mirror of
https://github.com/nillerusr/source-engine.git
synced 2025-01-10 17:36:43 +00:00
640 lines
21 KiB
C++
640 lines
21 KiB
C++
|
//========= Copyright Valve Corporation, All rights reserved. ============//
|
||
|
//
|
||
|
// Purpose: Virtual mesh implementation. Cached terrain collision model
|
||
|
//
|
||
|
//=============================================================================
|
||
|
|
||
|
|
||
|
#include "cbase.h"
|
||
|
#include "convert.h"
|
||
|
#include "ivp_surface_manager.hxx"
|
||
|
#include "ivp_surman_polygon.hxx"
|
||
|
#include "ivp_template_surbuild.hxx"
|
||
|
#include "ivp_compact_surface.hxx"
|
||
|
#include <ivp_compact_ledge.hxx>
|
||
|
#include <ivp_ray_solver.hxx>
|
||
|
#include <ivp_compact_ledge_solver.hxx>
|
||
|
#include "ivp_surbuild_pointsoup.hxx"
|
||
|
#include "ivp_surbuild_ledge_soup.hxx"
|
||
|
#include "physics_trace.h"
|
||
|
#include "collisionutils.h"
|
||
|
#include "datamanager.h"
|
||
|
#include "utlbuffer.h"
|
||
|
#include "ledgewriter.h"
|
||
|
#include "tier1/mempool.h"
|
||
|
#include "tier0/memdbgon.h"
|
||
|
|
||
|
class CPhysCollideVirtualMesh;
|
||
|
|
||
|
CTSPool< CUtlVector<CPhysCollideVirtualMesh *> > g_MeshFrameLocksPool;
|
||
|
CThreadLocalPtr< CUtlVector<CPhysCollideVirtualMesh *> > g_pMeshFrameLocks;
|
||
|
|
||
|
// This is the surfacemanager class for IVP that implements the required functions by layering CPhysCollideVirtualMesh
|
||
|
class IVP_SurfaceManager_VirtualMesh : public IVP_SurfaceManager
|
||
|
{
|
||
|
public:
|
||
|
void add_reference_to_ledge(const IVP_Compact_Ledge *ledge);
|
||
|
void remove_reference_to_ledge(const IVP_Compact_Ledge *ledge);
|
||
|
void insert_all_ledges_hitting_ray(IVP_Ray_Solver *ray_solver, IVP_Real_Object *object);
|
||
|
void get_radius_and_radius_dev_to_given_center(const IVP_U_Float_Point *center, IVP_FLOAT *radius, IVP_FLOAT *radius_deviation) const;
|
||
|
virtual IVP_SURMAN_TYPE get_type() { return IVP_SURMAN_POLYGON; }
|
||
|
|
||
|
// assume mesh is never a single triangle
|
||
|
virtual const IVP_Compact_Ledge *get_single_convex() const;
|
||
|
void get_mass_center(IVP_U_Float_Point *mass_center_out) const;
|
||
|
void get_rotation_inertia( IVP_U_Float_Point *rotation_inertia_out ) const;
|
||
|
void get_all_ledges_within_radius(const IVP_U_Point *observer_os, IVP_DOUBLE radius,
|
||
|
const IVP_Compact_Ledge *root_ledge, IVP_Real_Object *other_object, const IVP_Compact_Ledge *other_reference_ledge,
|
||
|
IVP_U_BigVector<IVP_Compact_Ledge> *resulting_ledges);
|
||
|
|
||
|
void get_all_terminal_ledges(IVP_U_BigVector<IVP_Compact_Ledge> *resulting_ledges);
|
||
|
IVP_SurfaceManager_VirtualMesh( CPhysCollideVirtualMesh *pMesh );
|
||
|
virtual ~IVP_SurfaceManager_VirtualMesh();
|
||
|
|
||
|
private:
|
||
|
CPhysCollideVirtualMesh *m_pMesh;
|
||
|
};
|
||
|
|
||
|
// These are the managed objects for the LRU of terrain collisions
|
||
|
// These get created/destroyed dynamically by a resourcemanager
|
||
|
// These contain the uncompressed collision models for each displacement patch
|
||
|
// The idea is to have only the necessary instances of these in memory at any given time - never all of them
|
||
|
class CMeshInstance
|
||
|
{
|
||
|
public:
|
||
|
// resourcemanager
|
||
|
static unsigned int EstimatedSize( const virtualmeshlist_t &list );
|
||
|
static CMeshInstance *CreateResource( const virtualmeshlist_t &list );
|
||
|
static unsigned int ComputeRootLedgeSize( const byte *pHull );
|
||
|
void DestroyResource() { delete this; }
|
||
|
unsigned int Size() { return m_memSize; }
|
||
|
CMeshInstance *GetData() { return this; }
|
||
|
const triangleledge_t *GetLedges() { return (triangleledge_t *)m_pMemory; }
|
||
|
inline int HullCount() { return m_hullCount; }
|
||
|
const IVP_Compact_Ledge *GetOuterHull() { return (m_hullCount==1) ? (const IVP_Compact_Ledge *)(m_pMemory + m_hullOffset) : NULL; }
|
||
|
int GetRootLedges( IVP_Compact_Ledge **pLedges, int outCount )
|
||
|
{
|
||
|
int hullOffset = m_hullOffset;
|
||
|
int count = min(outCount, (int)m_hullCount);
|
||
|
for ( int i = 0; i < count; i++ )
|
||
|
{
|
||
|
pLedges[i] = (IVP_Compact_Ledge *)(m_pMemory + hullOffset);
|
||
|
hullOffset += sizeof(IVP_Compact_Ledge) + (sizeof(IVP_Compact_Triangle) * pLedges[i]->get_n_triangles());
|
||
|
}
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
// locals
|
||
|
CMeshInstance() { m_pMemory = 0; }
|
||
|
~CMeshInstance();
|
||
|
|
||
|
private:
|
||
|
void Init( const virtualmeshlist_t &list );
|
||
|
|
||
|
int m_memSize;
|
||
|
char *m_pMemory;
|
||
|
unsigned short m_hullOffset;
|
||
|
byte m_hullCount;
|
||
|
byte m_pad;
|
||
|
};
|
||
|
|
||
|
CMeshInstance::~CMeshInstance()
|
||
|
{
|
||
|
if ( m_pMemory )
|
||
|
{
|
||
|
ivp_free_aligned( m_pMemory );
|
||
|
m_pMemory = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
unsigned int CMeshInstance::EstimatedSize( const virtualmeshlist_t &list )
|
||
|
{
|
||
|
int ledgeSize = sizeof(triangleledge_t) * list.triangleCount;
|
||
|
int pointSize = sizeof(IVP_Compact_Poly_Point) * list.vertexCount;
|
||
|
|
||
|
int hullSize = ComputeRootLedgeSize(list.pHull);
|
||
|
return ledgeSize + pointSize + hullSize;
|
||
|
}
|
||
|
|
||
|
// computes the unpacked size of the array of root ledges
|
||
|
unsigned int CMeshInstance::ComputeRootLedgeSize( const byte *pData )
|
||
|
{
|
||
|
if ( !pData )
|
||
|
return 0;
|
||
|
virtualmeshhull_t *pHeader = (virtualmeshhull_t *)pData;
|
||
|
packedhull_t *pHull = (packedhull_t *)(pHeader+1);
|
||
|
unsigned int size = pHeader->hullCount * sizeof(IVP_Compact_Ledge);
|
||
|
for ( int i = 0; i < pHeader->hullCount; i++ )
|
||
|
{
|
||
|
size += sizeof(IVP_Compact_Triangle) * pHull[i].triangleCount;
|
||
|
}
|
||
|
return size;
|
||
|
}
|
||
|
|
||
|
CMeshInstance *CMeshInstance::CreateResource( const virtualmeshlist_t &list )
|
||
|
{
|
||
|
CMeshInstance *pMesh = new CMeshInstance;
|
||
|
pMesh->Init( list );
|
||
|
return pMesh;
|
||
|
}
|
||
|
|
||
|
|
||
|
// flat memory footprint has triangleledges (ledge + 2 triangles for terrain), then has verts, then optional convex hull
|
||
|
void CMeshInstance::Init( const virtualmeshlist_t &list )
|
||
|
{
|
||
|
int ledgeSize = sizeof(triangleledge_t) * list.triangleCount;
|
||
|
int pointSize = sizeof(IVP_Compact_Poly_Point) * list.vertexCount;
|
||
|
int memSize = ledgeSize + pointSize + ComputeRootLedgeSize(list.pHull);
|
||
|
m_memSize = memSize;
|
||
|
m_hullCount = 0;
|
||
|
m_pMemory = (char *)ivp_malloc_aligned( memSize, 16 );
|
||
|
Assert( (int(m_pMemory) & 15) == 0 ); // make sure it is aligned
|
||
|
IVP_Compact_Poly_Point *pPoints = (IVP_Compact_Poly_Point *)&m_pMemory[ledgeSize];
|
||
|
triangleledge_t *pLedges = (triangleledge_t *) m_pMemory;
|
||
|
memset( m_pMemory, 0, memSize );
|
||
|
int i;
|
||
|
|
||
|
for ( i = 0; i < list.vertexCount; i++ )
|
||
|
{
|
||
|
ConvertPositionToIVP( list.pVerts[i], pPoints[i] );
|
||
|
}
|
||
|
|
||
|
for ( i = 0; i < list.triangleCount; i++ )
|
||
|
{
|
||
|
Vector v0 = list.pVerts[list.indices[i*3+0]];
|
||
|
Vector v1 = list.pVerts[list.indices[i*3+1]];
|
||
|
Vector v2 = list.pVerts[list.indices[i*3+2]];
|
||
|
Assert( v0 != v1 && v1 != v2 && v0 != v2 );
|
||
|
CVPhysicsVirtualMeshWriter::InitTwoSidedTriangleLege( &pLedges[i], pPoints, list.indices[i*3+0], list.indices[i*3+1], list.indices[i*3+2], 0 );
|
||
|
}
|
||
|
Assert( list.triangleCount > 0 && list.triangleCount <= MAX_VIRTUAL_TRIANGLES );
|
||
|
// if there's a hull, build it out too
|
||
|
if ( list.pHull )
|
||
|
{
|
||
|
virtualmeshhull_t *pHeader = (virtualmeshhull_t *)list.pHull;
|
||
|
m_hullCount = pHeader->hullCount;
|
||
|
Assert( (ledgeSize + pointSize) < 65536 );
|
||
|
m_hullOffset = ledgeSize + pointSize;
|
||
|
byte *pMem = (byte *)m_pMemory + m_hullOffset;
|
||
|
#if _DEBUG
|
||
|
int hullSize = CVPhysicsVirtualMeshWriter::UnpackLedgeListFromHull( pMem, pHeader, pPoints );
|
||
|
Assert((m_hullOffset+hullSize)==memSize);
|
||
|
#else
|
||
|
CVPhysicsVirtualMeshWriter::UnpackLedgeListFromHull( pMem, pHeader, pPoints );
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// UNDONE: Tune / expose this constant 512K budget for terrain collision
|
||
|
const int g_MeshSize = (2048 * 1024);
|
||
|
static CDataManager<CMeshInstance, virtualmeshlist_t, CMeshInstance *, CThreadFastMutex> g_MeshManager( g_MeshSize );
|
||
|
static int numIndices = 0, numTriangles = 0, numBaseTriangles = 0, numSplits = 0;
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Purpose: This allows for just-in-time procedural triangle soup data to be
|
||
|
// instanced & cached as IVP collision data (compact ledges)
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// NOTE: This is the permanent in-memory representation. It holds the compressed data
|
||
|
// and the parameters necessary to request the proxy geometry as needed
|
||
|
class CPhysCollideVirtualMesh : public CPhysCollide
|
||
|
{
|
||
|
public:
|
||
|
// UNDONE: Unlike other CPhysCollide objects, operations the virtual mesh are
|
||
|
// non-const because they may instantiate the cache. This causes problems with the interface.
|
||
|
// Maybe the cache stuff should be mutable, but it amounts to the same kind of
|
||
|
// hackery to cast away const.
|
||
|
|
||
|
// get a surface manager
|
||
|
virtual IVP_SurfaceManager *CreateSurfaceManager( short &collideType ) const
|
||
|
{
|
||
|
collideType = COLLIDE_VIRTUAL;
|
||
|
// UNDONE: Figure out how to avoid this const_cast
|
||
|
return new IVP_SurfaceManager_VirtualMesh(const_cast<CPhysCollideVirtualMesh *>(this));
|
||
|
}
|
||
|
virtual void GetAllLedges( IVP_U_BigVector<IVP_Compact_Ledge> &ledges ) const
|
||
|
{
|
||
|
const triangleledge_t *pLedges = const_cast<CPhysCollideVirtualMesh *>(this)->AddRef()->GetLedges();
|
||
|
for ( int i = 0; i < m_ledgeCount; i++ )
|
||
|
{
|
||
|
ledges.add( const_cast<IVP_Compact_Ledge *>(&pLedges[i].ledge) );
|
||
|
}
|
||
|
const_cast<CPhysCollideVirtualMesh *>(this)->Release();
|
||
|
}
|
||
|
virtual unsigned int GetSerializationSize() const
|
||
|
{
|
||
|
if ( !m_pHull )
|
||
|
return 0;
|
||
|
return m_pHull->TotalSize();
|
||
|
}
|
||
|
|
||
|
virtual unsigned int SerializeToBuffer( char *pDest, bool bSwap = false ) const
|
||
|
{
|
||
|
unsigned int size = GetSerializationSize();
|
||
|
if ( size )
|
||
|
{
|
||
|
memcpy( pDest, m_pHull, size );
|
||
|
}
|
||
|
return size;
|
||
|
}
|
||
|
virtual int GetVCollideIndex() const { return 0; }
|
||
|
virtual void SetMassCenter( const Vector &massCenter ) {Assert(0); }
|
||
|
virtual Vector GetOrthographicAreas() const { return Vector(1,1,1);}
|
||
|
|
||
|
Vector GetMassCenter() const;
|
||
|
virtual float GetSphereRadius() const;
|
||
|
float GetSphereRadiusIVP() const;
|
||
|
void Init( const char *pBuffer, unsigned int size )
|
||
|
{
|
||
|
}
|
||
|
void GetAllLedgesWithinRadius( const IVP_U_Point *observer_os, IVP_DOUBLE radius, IVP_U_BigVector<IVP_Compact_Ledge> *resulting_ledges, const IVP_Compact_Ledge *pRootLedge = NULL )
|
||
|
{
|
||
|
virtualmeshtrianglelist_t list;
|
||
|
list.triangleCount = 0;
|
||
|
Vector centerHL;
|
||
|
ConvertPositionToHL( *observer_os, centerHL );
|
||
|
float radiusHL = ConvertDistanceToHL(radius);
|
||
|
m_params.pMeshEventHandler->GetTrianglesInSphere( m_params.userData, centerHL, radiusHL, &list );
|
||
|
if ( list.triangleCount )
|
||
|
{
|
||
|
CMeshInstance *pMesh = AddRef();
|
||
|
const triangleledge_t *pLedges = pMesh->GetLedges();
|
||
|
FrameRelease();
|
||
|
|
||
|
// If we have two root ledges, then each one contains half the triangles
|
||
|
// only return triangles indexed under the root ledge being queried
|
||
|
int minTriangle = 0;
|
||
|
int maxTriangle = m_ledgeCount;
|
||
|
if ( pMesh->HullCount() > 1 )
|
||
|
{
|
||
|
Assert(pMesh->HullCount()==2);
|
||
|
IVP_Compact_Ledge *pRootNodes[2];
|
||
|
pMesh->GetRootLedges( pRootNodes, 2 );
|
||
|
int midTriangle = m_ledgeCount/2;
|
||
|
if ( pRootLedge == pRootNodes[0] )
|
||
|
{
|
||
|
maxTriangle = midTriangle;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
minTriangle = midTriangle;
|
||
|
}
|
||
|
}
|
||
|
IVP_DOUBLE radiusSq = radius * radius;
|
||
|
for ( int i = 0; i < list.triangleCount; i++ )
|
||
|
{
|
||
|
Assert( list.triangleIndices[i] < m_ledgeCount );
|
||
|
if ( list.triangleIndices[i] < minTriangle || list.triangleIndices[i] >= maxTriangle )
|
||
|
continue;
|
||
|
|
||
|
const IVP_Compact_Ledge *ledge = &pLedges[list.triangleIndices[i]].ledge;
|
||
|
Assert(ledge->get_n_triangles() == 2);
|
||
|
const IVP_Compact_Triangle *triangle = ledge->get_first_triangle();
|
||
|
IVP_DOUBLE qdist = IVP_CLS.calc_qlen_PF_F_space(ledge, triangle, observer_os);
|
||
|
if ( qdist > radiusSq )
|
||
|
{
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
resulting_ledges->add( const_cast<IVP_Compact_Ledge *>(ledge) );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
virtual void OutputDebugInfo() const
|
||
|
{
|
||
|
Msg("Virtual mesh!\n");
|
||
|
}
|
||
|
|
||
|
CPhysCollideVirtualMesh(const virtualmeshparams_t ¶ms) : m_params(params), m_hMemory( INVALID_MEMHANDLE ), m_ledgeCount( 0 )
|
||
|
{
|
||
|
m_pHull = NULL;
|
||
|
if ( params.buildOuterHull )
|
||
|
{
|
||
|
BuildBoundingLedge();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
virtual ~CPhysCollideVirtualMesh();
|
||
|
|
||
|
// adds a lock on the collsion memory :: MUST CALL Release() or FrameRelease corresponding to this call!!!
|
||
|
CMeshInstance *AddRef();
|
||
|
|
||
|
void BuildBoundingLedge();
|
||
|
static virtualmeshhull_t *CreateMeshBoundingHull( const virtualmeshlist_t &list );
|
||
|
static void DestroyMeshBoundingHull(virtualmeshhull_t *pHull) { CVPhysicsVirtualMeshWriter::DestroyPackedHull(pHull); }
|
||
|
static IVP_Compact_Surface *CreateBoundingSurfaceFromRange( const virtualmeshlist_t &list, int firstIndex, int indexCount );
|
||
|
|
||
|
int GetRootLedges( IVP_Compact_Ledge **pLedges, int outCount )
|
||
|
{
|
||
|
int count = AddRef()->GetRootLedges(pLedges, outCount);
|
||
|
FrameRelease();
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
IVP_Compact_Ledge *GetBoundingLedge()
|
||
|
{
|
||
|
IVP_Compact_Ledge *pLedge = const_cast<IVP_Compact_Ledge *>(AddRef()->GetOuterHull());
|
||
|
FrameRelease();
|
||
|
return pLedge;
|
||
|
}
|
||
|
|
||
|
// releases a lock on the collision memory
|
||
|
void Release();
|
||
|
// Analagous to Release, but happens at the end of the frame
|
||
|
void FrameRelease()
|
||
|
{
|
||
|
CUtlVector<CPhysCollideVirtualMesh *> *pLocks = g_pMeshFrameLocks;
|
||
|
if ( !pLocks )
|
||
|
{
|
||
|
g_pMeshFrameLocks = pLocks = g_MeshFrameLocksPool.GetObject();
|
||
|
Assert( pLocks );
|
||
|
}
|
||
|
pLocks->AddToTail(this);
|
||
|
}
|
||
|
inline void GetBounds( Vector &mins, Vector &maxs ) const
|
||
|
{
|
||
|
m_params.pMeshEventHandler->GetWorldspaceBounds( m_params.userData, &mins, &maxs );
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
CMeshInstance *BuildLedges();
|
||
|
|
||
|
virtualmeshparams_t m_params;
|
||
|
virtualmeshhull_t *m_pHull;
|
||
|
memhandle_t m_hMemory;
|
||
|
short m_ledgeCount;
|
||
|
};
|
||
|
|
||
|
static void FlushFrameLocks()
|
||
|
{
|
||
|
CUtlVector<CPhysCollideVirtualMesh *> *pLocks = g_pMeshFrameLocks;
|
||
|
if ( pLocks )
|
||
|
{
|
||
|
for ( int i = 0; i < pLocks->Count(); i++ )
|
||
|
{
|
||
|
Assert( (*pLocks)[i] );
|
||
|
(*pLocks)[i]->Release();
|
||
|
}
|
||
|
pLocks->RemoveAll();
|
||
|
g_MeshFrameLocksPool.PutObject( g_pMeshFrameLocks );
|
||
|
g_pMeshFrameLocks = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void VirtualMeshPSI()
|
||
|
{
|
||
|
FlushFrameLocks();
|
||
|
}
|
||
|
|
||
|
|
||
|
Vector CPhysCollideVirtualMesh::GetMassCenter() const
|
||
|
{
|
||
|
Vector mins, maxs;
|
||
|
GetBounds( mins, maxs );
|
||
|
return 0.5 * (mins + maxs);
|
||
|
}
|
||
|
|
||
|
float CPhysCollideVirtualMesh::GetSphereRadius() const
|
||
|
{
|
||
|
Vector mins, maxs;
|
||
|
GetBounds( mins, maxs );
|
||
|
Vector point = 0.5 * (mins+maxs);
|
||
|
return (maxs - point).Length();
|
||
|
}
|
||
|
|
||
|
float CPhysCollideVirtualMesh::GetSphereRadiusIVP() const
|
||
|
{
|
||
|
return ConvertDistanceToIVP( GetSphereRadius() );
|
||
|
}
|
||
|
|
||
|
static CThreadFastMutex s_BuildVirtualMeshMutex;
|
||
|
CMeshInstance *CPhysCollideVirtualMesh::AddRef()
|
||
|
{
|
||
|
CMeshInstance *pMesh = g_MeshManager.LockResource( m_hMemory );
|
||
|
if ( !pMesh )
|
||
|
{
|
||
|
s_BuildVirtualMeshMutex.Lock();
|
||
|
pMesh = g_MeshManager.LockResource( m_hMemory );
|
||
|
if ( !pMesh )
|
||
|
{
|
||
|
pMesh = BuildLedges();
|
||
|
}
|
||
|
s_BuildVirtualMeshMutex.Unlock();
|
||
|
}
|
||
|
Assert( pMesh );
|
||
|
return pMesh;
|
||
|
}
|
||
|
|
||
|
void CPhysCollideVirtualMesh::Release()
|
||
|
{
|
||
|
g_MeshManager.UnlockResource( m_hMemory );
|
||
|
}
|
||
|
|
||
|
CPhysCollideVirtualMesh::~CPhysCollideVirtualMesh()
|
||
|
{
|
||
|
CVPhysicsVirtualMeshWriter::DestroyPackedHull(m_pHull);
|
||
|
g_MeshManager.DestroyResource( m_hMemory );
|
||
|
}
|
||
|
|
||
|
CMeshInstance *CPhysCollideVirtualMesh::BuildLedges()
|
||
|
{
|
||
|
virtualmeshlist_t list;
|
||
|
m_params.pMeshEventHandler->GetVirtualMesh( m_params.userData, &list );
|
||
|
if ( !list.pHull )
|
||
|
{
|
||
|
list.pHull = (byte *)m_pHull;
|
||
|
}
|
||
|
|
||
|
if ( list.triangleCount )
|
||
|
{
|
||
|
m_hMemory = g_MeshManager.CreateResource( list );
|
||
|
m_ledgeCount = list.triangleCount;
|
||
|
CMeshInstance *pMesh = g_MeshManager.LockResource( m_hMemory );
|
||
|
return pMesh;
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
// build the outer ledge, split into two if necessary
|
||
|
void CPhysCollideVirtualMesh::BuildBoundingLedge()
|
||
|
{
|
||
|
virtualmeshlist_t list;
|
||
|
m_params.pMeshEventHandler->GetVirtualMesh( m_params.userData, &list );
|
||
|
m_pHull = CreateMeshBoundingHull(list);
|
||
|
}
|
||
|
|
||
|
virtualmeshhull_t *CPhysCollideVirtualMesh::CreateMeshBoundingHull( const virtualmeshlist_t &list )
|
||
|
{
|
||
|
virtualmeshhull_t *pHull = NULL;
|
||
|
if ( list.triangleCount )
|
||
|
{
|
||
|
IVP_Compact_Surface *pSurface = CreateBoundingSurfaceFromRange( list, 0, list.indexCount );
|
||
|
if ( pSurface )
|
||
|
{
|
||
|
const IVP_Compact_Ledge *pLedge = pSurface->get_compact_ledge_tree_root()->get_compact_hull();
|
||
|
if ( CVPhysicsVirtualMeshWriter::LedgeCanBePacked(pLedge, list) )
|
||
|
{
|
||
|
pHull = CVPhysicsVirtualMeshWriter::CreatePackedHullFromLedges( list, &pLedge, 1 );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// too big to pack to 8-bits, split in two
|
||
|
IVP_Compact_Surface *pSurface0 = CreateBoundingSurfaceFromRange( list, 0, list.indexCount/2 );
|
||
|
IVP_Compact_Surface *pSurface1 = CreateBoundingSurfaceFromRange( list, list.indexCount/2, list.indexCount/2 );
|
||
|
|
||
|
const IVP_Compact_Ledge *pLedges[2] = {pSurface0->get_compact_ledge_tree_root()->get_compact_hull(), pSurface1->get_compact_ledge_tree_root()->get_compact_hull()};
|
||
|
pHull = CVPhysicsVirtualMeshWriter::CreatePackedHullFromLedges( list, pLedges, 2 );
|
||
|
ivp_free_aligned(pSurface0);
|
||
|
ivp_free_aligned(pSurface1);
|
||
|
}
|
||
|
ivp_free_aligned(pSurface);
|
||
|
}
|
||
|
}
|
||
|
return pHull;
|
||
|
}
|
||
|
|
||
|
IVP_Compact_Surface *CPhysCollideVirtualMesh::CreateBoundingSurfaceFromRange( const virtualmeshlist_t &list, int firstIndex, int indexCount )
|
||
|
{
|
||
|
Assert( list.triangleCount );
|
||
|
IVP_U_Point triVerts[3];
|
||
|
IVP_U_Vector<IVP_U_Point> triList;
|
||
|
IVP_SurfaceBuilder_Ledge_Soup builder;
|
||
|
triList.add( &triVerts[0] );
|
||
|
triList.add( &triVerts[1] );
|
||
|
triList.add( &triVerts[2] );
|
||
|
int lastIndex = firstIndex + indexCount;
|
||
|
int firstTriangle = firstIndex/3;
|
||
|
int lastTriangle = lastIndex/3;
|
||
|
for ( int i = firstTriangle; i < lastTriangle; i++ )
|
||
|
{
|
||
|
ConvertPositionToIVP( list.pVerts[list.indices[i*3+0]], triVerts[0] );
|
||
|
ConvertPositionToIVP( list.pVerts[list.indices[i*3+1]], triVerts[1] );
|
||
|
ConvertPositionToIVP( list.pVerts[list.indices[i*3+2]], triVerts[2] );
|
||
|
IVP_Compact_Ledge *pLedge = IVP_SurfaceBuilder_Pointsoup::convert_pointsoup_to_compact_ledge( &triList );
|
||
|
builder.insert_ledge( pLedge );
|
||
|
}
|
||
|
// build a convex hull of those verts
|
||
|
IVP_Template_Surbuild_LedgeSoup params;
|
||
|
params.build_root_convex_hull = IVP_TRUE;
|
||
|
IVP_Compact_Surface *pSurface = builder.compile( ¶ms );
|
||
|
|
||
|
#if _DEBUG
|
||
|
const IVP_Compact_Ledgetree_Node *node = pSurface->get_compact_ledge_tree_root();
|
||
|
IVP_Compact_Ledge *pLedge = const_cast<IVP_Compact_Ledge *>(node->get_compact_hull()); // we're going to write into client data on each vert before we throw this away
|
||
|
Assert(pLedge && !pLedge->is_terminal());
|
||
|
#endif
|
||
|
return pSurface;
|
||
|
}
|
||
|
|
||
|
CPhysCollide *CreateVirtualMesh( const virtualmeshparams_t ¶ms )
|
||
|
{
|
||
|
return new CPhysCollideVirtualMesh(params);
|
||
|
}
|
||
|
|
||
|
void DestroyVirtualMesh( CPhysCollide *pMesh )
|
||
|
{
|
||
|
FlushFrameLocks();
|
||
|
delete pMesh;
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// IVP_SurfaceManager_VirtualMesh
|
||
|
// This hooks the underlying collision model to IVP's surfacemanager interface
|
||
|
//-----------------------------------------------------------------------------
|
||
|
|
||
|
IVP_SurfaceManager_VirtualMesh::IVP_SurfaceManager_VirtualMesh( CPhysCollideVirtualMesh *pMesh ) : m_pMesh(pMesh)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
IVP_SurfaceManager_VirtualMesh::~IVP_SurfaceManager_VirtualMesh()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void IVP_SurfaceManager_VirtualMesh::add_reference_to_ledge(const IVP_Compact_Ledge *ledge)
|
||
|
{
|
||
|
m_pMesh->AddRef();
|
||
|
}
|
||
|
void IVP_SurfaceManager_VirtualMesh::remove_reference_to_ledge(const IVP_Compact_Ledge *ledge)
|
||
|
{
|
||
|
m_pMesh->Release();
|
||
|
}
|
||
|
|
||
|
// Implement the IVP raycast. This is done by testing each triangle (front & back) - so it's slow
|
||
|
void IVP_SurfaceManager_VirtualMesh::insert_all_ledges_hitting_ray(IVP_Ray_Solver *ray_solver, IVP_Real_Object *object)
|
||
|
{
|
||
|
IVP_Vector_of_Ledges_256 ledges;
|
||
|
IVP_Ray_Solver_Os ray_solver_os( ray_solver, object);
|
||
|
|
||
|
IVP_U_Point center(&ray_solver_os.ray_center_point);
|
||
|
m_pMesh->GetAllLedgesWithinRadius( ¢er, ray_solver_os.ray_length * 0.5f, &ledges );
|
||
|
|
||
|
for (int i=ledges.len()-1;i>=0;i--)
|
||
|
{
|
||
|
const IVP_Compact_Ledge *l = ledges.element_at(i);
|
||
|
ray_solver_os.check_ray_against_compact_ledge_os(l);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Used to predict collision detection needs
|
||
|
void IVP_SurfaceManager_VirtualMesh::get_radius_and_radius_dev_to_given_center(const IVP_U_Float_Point *center, IVP_FLOAT *radius, IVP_FLOAT *radius_deviation) const
|
||
|
{
|
||
|
// UNDONE: Check radius_deviation to see if there is a useful optimization to be made here
|
||
|
*radius = m_pMesh->GetSphereRadiusIVP();
|
||
|
*radius_deviation = *radius;
|
||
|
}
|
||
|
|
||
|
// get a single convex if appropriate
|
||
|
const IVP_Compact_Ledge *IVP_SurfaceManager_VirtualMesh::get_single_convex() const
|
||
|
{
|
||
|
return m_pMesh->GetBoundingLedge();
|
||
|
}
|
||
|
|
||
|
// get a mass center for objects using this collision rep
|
||
|
void IVP_SurfaceManager_VirtualMesh::get_mass_center(IVP_U_Float_Point *mass_center_out) const
|
||
|
{
|
||
|
Vector center = m_pMesh->GetMassCenter();
|
||
|
ConvertPositionToIVP( center, *mass_center_out );
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Purpose: Compute a diagonalized inertia tensor.
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void IVP_SurfaceManager_VirtualMesh::get_rotation_inertia( IVP_U_Float_Point *rotation_inertia_out ) const
|
||
|
{
|
||
|
// HACKHACK: No need for this because we only support static objects for now
|
||
|
rotation_inertia_out->set(1,1,1);
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Purpose: Query ledges (triangles in this case) in sphere
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void IVP_SurfaceManager_VirtualMesh::get_all_ledges_within_radius(const IVP_U_Point *observer_os, IVP_DOUBLE radius,
|
||
|
const IVP_Compact_Ledge *root_ledge, IVP_Real_Object *other_object, const IVP_Compact_Ledge *other_reference_ledge,
|
||
|
IVP_U_BigVector<IVP_Compact_Ledge> *resulting_ledges)
|
||
|
{
|
||
|
if ( !root_ledge )
|
||
|
{
|
||
|
IVP_Compact_Ledge *pLedges[2];
|
||
|
int count = m_pMesh->GetRootLedges( pLedges, ARRAYSIZE(pLedges) );
|
||
|
if ( count )
|
||
|
{
|
||
|
for ( int i = 0; i < count; i++ )
|
||
|
{
|
||
|
resulting_ledges->add( pLedges[i] ); // return the recursive/virtual outer hull
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
m_pMesh->GetAllLedgesWithinRadius( observer_os, radius, resulting_ledges, root_ledge );
|
||
|
}
|
||
|
|
||
|
//-----------------------------------------------------------------------------
|
||
|
// Purpose: Query all of the ledges (triangles)
|
||
|
//-----------------------------------------------------------------------------
|
||
|
void IVP_SurfaceManager_VirtualMesh::get_all_terminal_ledges(IVP_U_BigVector<IVP_Compact_Ledge> *resulting_ledges)
|
||
|
{
|
||
|
m_pMesh->GetAllLedges( *resulting_ledges );
|
||
|
}
|
||
|
|
||
|
|
||
|
|