashes = clamp ( radius / 128.0f, 1, 2 ); //One splash for every three square feet of area
|
||
|
|
||
|
//Msg( "Speed: %.2f, Size: %.2f\n, Radius: %.2f, Splashes: %d", speed, size, radius, splashes );
|
||
|
|
||
|
Vector point;
|
||
|
|
||
|
data.m_fFlags = 0;
|
||
|
data.m_vOrigin = centerPoint;
|
||
|
data.m_vNormal = normal;
|
||
|
VectorAngles( normal, data.m_vAngles );
|
||
|
data.m_flScale = size + random->RandomFloat( 0, 2 );
|
||
|
if ( pEntity->GetWaterType() & CONTENTS_SLIME )
|
||
|
{
|
||
|
data.m_fFlags |= FX_WATER_IN_SLIME;
|
||
|
}
|
||
|
|
||
|
if ( bRippleOnly )
|
||
|
{
|
||
|
DispatchEffect( "waterripple", data );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
DispatchEffect( "watersplash", data );
|
||
|
}
|
||
|
|
||
|
if ( radius > 500.0f )
|
||
|
{
|
||
|
int splashes = random->RandomInt( 1, 4 );
|
||
|
|
||
|
for ( int i = 0; i < splashes; i++ )
|
||
|
{
|
||
|
point = RandomVector( -4.0f, 4.0f );
|
||
|
point[2] = 0.0f;
|
||
|
|
||
|
point += corner[i];
|
||
|
|
||
|
data.m_fFlags = 0;
|
||
|
data.m_vOrigin = point;
|
||
|
data.m_vNormal = normal;
|
||
|
VectorAngles( normal, data.m_vAngles );
|
||
|
data.m_flScale = size + random->RandomFloat( -3, 1 );
|
||
|
if ( pEntity->GetWaterType() & CONTENTS_SLIME )
|
||
|
{
|
||
|
data.m_fFlags |= FX_WATER_IN_SLIME;
|
||
|
}
|
||
|
|
||
|
if ( bRippleOnly )
|
||
|
{
|
||
|
DispatchEffect( "waterripple", data );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
DispatchEffect( "watersplash", data );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
for ( i = 0; i < splashes; i++ )
|
||
|
{
|
||
|
point = RandomVector( -8.0f, 8.0f );
|
||
|
point[2] = 0.0f;
|
||
|
|
||
|
point += centerPoint + axes[0] * random->RandomFloat( -1, 1 ) + axes[1] * random->RandomFloat( -1, 1 );
|
||
|
|
||
|
data.m_vOrigin = point;
|
||
|
data.m_vNormal = normal;
|
||
|
VectorAngles( normal, data.m_vAngles );
|
||
|
data.m_flScale = size + random->RandomFloat( -2, 4 );
|
||
|
|
||
|
DispatchEffect( "watersplash", data );
|
||
|
}
|
||
|
*/
|
||
|
}
|