source-engine/thirdparty/openssl/ssl/d1_pkt.c

1968 lines
63 KiB
C
Raw Normal View History

2020-10-22 17:43:01 +00:00
/* ssl/d1_pkt.c */
/*
* DTLS implementation written by Nagendra Modadugu
* (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
*/
/* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
#include <stdio.h>
#include <errno.h>
#define USE_SOCKETS
#include "ssl_locl.h"
#include <openssl/evp.h>
#include <openssl/buffer.h>
#include <openssl/pqueue.h>
#include <openssl/rand.h>
/* mod 128 saturating subtract of two 64-bit values in big-endian order */
static int satsub64be(const unsigned char *v1, const unsigned char *v2)
{
int ret, sat, brw, i;
if (sizeof(long) == 8)
do {
const union {
long one;
char little;
} is_endian = {
1
};
long l;
if (is_endian.little)
break;
/* not reached on little-endians */
/*
* following test is redundant, because input is always aligned,
* but I take no chances...
*/
if (((size_t)v1 | (size_t)v2) & 0x7)
break;
l = *((long *)v1);
l -= *((long *)v2);
if (l > 128)
return 128;
else if (l < -128)
return -128;
else
return (int)l;
} while (0);
ret = (int)v1[7] - (int)v2[7];
sat = 0;
brw = ret >> 8; /* brw is either 0 or -1 */
if (ret & 0x80) {
for (i = 6; i >= 0; i--) {
brw += (int)v1[i] - (int)v2[i];
sat |= ~brw;
brw >>= 8;
}
} else {
for (i = 6; i >= 0; i--) {
brw += (int)v1[i] - (int)v2[i];
sat |= brw;
brw >>= 8;
}
}
brw <<= 8; /* brw is either 0 or -256 */
if (sat & 0xff)
return brw | 0x80;
else
return brw + (ret & 0xFF);
}
static int have_handshake_fragment(SSL *s, int type, unsigned char *buf,
int len, int peek);
static int dtls1_record_replay_check(SSL *s, DTLS1_BITMAP *bitmap);
static void dtls1_record_bitmap_update(SSL *s, DTLS1_BITMAP *bitmap);
static DTLS1_BITMAP *dtls1_get_bitmap(SSL *s, SSL3_RECORD *rr,
unsigned int *is_next_epoch);
#if 0
static int dtls1_record_needs_buffering(SSL *s, SSL3_RECORD *rr,
unsigned short *priority,
unsigned long *offset);
#endif
static int dtls1_buffer_record(SSL *s, record_pqueue *q,
unsigned char *priority);
static int dtls1_process_record(SSL *s, DTLS1_BITMAP *bitmap);
/* copy buffered record into SSL structure */
static int dtls1_copy_record(SSL *s, pitem *item)
{
DTLS1_RECORD_DATA *rdata;
rdata = (DTLS1_RECORD_DATA *)item->data;
if (s->s3->rbuf.buf != NULL)
OPENSSL_free(s->s3->rbuf.buf);
s->packet = rdata->packet;
s->packet_length = rdata->packet_length;
memcpy(&(s->s3->rbuf), &(rdata->rbuf), sizeof(SSL3_BUFFER));
memcpy(&(s->s3->rrec), &(rdata->rrec), sizeof(SSL3_RECORD));
/* Set proper sequence number for mac calculation */
memcpy(&(s->s3->read_sequence[2]), &(rdata->packet[5]), 6);
return (1);
}
static int
dtls1_buffer_record(SSL *s, record_pqueue *queue, unsigned char *priority)
{
DTLS1_RECORD_DATA *rdata;
pitem *item;
/* Limit the size of the queue to prevent DOS attacks */
if (pqueue_size(queue->q) >= 100)
return 0;
rdata = OPENSSL_malloc(sizeof(DTLS1_RECORD_DATA));
item = pitem_new(priority, rdata);
if (rdata == NULL || item == NULL) {
if (rdata != NULL)
OPENSSL_free(rdata);
if (item != NULL)
pitem_free(item);
SSLerr(SSL_F_DTLS1_BUFFER_RECORD, ERR_R_INTERNAL_ERROR);
return -1;
}
rdata->packet = s->packet;
rdata->packet_length = s->packet_length;
memcpy(&(rdata->rbuf), &(s->s3->rbuf), sizeof(SSL3_BUFFER));
memcpy(&(rdata->rrec), &(s->s3->rrec), sizeof(SSL3_RECORD));
item->data = rdata;
#ifndef OPENSSL_NO_SCTP
/* Store bio_dgram_sctp_rcvinfo struct */
if (BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
(s->state == SSL3_ST_SR_FINISHED_A
|| s->state == SSL3_ST_CR_FINISHED_A)) {
BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SCTP_GET_RCVINFO,
sizeof(rdata->recordinfo), &rdata->recordinfo);
}
#endif
s->packet = NULL;
s->packet_length = 0;
memset(&(s->s3->rbuf), 0, sizeof(SSL3_BUFFER));
memset(&(s->s3->rrec), 0, sizeof(SSL3_RECORD));
if (!ssl3_setup_buffers(s)) {
SSLerr(SSL_F_DTLS1_BUFFER_RECORD, ERR_R_INTERNAL_ERROR);
if (rdata->rbuf.buf != NULL)
OPENSSL_free(rdata->rbuf.buf);
OPENSSL_free(rdata);
pitem_free(item);
return (-1);
}
/* insert should not fail, since duplicates are dropped */
if (pqueue_insert(queue->q, item) == NULL) {
SSLerr(SSL_F_DTLS1_BUFFER_RECORD, ERR_R_INTERNAL_ERROR);
if (rdata->rbuf.buf != NULL)
OPENSSL_free(rdata->rbuf.buf);
OPENSSL_free(rdata);
pitem_free(item);
return (-1);
}
return (1);
}
static int dtls1_retrieve_buffered_record(SSL *s, record_pqueue *queue)
{
pitem *item;
item = pqueue_pop(queue->q);
if (item) {
dtls1_copy_record(s, item);
OPENSSL_free(item->data);
pitem_free(item);
return (1);
}
return (0);
}
/*
* retrieve a buffered record that belongs to the new epoch, i.e., not
* processed yet
*/
#define dtls1_get_unprocessed_record(s) \
dtls1_retrieve_buffered_record((s), \
&((s)->d1->unprocessed_rcds))
/*
* retrieve a buffered record that belongs to the current epoch, ie,
* processed
*/
#define dtls1_get_processed_record(s) \
dtls1_retrieve_buffered_record((s), \
&((s)->d1->processed_rcds))
static int dtls1_process_buffered_records(SSL *s)
{
pitem *item;
SSL3_BUFFER *rb;
SSL3_RECORD *rr;
DTLS1_BITMAP *bitmap;
unsigned int is_next_epoch;
int replayok = 1;
item = pqueue_peek(s->d1->unprocessed_rcds.q);
if (item) {
/* Check if epoch is current. */
if (s->d1->unprocessed_rcds.epoch != s->d1->r_epoch)
return 1; /* Nothing to do. */
rr = &s->s3->rrec;
rb = &s->s3->rbuf;
if (rb->left > 0) {
/*
* We've still got data from the current packet to read. There could
* be a record from the new epoch in it - so don't overwrite it
* with the unprocessed records yet (we'll do it when we've
* finished reading the current packet).
*/
return 1;
}
/* Process all the records. */
while (pqueue_peek(s->d1->unprocessed_rcds.q)) {
dtls1_get_unprocessed_record(s);
bitmap = dtls1_get_bitmap(s, rr, &is_next_epoch);
if (bitmap == NULL) {
/*
* Should not happen. This will only ever be NULL when the
* current record is from a different epoch. But that cannot
* be the case because we already checked the epoch above
*/
SSLerr(SSL_F_DTLS1_PROCESS_BUFFERED_RECORDS,
ERR_R_INTERNAL_ERROR);
return 0;
}
#ifndef OPENSSL_NO_SCTP
/* Only do replay check if no SCTP bio */
if (!BIO_dgram_is_sctp(SSL_get_rbio(s)))
#endif
{
/*
* Check whether this is a repeat, or aged record. We did this
* check once already when we first received the record - but
* we might have updated the window since then due to
* records we subsequently processed.
*/
replayok = dtls1_record_replay_check(s, bitmap);
}
if (!replayok || !dtls1_process_record(s, bitmap)) {
/* dump this record */
rr->length = 0;
s->packet_length = 0;
continue;
}
if (dtls1_buffer_record(s, &(s->d1->processed_rcds),
s->s3->rrec.seq_num) < 0)
return 0;
}
}
/*
* sync epoch numbers once all the unprocessed records have been
* processed
*/
s->d1->processed_rcds.epoch = s->d1->r_epoch;
s->d1->unprocessed_rcds.epoch = s->d1->r_epoch + 1;
return 1;
}
#if 0
static int dtls1_get_buffered_record(SSL *s)
{
pitem *item;
PQ_64BIT priority =
(((PQ_64BIT) s->d1->handshake_read_seq) << 32) |
((PQ_64BIT) s->d1->r_msg_hdr.frag_off);
/* if we're not (re)negotiating, nothing buffered */
if (!SSL_in_init(s))
return 0;
item = pqueue_peek(s->d1->rcvd_records);
if (item && item->priority == priority) {
/*
* Check if we've received the record of interest. It must be a
* handshake record, since data records as passed up without
* buffering
*/
DTLS1_RECORD_DATA *rdata;
item = pqueue_pop(s->d1->rcvd_records);
rdata = (DTLS1_RECORD_DATA *)item->data;
if (s->s3->rbuf.buf != NULL)
OPENSSL_free(s->s3->rbuf.buf);
s->packet = rdata->packet;
s->packet_length = rdata->packet_length;
memcpy(&(s->s3->rbuf), &(rdata->rbuf), sizeof(SSL3_BUFFER));
memcpy(&(s->s3->rrec), &(rdata->rrec), sizeof(SSL3_RECORD));
OPENSSL_free(item->data);
pitem_free(item);
/* s->d1->next_expected_seq_num++; */
return (1);
}
return 0;
}
#endif
static int dtls1_process_record(SSL *s, DTLS1_BITMAP *bitmap)
{
int i, al;
int enc_err;
SSL_SESSION *sess;
SSL3_RECORD *rr;
unsigned int mac_size, orig_len;
unsigned char md[EVP_MAX_MD_SIZE];
rr = &(s->s3->rrec);
sess = s->session;
/*
* At this point, s->packet_length == SSL3_RT_HEADER_LNGTH + rr->length,
* and we have that many bytes in s->packet
*/
rr->input = &(s->packet[DTLS1_RT_HEADER_LENGTH]);
/*
* ok, we can now read from 's->packet' data into 'rr' rr->input points
* at rr->length bytes, which need to be copied into rr->data by either
* the decryption or by the decompression When the data is 'copied' into
* the rr->data buffer, rr->input will be pointed at the new buffer
*/
/*
* We now have - encrypted [ MAC [ compressed [ plain ] ] ] rr->length
* bytes of encrypted compressed stuff.
*/
/* check is not needed I believe */
if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH) {
al = SSL_AD_RECORD_OVERFLOW;
SSLerr(SSL_F_DTLS1_PROCESS_RECORD, SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
goto f_err;
}
/* decrypt in place in 'rr->input' */
rr->data = rr->input;
enc_err = s->method->ssl3_enc->enc(s, 0);
/*-
* enc_err is:
* 0: (in non-constant time) if the record is publically invalid.
* 1: if the padding is valid
* -1: if the padding is invalid
*/
if (enc_err == 0) {
/* For DTLS we simply ignore bad packets. */
rr->length = 0;
s->packet_length = 0;
goto err;
}
#ifdef TLS_DEBUG
printf("dec %d\n", rr->length);
{
unsigned int z;
for (z = 0; z < rr->length; z++)
printf("%02X%c", rr->data[z], ((z + 1) % 16) ? ' ' : '\n');
}
printf("\n");
#endif
/* r->length is now the compressed data plus mac */
if ((sess != NULL) &&
(s->enc_read_ctx != NULL) && (EVP_MD_CTX_md(s->read_hash) != NULL)) {
/* s->read_hash != NULL => mac_size != -1 */
unsigned char *mac = NULL;
unsigned char mac_tmp[EVP_MAX_MD_SIZE];
mac_size = EVP_MD_CTX_size(s->read_hash);
OPENSSL_assert(mac_size <= EVP_MAX_MD_SIZE);
/*
* kludge: *_cbc_remove_padding passes padding length in rr->type
*/
orig_len = rr->length + ((unsigned int)rr->type >> 8);
/*
* orig_len is the length of the record before any padding was
* removed. This is public information, as is the MAC in use,
* therefore we can safely process the record in a different amount
* of time if it's too short to possibly contain a MAC.
*/
if (orig_len < mac_size ||
/* CBC records must have a padding length byte too. */
(EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
orig_len < mac_size + 1)) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_DTLS1_PROCESS_RECORD, SSL_R_LENGTH_TOO_SHORT);
goto f_err;
}
if (EVP_CIPHER_CTX_mode(s->enc_read_ctx) == EVP_CIPH_CBC_MODE) {
/*
* We update the length so that the TLS header bytes can be
* constructed correctly but we need to extract the MAC in
* constant time from within the record, without leaking the
* contents of the padding bytes.
*/
mac = mac_tmp;
ssl3_cbc_copy_mac(mac_tmp, rr, mac_size, orig_len);
rr->length -= mac_size;
} else {
/*
* In this case there's no padding, so |orig_len| equals
* |rec->length| and we checked that there's enough bytes for
* |mac_size| above.
*/
rr->length -= mac_size;
mac = &rr->data[rr->length];
}
i = s->method->ssl3_enc->mac(s, md, 0 /* not send */ );
if (i < 0 || mac == NULL
|| CRYPTO_memcmp(md, mac, (size_t)mac_size) != 0)
enc_err = -1;
if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH + mac_size)
enc_err = -1;
}
if (enc_err < 0) {
/* decryption failed, silently discard message */
rr->length = 0;
s->packet_length = 0;
goto err;
}
/* r->length is now just compressed */
if (s->expand != NULL) {
if (rr->length > SSL3_RT_MAX_COMPRESSED_LENGTH) {
al = SSL_AD_RECORD_OVERFLOW;
SSLerr(SSL_F_DTLS1_PROCESS_RECORD,
SSL_R_COMPRESSED_LENGTH_TOO_LONG);
goto f_err;
}
if (!ssl3_do_uncompress(s)) {
al = SSL_AD_DECOMPRESSION_FAILURE;
SSLerr(SSL_F_DTLS1_PROCESS_RECORD, SSL_R_BAD_DECOMPRESSION);
goto f_err;
}
}
if (rr->length > SSL3_RT_MAX_PLAIN_LENGTH) {
al = SSL_AD_RECORD_OVERFLOW;
SSLerr(SSL_F_DTLS1_PROCESS_RECORD, SSL_R_DATA_LENGTH_TOO_LONG);
goto f_err;
}
rr->off = 0;
/*-
* So at this point the following is true
* ssl->s3->rrec.type is the type of record
* ssl->s3->rrec.length == number of bytes in record
* ssl->s3->rrec.off == offset to first valid byte
* ssl->s3->rrec.data == where to take bytes from, increment
* after use :-).
*/
/* we have pulled in a full packet so zero things */
s->packet_length = 0;
/* Mark receipt of record. */
dtls1_record_bitmap_update(s, bitmap);
return (1);
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
err:
return (0);
}
/*-
* Call this to get a new input record.
* It will return <= 0 if more data is needed, normally due to an error
* or non-blocking IO.
* When it finishes, one packet has been decoded and can be found in
* ssl->s3->rrec.type - is the type of record
* ssl->s3->rrec.data, - data
* ssl->s3->rrec.length, - number of bytes
*/
/* used only by dtls1_read_bytes */
int dtls1_get_record(SSL *s)
{
int ssl_major, ssl_minor;
int i, n;
SSL3_RECORD *rr;
unsigned char *p = NULL;
unsigned short version;
DTLS1_BITMAP *bitmap;
unsigned int is_next_epoch;
rr = &(s->s3->rrec);
again:
/*
* The epoch may have changed. If so, process all the pending records.
* This is a non-blocking operation.
*/
if (!dtls1_process_buffered_records(s))
return -1;
/* if we're renegotiating, then there may be buffered records */
if (dtls1_get_processed_record(s))
return 1;
/* get something from the wire */
/* check if we have the header */
if ((s->rstate != SSL_ST_READ_BODY) ||
(s->packet_length < DTLS1_RT_HEADER_LENGTH)) {
n = ssl3_read_n(s, DTLS1_RT_HEADER_LENGTH, s->s3->rbuf.len, 0);
/* read timeout is handled by dtls1_read_bytes */
if (n <= 0)
return (n); /* error or non-blocking */
/* this packet contained a partial record, dump it */
if (s->packet_length != DTLS1_RT_HEADER_LENGTH) {
s->packet_length = 0;
goto again;
}
s->rstate = SSL_ST_READ_BODY;
p = s->packet;
/* Pull apart the header into the DTLS1_RECORD */
rr->type = *(p++);
ssl_major = *(p++);
ssl_minor = *(p++);
version = (ssl_major << 8) | ssl_minor;
/* sequence number is 64 bits, with top 2 bytes = epoch */
n2s(p, rr->epoch);
memcpy(&(s->s3->read_sequence[2]), p, 6);
p += 6;
n2s(p, rr->length);
/* Lets check version */
if (!s->first_packet) {
if (version != s->version) {
/* unexpected version, silently discard */
rr->length = 0;
s->packet_length = 0;
goto again;
}
}
if ((version & 0xff00) != (s->version & 0xff00)) {
/* wrong version, silently discard record */
rr->length = 0;
s->packet_length = 0;
goto again;
}
if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH) {
/* record too long, silently discard it */
rr->length = 0;
s->packet_length = 0;
goto again;
}
/* now s->rstate == SSL_ST_READ_BODY */
}
/* s->rstate == SSL_ST_READ_BODY, get and decode the data */
if (rr->length > s->packet_length - DTLS1_RT_HEADER_LENGTH) {
/* now s->packet_length == DTLS1_RT_HEADER_LENGTH */
i = rr->length;
n = ssl3_read_n(s, i, i, 1);
/* this packet contained a partial record, dump it */
if (n != i) {
rr->length = 0;
s->packet_length = 0;
goto again;
}
/*
* now n == rr->length, and s->packet_length ==
* DTLS1_RT_HEADER_LENGTH + rr->length
*/
}
s->rstate = SSL_ST_READ_HEADER; /* set state for later operations */
/* match epochs. NULL means the packet is dropped on the floor */
bitmap = dtls1_get_bitmap(s, rr, &is_next_epoch);
if (bitmap == NULL) {
rr->length = 0;
s->packet_length = 0; /* dump this record */
goto again; /* get another record */
}
#ifndef OPENSSL_NO_SCTP
/* Only do replay check if no SCTP bio */
if (!BIO_dgram_is_sctp(SSL_get_rbio(s))) {
#endif
/*
* Check whether this is a repeat, or aged record. Don't check if
* we're listening and this message is a ClientHello. They can look
* as if they're replayed, since they arrive from different
* connections and would be dropped unnecessarily.
*/
if (!(s->d1->listen && rr->type == SSL3_RT_HANDSHAKE &&
s->packet_length > DTLS1_RT_HEADER_LENGTH &&
s->packet[DTLS1_RT_HEADER_LENGTH] == SSL3_MT_CLIENT_HELLO) &&
!dtls1_record_replay_check(s, bitmap)) {
rr->length = 0;
s->packet_length = 0; /* dump this record */
goto again; /* get another record */
}
#ifndef OPENSSL_NO_SCTP
}
#endif
/* just read a 0 length packet */
if (rr->length == 0)
goto again;
/*
* If this record is from the next epoch (either HM or ALERT), and a
* handshake is currently in progress, buffer it since it cannot be
* processed at this time. However, do not buffer anything while
* listening.
*/
if (is_next_epoch) {
if ((SSL_in_init(s) || s->in_handshake) && !s->d1->listen) {
if (dtls1_buffer_record
(s, &(s->d1->unprocessed_rcds), rr->seq_num) < 0)
return -1;
}
rr->length = 0;
s->packet_length = 0;
goto again;
}
if (!dtls1_process_record(s, bitmap)) {
rr->length = 0;
s->packet_length = 0; /* dump this record */
goto again; /* get another record */
}
return (1);
}
/*-
* Return up to 'len' payload bytes received in 'type' records.
* 'type' is one of the following:
*
* - SSL3_RT_HANDSHAKE (when ssl3_get_message calls us)
* - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us)
* - 0 (during a shutdown, no data has to be returned)
*
* If we don't have stored data to work from, read a SSL/TLS record first
* (possibly multiple records if we still don't have anything to return).
*
* This function must handle any surprises the peer may have for us, such as
* Alert records (e.g. close_notify), ChangeCipherSpec records (not really
* a surprise, but handled as if it were), or renegotiation requests.
* Also if record payloads contain fragments too small to process, we store
* them until there is enough for the respective protocol (the record protocol
* may use arbitrary fragmentation and even interleaving):
* Change cipher spec protocol
* just 1 byte needed, no need for keeping anything stored
* Alert protocol
* 2 bytes needed (AlertLevel, AlertDescription)
* Handshake protocol
* 4 bytes needed (HandshakeType, uint24 length) -- we just have
* to detect unexpected Client Hello and Hello Request messages
* here, anything else is handled by higher layers
* Application data protocol
* none of our business
*/
int dtls1_read_bytes(SSL *s, int type, unsigned char *buf, int len, int peek)
{
int al, i, j, ret;
unsigned int n;
SSL3_RECORD *rr;
void (*cb) (const SSL *ssl, int type2, int val) = NULL;
if (s->s3->rbuf.buf == NULL) /* Not initialized yet */
if (!ssl3_setup_buffers(s))
return (-1);
/* XXX: check what the second '&& type' is about */
if ((type && (type != SSL3_RT_APPLICATION_DATA) &&
(type != SSL3_RT_HANDSHAKE) && type) ||
(peek && (type != SSL3_RT_APPLICATION_DATA))) {
SSLerr(SSL_F_DTLS1_READ_BYTES, ERR_R_INTERNAL_ERROR);
return -1;
}
/*
* check whether there's a handshake message (client hello?) waiting
*/
if ((ret = have_handshake_fragment(s, type, buf, len, peek)))
return ret;
/*
* Now s->d1->handshake_fragment_len == 0 if type == SSL3_RT_HANDSHAKE.
*/
#ifndef OPENSSL_NO_SCTP
/*
* Continue handshake if it had to be interrupted to read app data with
* SCTP.
*/
if ((!s->in_handshake && SSL_in_init(s)) ||
(BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
(s->state == DTLS1_SCTP_ST_SR_READ_SOCK
|| s->state == DTLS1_SCTP_ST_CR_READ_SOCK)
&& s->s3->in_read_app_data != 2))
#else
if (!s->in_handshake && SSL_in_init(s))
#endif
{
/* type == SSL3_RT_APPLICATION_DATA */
i = s->handshake_func(s);
if (i < 0)
return (i);
if (i == 0) {
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE);
return (-1);
}
}
start:
s->rwstate = SSL_NOTHING;
/*-
* s->s3->rrec.type - is the type of record
* s->s3->rrec.data, - data
* s->s3->rrec.off, - offset into 'data' for next read
* s->s3->rrec.length, - number of bytes.
*/
rr = &(s->s3->rrec);
/*
* We are not handshaking and have no data yet, so process data buffered
* during the last handshake in advance, if any.
*/
if (s->state == SSL_ST_OK && rr->length == 0) {
pitem *item;
item = pqueue_pop(s->d1->buffered_app_data.q);
if (item) {
#ifndef OPENSSL_NO_SCTP
/* Restore bio_dgram_sctp_rcvinfo struct */
if (BIO_dgram_is_sctp(SSL_get_rbio(s))) {
DTLS1_RECORD_DATA *rdata = (DTLS1_RECORD_DATA *)item->data;
BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SCTP_SET_RCVINFO,
sizeof(rdata->recordinfo), &rdata->recordinfo);
}
#endif
dtls1_copy_record(s, item);
OPENSSL_free(item->data);
pitem_free(item);
}
}
/* Check for timeout */
if (dtls1_handle_timeout(s) > 0)
goto start;
/* get new packet if necessary */
if ((rr->length == 0) || (s->rstate == SSL_ST_READ_BODY)) {
ret = dtls1_get_record(s);
if (ret <= 0) {
ret = dtls1_read_failed(s, ret);
/* anything other than a timeout is an error */
if (ret <= 0)
return (ret);
else
goto start;
}
}
if (s->d1->listen && rr->type != SSL3_RT_HANDSHAKE) {
rr->length = 0;
goto start;
}
/* we now have a packet which can be read and processed */
if (s->s3->change_cipher_spec /* set when we receive ChangeCipherSpec,
* reset by ssl3_get_finished */
&& (rr->type != SSL3_RT_HANDSHAKE)) {
/*
* We now have application data between CCS and Finished. Most likely
* the packets were reordered on their way, so buffer the application
* data for later processing rather than dropping the connection.
*/
if (dtls1_buffer_record(s, &(s->d1->buffered_app_data), rr->seq_num) <
0) {
SSLerr(SSL_F_DTLS1_READ_BYTES, ERR_R_INTERNAL_ERROR);
return -1;
}
rr->length = 0;
goto start;
}
/*
* If the other end has shut down, throw anything we read away (even in
* 'peek' mode)
*/
if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
rr->length = 0;
s->rwstate = SSL_NOTHING;
return (0);
}
if (type == rr->type) { /* SSL3_RT_APPLICATION_DATA or
* SSL3_RT_HANDSHAKE */
/*
* make sure that we are not getting application data when we are
* doing a handshake for the first time
*/
if (SSL_in_init(s) && (type == SSL3_RT_APPLICATION_DATA) &&
(s->enc_read_ctx == NULL)) {
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_APP_DATA_IN_HANDSHAKE);
goto f_err;
}
if (len <= 0)
return (len);
if ((unsigned int)len > rr->length)
n = rr->length;
else
n = (unsigned int)len;
memcpy(buf, &(rr->data[rr->off]), n);
if (!peek) {
rr->length -= n;
rr->off += n;
if (rr->length == 0) {
s->rstate = SSL_ST_READ_HEADER;
rr->off = 0;
}
}
#ifndef OPENSSL_NO_SCTP
/*
* We were about to renegotiate but had to read belated application
* data first, so retry.
*/
if (BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
rr->type == SSL3_RT_APPLICATION_DATA &&
(s->state == DTLS1_SCTP_ST_SR_READ_SOCK
|| s->state == DTLS1_SCTP_ST_CR_READ_SOCK)) {
s->rwstate = SSL_READING;
BIO_clear_retry_flags(SSL_get_rbio(s));
BIO_set_retry_read(SSL_get_rbio(s));
}
/*
* We might had to delay a close_notify alert because of reordered
* app data. If there was an alert and there is no message to read
* anymore, finally set shutdown.
*/
if (BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
s->d1->shutdown_received
&& !BIO_dgram_sctp_msg_waiting(SSL_get_rbio(s))) {
s->shutdown |= SSL_RECEIVED_SHUTDOWN;
return (0);
}
#endif
return (n);
}
/*
* If we get here, then type != rr->type; if we have a handshake message,
* then it was unexpected (Hello Request or Client Hello).
*/
/*
* In case of record types for which we have 'fragment' storage, fill
* that so that we can process the data at a fixed place.
*/
{
unsigned int k, dest_maxlen = 0;
unsigned char *dest = NULL;
unsigned int *dest_len = NULL;
if (rr->type == SSL3_RT_HANDSHAKE) {
dest_maxlen = sizeof s->d1->handshake_fragment;
dest = s->d1->handshake_fragment;
dest_len = &s->d1->handshake_fragment_len;
} else if (rr->type == SSL3_RT_ALERT) {
dest_maxlen = sizeof(s->d1->alert_fragment);
dest = s->d1->alert_fragment;
dest_len = &s->d1->alert_fragment_len;
}
#ifndef OPENSSL_NO_HEARTBEATS
else if (rr->type == TLS1_RT_HEARTBEAT) {
dtls1_process_heartbeat(s);
/* Exit and notify application to read again */
rr->length = 0;
s->rwstate = SSL_READING;
BIO_clear_retry_flags(SSL_get_rbio(s));
BIO_set_retry_read(SSL_get_rbio(s));
return (-1);
}
#endif
/* else it's a CCS message, or application data or wrong */
else if (rr->type != SSL3_RT_CHANGE_CIPHER_SPEC) {
/*
* Application data while renegotiating is allowed. Try again
* reading.
*/
if (rr->type == SSL3_RT_APPLICATION_DATA) {
BIO *bio;
s->s3->in_read_app_data = 2;
bio = SSL_get_rbio(s);
s->rwstate = SSL_READING;
BIO_clear_retry_flags(bio);
BIO_set_retry_read(bio);
return (-1);
}
/* Not certain if this is the right error handling */
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_UNEXPECTED_RECORD);
goto f_err;
}
if (dest_maxlen > 0) {
/*
* XDTLS: In a pathalogical case, the Client Hello may be
* fragmented--don't always expect dest_maxlen bytes
*/
if (rr->length < dest_maxlen) {
#ifdef DTLS1_AD_MISSING_HANDSHAKE_MESSAGE
/*
* for normal alerts rr->length is 2, while
* dest_maxlen is 7 if we were to handle this
* non-existing alert...
*/
FIX ME
#endif
s->rstate = SSL_ST_READ_HEADER;
rr->length = 0;
goto start;
}
/* now move 'n' bytes: */
for (k = 0; k < dest_maxlen; k++) {
dest[k] = rr->data[rr->off++];
rr->length--;
}
*dest_len = dest_maxlen;
}
}
/*-
* s->d1->handshake_fragment_len == 12 iff rr->type == SSL3_RT_HANDSHAKE;
* s->d1->alert_fragment_len == 7 iff rr->type == SSL3_RT_ALERT.
* (Possibly rr is 'empty' now, i.e. rr->length may be 0.)
*/
/* If we are a client, check for an incoming 'Hello Request': */
if ((!s->server) &&
(s->d1->handshake_fragment_len >= DTLS1_HM_HEADER_LENGTH) &&
(s->d1->handshake_fragment[0] == SSL3_MT_HELLO_REQUEST) &&
(s->session != NULL) && (s->session->cipher != NULL)) {
s->d1->handshake_fragment_len = 0;
if ((s->d1->handshake_fragment[1] != 0) ||
(s->d1->handshake_fragment[2] != 0) ||
(s->d1->handshake_fragment[3] != 0)) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_BAD_HELLO_REQUEST);
goto f_err;
}
/*
* no need to check sequence number on HELLO REQUEST messages
*/
if (s->msg_callback)
s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE,
s->d1->handshake_fragment, 4, s,
s->msg_callback_arg);
if (SSL_is_init_finished(s) &&
!(s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS) &&
!s->s3->renegotiate) {
s->d1->handshake_read_seq++;
s->new_session = 1;
ssl3_renegotiate(s);
if (ssl3_renegotiate_check(s)) {
i = s->handshake_func(s);
if (i < 0)
return (i);
if (i == 0) {
SSLerr(SSL_F_DTLS1_READ_BYTES,
SSL_R_SSL_HANDSHAKE_FAILURE);
return (-1);
}
if (!(s->mode & SSL_MODE_AUTO_RETRY)) {
if (s->s3->rbuf.left == 0) { /* no read-ahead left? */
BIO *bio;
/*
* In the case where we try to read application data,
* but we trigger an SSL handshake, we return -1 with
* the retry option set. Otherwise renegotiation may
* cause nasty problems in the blocking world
*/
s->rwstate = SSL_READING;
bio = SSL_get_rbio(s);
BIO_clear_retry_flags(bio);
BIO_set_retry_read(bio);
return (-1);
}
}
}
}
/*
* we either finished a handshake or ignored the request, now try
* again to obtain the (application) data we were asked for
*/
goto start;
}
if (s->d1->alert_fragment_len >= DTLS1_AL_HEADER_LENGTH) {
int alert_level = s->d1->alert_fragment[0];
int alert_descr = s->d1->alert_fragment[1];
s->d1->alert_fragment_len = 0;
if (s->msg_callback)
s->msg_callback(0, s->version, SSL3_RT_ALERT,
s->d1->alert_fragment, 2, s, s->msg_callback_arg);
if (s->info_callback != NULL)
cb = s->info_callback;
else if (s->ctx->info_callback != NULL)
cb = s->ctx->info_callback;
if (cb != NULL) {
j = (alert_level << 8) | alert_descr;
cb(s, SSL_CB_READ_ALERT, j);
}
if (alert_level == SSL3_AL_WARNING) {
s->s3->warn_alert = alert_descr;
if (alert_descr == SSL_AD_CLOSE_NOTIFY) {
#ifndef OPENSSL_NO_SCTP
/*
* With SCTP and streams the socket may deliver app data
* after a close_notify alert. We have to check this first so
* that nothing gets discarded.
*/
if (BIO_dgram_is_sctp(SSL_get_rbio(s)) &&
BIO_dgram_sctp_msg_waiting(SSL_get_rbio(s))) {
s->d1->shutdown_received = 1;
s->rwstate = SSL_READING;
BIO_clear_retry_flags(SSL_get_rbio(s));
BIO_set_retry_read(SSL_get_rbio(s));
return -1;
}
#endif
s->shutdown |= SSL_RECEIVED_SHUTDOWN;
return (0);
}
#if 0
/* XXX: this is a possible improvement in the future */
/* now check if it's a missing record */
if (alert_descr == DTLS1_AD_MISSING_HANDSHAKE_MESSAGE) {
unsigned short seq;
unsigned int frag_off;
unsigned char *p = &(s->d1->alert_fragment[2]);
n2s(p, seq);
n2l3(p, frag_off);
dtls1_retransmit_message(s,
dtls1_get_queue_priority
(frag->msg_header.seq, 0), frag_off,
&found);
if (!found && SSL_in_init(s)) {
/*
* fprintf( stderr,"in init = %d\n", SSL_in_init(s));
*/
/*
* requested a message not yet sent, send an alert
* ourselves
*/
ssl3_send_alert(s, SSL3_AL_WARNING,
DTLS1_AD_MISSING_HANDSHAKE_MESSAGE);
}
}
#endif
} else if (alert_level == SSL3_AL_FATAL) {
char tmp[16];
s->rwstate = SSL_NOTHING;
s->s3->fatal_alert = alert_descr;
SSLerr(SSL_F_DTLS1_READ_BYTES,
SSL_AD_REASON_OFFSET + alert_descr);
BIO_snprintf(tmp, sizeof tmp, "%d", alert_descr);
ERR_add_error_data(2, "SSL alert number ", tmp);
s->shutdown |= SSL_RECEIVED_SHUTDOWN;
SSL_CTX_remove_session(s->ctx, s->session);
return (0);
} else {
al = SSL_AD_ILLEGAL_PARAMETER;
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_UNKNOWN_ALERT_TYPE);
goto f_err;
}
goto start;
}
if (s->shutdown & SSL_SENT_SHUTDOWN) { /* but we have not received a
* shutdown */
s->rwstate = SSL_NOTHING;
rr->length = 0;
return (0);
}
if (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC) {
struct ccs_header_st ccs_hdr;
unsigned int ccs_hdr_len = DTLS1_CCS_HEADER_LENGTH;
dtls1_get_ccs_header(rr->data, &ccs_hdr);
if (s->version == DTLS1_BAD_VER)
ccs_hdr_len = 3;
/*
* 'Change Cipher Spec' is just a single byte, so we know exactly
* what the record payload has to look like
*/
/* XDTLS: check that epoch is consistent */
if ((rr->length != ccs_hdr_len) ||
(rr->off != 0) || (rr->data[0] != SSL3_MT_CCS)) {
i = SSL_AD_ILLEGAL_PARAMETER;
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_BAD_CHANGE_CIPHER_SPEC);
goto err;
}
rr->length = 0;
if (s->msg_callback)
s->msg_callback(0, s->version, SSL3_RT_CHANGE_CIPHER_SPEC,
rr->data, 1, s, s->msg_callback_arg);
/*
* We can't process a CCS now, because previous handshake messages
* are still missing, so just drop it.
*/
if (!s->d1->change_cipher_spec_ok) {
goto start;
}
s->d1->change_cipher_spec_ok = 0;
s->s3->change_cipher_spec = 1;
if (!ssl3_do_change_cipher_spec(s))
goto err;
/* do this whenever CCS is processed */
dtls1_reset_seq_numbers(s, SSL3_CC_READ);
if (s->version == DTLS1_BAD_VER)
s->d1->handshake_read_seq++;
#ifndef OPENSSL_NO_SCTP
/*
* Remember that a CCS has been received, so that an old key of
* SCTP-Auth can be deleted when a CCS is sent. Will be ignored if no
* SCTP is used
*/
BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD, 1, NULL);
#endif
goto start;
}
/*
* Unexpected handshake message (Client Hello, or protocol violation)
*/
if ((s->d1->handshake_fragment_len >= DTLS1_HM_HEADER_LENGTH) &&
!s->in_handshake) {
struct hm_header_st msg_hdr;
/* this may just be a stale retransmit */
dtls1_get_message_header(rr->data, &msg_hdr);
if (rr->epoch != s->d1->r_epoch) {
rr->length = 0;
goto start;
}
/*
* If we are server, we may have a repeated FINISHED of the client
* here, then retransmit our CCS and FINISHED.
*/
if (msg_hdr.type == SSL3_MT_FINISHED) {
if (dtls1_check_timeout_num(s) < 0)
return -1;
dtls1_retransmit_buffered_messages(s);
rr->length = 0;
goto start;
}
if (((s->state & SSL_ST_MASK) == SSL_ST_OK) &&
!(s->s3->flags & SSL3_FLAGS_NO_RENEGOTIATE_CIPHERS)) {
#if 0 /* worked only because C operator preferences
* are not as expected (and because this is
* not really needed for clients except for
* detecting protocol violations): */
s->state = SSL_ST_BEFORE | (s->server)
? SSL_ST_ACCEPT : SSL_ST_CONNECT;
#else
s->state = s->server ? SSL_ST_ACCEPT : SSL_ST_CONNECT;
#endif
s->renegotiate = 1;
s->new_session = 1;
}
i = s->handshake_func(s);
if (i < 0)
return (i);
if (i == 0) {
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_SSL_HANDSHAKE_FAILURE);
return (-1);
}
if (!(s->mode & SSL_MODE_AUTO_RETRY)) {
if (s->s3->rbuf.left == 0) { /* no read-ahead left? */
BIO *bio;
/*
* In the case where we try to read application data, but we
* trigger an SSL handshake, we return -1 with the retry
* option set. Otherwise renegotiation may cause nasty
* problems in the blocking world
*/
s->rwstate = SSL_READING;
bio = SSL_get_rbio(s);
BIO_clear_retry_flags(bio);
BIO_set_retry_read(bio);
return (-1);
}
}
goto start;
}
switch (rr->type) {
default:
#ifndef OPENSSL_NO_TLS
/* TLS just ignores unknown message types */
if (s->version == TLS1_VERSION) {
rr->length = 0;
goto start;
}
#endif
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_UNEXPECTED_RECORD);
goto f_err;
case SSL3_RT_CHANGE_CIPHER_SPEC:
case SSL3_RT_ALERT:
case SSL3_RT_HANDSHAKE:
/*
* we already handled all of these, with the possible exception of
* SSL3_RT_HANDSHAKE when s->in_handshake is set, but that should not
* happen when type != rr->type
*/
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_DTLS1_READ_BYTES, ERR_R_INTERNAL_ERROR);
goto f_err;
case SSL3_RT_APPLICATION_DATA:
/*
* At this point, we were expecting handshake data, but have
* application data. If the library was running inside ssl3_read()
* (i.e. in_read_app_data is set) and it makes sense to read
* application data at this point (session renegotiation not yet
* started), we will indulge it.
*/
if (s->s3->in_read_app_data &&
(s->s3->total_renegotiations != 0) &&
(((s->state & SSL_ST_CONNECT) &&
(s->state >= SSL3_ST_CW_CLNT_HELLO_A) &&
(s->state <= SSL3_ST_CR_SRVR_HELLO_A)
) || ((s->state & SSL_ST_ACCEPT) &&
(s->state <= SSL3_ST_SW_HELLO_REQ_A) &&
(s->state >= SSL3_ST_SR_CLNT_HELLO_A)
)
)) {
s->s3->in_read_app_data = 2;
return (-1);
} else {
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_DTLS1_READ_BYTES, SSL_R_UNEXPECTED_RECORD);
goto f_err;
}
}
/* not reached */
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
err:
return (-1);
}
int dtls1_write_app_data_bytes(SSL *s, int type, const void *buf_, int len)
{
int i;
#ifndef OPENSSL_NO_SCTP
/*
* Check if we have to continue an interrupted handshake for reading
* belated app data with SCTP.
*/
if ((SSL_in_init(s) && !s->in_handshake) ||
(BIO_dgram_is_sctp(SSL_get_wbio(s)) &&
(s->state == DTLS1_SCTP_ST_SR_READ_SOCK
|| s->state == DTLS1_SCTP_ST_CR_READ_SOCK)))
#else
if (SSL_in_init(s) && !s->in_handshake)
#endif
{
i = s->handshake_func(s);
if (i < 0)
return (i);
if (i == 0) {
SSLerr(SSL_F_DTLS1_WRITE_APP_DATA_BYTES,
SSL_R_SSL_HANDSHAKE_FAILURE);
return -1;
}
}
if (len > SSL3_RT_MAX_PLAIN_LENGTH) {
SSLerr(SSL_F_DTLS1_WRITE_APP_DATA_BYTES, SSL_R_DTLS_MESSAGE_TOO_BIG);
return -1;
}
i = dtls1_write_bytes(s, type, buf_, len);
return i;
}
/*
* this only happens when a client hello is received and a handshake
* is started.
*/
static int
have_handshake_fragment(SSL *s, int type, unsigned char *buf,
int len, int peek)
{
if ((type == SSL3_RT_HANDSHAKE) && (s->d1->handshake_fragment_len > 0))
/* (partially) satisfy request from storage */
{
unsigned char *src = s->d1->handshake_fragment;
unsigned char *dst = buf;
unsigned int k, n;
/* peek == 0 */
n = 0;
while ((len > 0) && (s->d1->handshake_fragment_len > 0)) {
*dst++ = *src++;
len--;
s->d1->handshake_fragment_len--;
n++;
}
/* move any remaining fragment bytes: */
for (k = 0; k < s->d1->handshake_fragment_len; k++)
s->d1->handshake_fragment[k] = *src++;
return n;
}
return 0;
}
/*
* Call this to write data in records of type 'type' It will return <= 0 if
* not all data has been sent or non-blocking IO.
*/
int dtls1_write_bytes(SSL *s, int type, const void *buf, int len)
{
int i;
OPENSSL_assert(len <= SSL3_RT_MAX_PLAIN_LENGTH);
s->rwstate = SSL_NOTHING;
i = do_dtls1_write(s, type, buf, len, 0);
return i;
}
int do_dtls1_write(SSL *s, int type, const unsigned char *buf,
unsigned int len, int create_empty_fragment)
{
unsigned char *p, *pseq;
int i, mac_size, clear = 0;
int prefix_len = 0;
SSL3_RECORD *wr;
SSL3_BUFFER *wb;
SSL_SESSION *sess;
int bs;
/*
* first check if there is a SSL3_BUFFER still being written out. This
* will happen with non blocking IO
*/
if (s->s3->wbuf.left != 0) {
OPENSSL_assert(0); /* XDTLS: want to see if we ever get here */
return (ssl3_write_pending(s, type, buf, len));
}
/* If we have an alert to send, lets send it */
if (s->s3->alert_dispatch) {
i = s->method->ssl_dispatch_alert(s);
if (i <= 0)
return (i);
/* if it went, fall through and send more stuff */
}
if (len == 0 && !create_empty_fragment)
return 0;
wr = &(s->s3->wrec);
wb = &(s->s3->wbuf);
sess = s->session;
if ((sess == NULL) ||
(s->enc_write_ctx == NULL) || (EVP_MD_CTX_md(s->write_hash) == NULL))
clear = 1;
if (clear)
mac_size = 0;
else {
mac_size = EVP_MD_CTX_size(s->write_hash);
if (mac_size < 0)
goto err;
}
/* DTLS implements explicit IV, so no need for empty fragments */
#if 0
/*
* 'create_empty_fragment' is true only when this function calls itself
*/
if (!clear && !create_empty_fragment && !s->s3->empty_fragment_done
&& SSL_version(s) != DTLS1_VERSION && SSL_version(s) != DTLS1_BAD_VER)
{
/*
* countermeasure against known-IV weakness in CBC ciphersuites (see
* http://www.openssl.org/~bodo/tls-cbc.txt)
*/
if (s->s3->need_empty_fragments && type == SSL3_RT_APPLICATION_DATA) {
/*
* recursive function call with 'create_empty_fragment' set; this
* prepares and buffers the data for an empty fragment (these
* 'prefix_len' bytes are sent out later together with the actual
* payload)
*/
prefix_len = s->method->do_ssl_write(s, type, buf, 0, 1);
if (prefix_len <= 0)
goto err;
if (s->s3->wbuf.len <
(size_t)prefix_len + SSL3_RT_MAX_PACKET_SIZE) {
/* insufficient space */
SSLerr(SSL_F_DO_DTLS1_WRITE, ERR_R_INTERNAL_ERROR);
goto err;
}
}
s->s3->empty_fragment_done = 1;
}
#endif
p = wb->buf + prefix_len;
/* write the header */
*(p++) = type & 0xff;
wr->type = type;
*(p++) = (s->version >> 8);
*(p++) = s->version & 0xff;
/* field where we are to write out packet epoch, seq num and len */
pseq = p;
p += 10;
/* lets setup the record stuff. */
/*
* Make space for the explicit IV in case of CBC. (this is a bit of a
* boundary violation, but what the heck).
*/
if (s->enc_write_ctx &&
(EVP_CIPHER_mode(s->enc_write_ctx->cipher) & EVP_CIPH_CBC_MODE))
bs = EVP_CIPHER_block_size(s->enc_write_ctx->cipher);
else
bs = 0;
wr->data = p + bs; /* make room for IV in case of CBC */
wr->length = (int)len;
wr->input = (unsigned char *)buf;
/*
* we now 'read' from wr->input, wr->length bytes into wr->data
*/
/* first we compress */
if (s->compress != NULL) {
if (!ssl3_do_compress(s)) {
SSLerr(SSL_F_DO_DTLS1_WRITE, SSL_R_COMPRESSION_FAILURE);
goto err;
}
} else {
memcpy(wr->data, wr->input, wr->length);
wr->input = wr->data;
}
/*
* we should still have the output to wr->data and the input from
* wr->input. Length should be wr->length. wr->data still points in the
* wb->buf
*/
if (mac_size != 0) {
if (s->method->ssl3_enc->mac(s, &(p[wr->length + bs]), 1) < 0)
goto err;
wr->length += mac_size;
}
/* this is true regardless of mac size */
wr->input = p;
wr->data = p;
/* ssl3_enc can only have an error on read */
if (bs) { /* bs != 0 in case of CBC */
if (RAND_bytes(p, bs) <= 0)
goto err;
/*
* master IV and last CBC residue stand for the rest of randomness
*/
wr->length += bs;
}
if (s->method->ssl3_enc->enc(s, 1) < 1)
goto err;
/* record length after mac and block padding */
/*
* if (type == SSL3_RT_APPLICATION_DATA || (type == SSL3_RT_ALERT && !
* SSL_in_init(s)))
*/
/* there's only one epoch between handshake and app data */
s2n(s->d1->w_epoch, pseq);
/* XDTLS: ?? */
/*
* else s2n(s->d1->handshake_epoch, pseq);
*/
memcpy(pseq, &(s->s3->write_sequence[2]), 6);
pseq += 6;
s2n(wr->length, pseq);
/*
* we should now have wr->data pointing to the encrypted data, which is
* wr->length long
*/
wr->type = type; /* not needed but helps for debugging */
wr->length += DTLS1_RT_HEADER_LENGTH;
#if 0 /* this is now done at the message layer */
/* buffer the record, making it easy to handle retransmits */
if (type == SSL3_RT_HANDSHAKE || type == SSL3_RT_CHANGE_CIPHER_SPEC)
dtls1_buffer_record(s, wr->data, wr->length,
*((PQ_64BIT *) & (s->s3->write_sequence[0])));
#endif
ssl3_record_sequence_update(&(s->s3->write_sequence[0]));
if (create_empty_fragment) {
/*
* we are in a recursive call; just return the length, don't write
* out anything here
*/
return wr->length;
}
/* now let's set up wb */
wb->left = prefix_len + wr->length;
wb->offset = 0;
/*
* memorize arguments so that ssl3_write_pending can detect bad write
* retries later
*/
s->s3->wpend_tot = len;
s->s3->wpend_buf = buf;
s->s3->wpend_type = type;
s->s3->wpend_ret = len;
/* we now just need to write the buffer */
return ssl3_write_pending(s, type, buf, len);
err:
return -1;
}
static int dtls1_record_replay_check(SSL *s, DTLS1_BITMAP *bitmap)
{
int cmp;
unsigned int shift;
const unsigned char *seq = s->s3->read_sequence;
cmp = satsub64be(seq, bitmap->max_seq_num);
if (cmp > 0) {
memcpy(s->s3->rrec.seq_num, seq, 8);
return 1; /* this record in new */
}
shift = -cmp;
if (shift >= sizeof(bitmap->map) * 8)
return 0; /* stale, outside the window */
else if (bitmap->map & (1UL << shift))
return 0; /* record previously received */
memcpy(s->s3->rrec.seq_num, seq, 8);
return 1;
}
static void dtls1_record_bitmap_update(SSL *s, DTLS1_BITMAP *bitmap)
{
int cmp;
unsigned int shift;
const unsigned char *seq = s->s3->read_sequence;
cmp = satsub64be(seq, bitmap->max_seq_num);
if (cmp > 0) {
shift = cmp;
if (shift < sizeof(bitmap->map) * 8)
bitmap->map <<= shift, bitmap->map |= 1UL;
else
bitmap->map = 1UL;
memcpy(bitmap->max_seq_num, seq, 8);
} else {
shift = -cmp;
if (shift < sizeof(bitmap->map) * 8)
bitmap->map |= 1UL << shift;
}
}
int dtls1_dispatch_alert(SSL *s)
{
int i, j;
void (*cb) (const SSL *ssl, int type, int val) = NULL;
unsigned char buf[DTLS1_AL_HEADER_LENGTH];
unsigned char *ptr = &buf[0];
s->s3->alert_dispatch = 0;
memset(buf, 0x00, sizeof(buf));
*ptr++ = s->s3->send_alert[0];
*ptr++ = s->s3->send_alert[1];
#ifdef DTLS1_AD_MISSING_HANDSHAKE_MESSAGE
if (s->s3->send_alert[1] == DTLS1_AD_MISSING_HANDSHAKE_MESSAGE) {
s2n(s->d1->handshake_read_seq, ptr);
# if 0
if (s->d1->r_msg_hdr.frag_off == 0)
/*
* waiting for a new msg
*/
else
s2n(s->d1->r_msg_hdr.seq, ptr); /* partial msg read */
# endif
# if 0
fprintf(stderr,
"s->d1->handshake_read_seq = %d, s->d1->r_msg_hdr.seq = %d\n",
s->d1->handshake_read_seq, s->d1->r_msg_hdr.seq);
# endif
l2n3(s->d1->r_msg_hdr.frag_off, ptr);
}
#endif
i = do_dtls1_write(s, SSL3_RT_ALERT, &buf[0], sizeof(buf), 0);
if (i <= 0) {
s->s3->alert_dispatch = 1;
/* fprintf( stderr, "not done with alert\n" ); */
} else {
if (s->s3->send_alert[0] == SSL3_AL_FATAL
#ifdef DTLS1_AD_MISSING_HANDSHAKE_MESSAGE
|| s->s3->send_alert[1] == DTLS1_AD_MISSING_HANDSHAKE_MESSAGE
#endif
)
(void)BIO_flush(s->wbio);
if (s->msg_callback)
s->msg_callback(1, s->version, SSL3_RT_ALERT, s->s3->send_alert,
2, s, s->msg_callback_arg);
if (s->info_callback != NULL)
cb = s->info_callback;
else if (s->ctx->info_callback != NULL)
cb = s->ctx->info_callback;
if (cb != NULL) {
j = (s->s3->send_alert[0] << 8) | s->s3->send_alert[1];
cb(s, SSL_CB_WRITE_ALERT, j);
}
}
return (i);
}
static DTLS1_BITMAP *dtls1_get_bitmap(SSL *s, SSL3_RECORD *rr,
unsigned int *is_next_epoch)
{
*is_next_epoch = 0;
/* In current epoch, accept HM, CCS, DATA, & ALERT */
if (rr->epoch == s->d1->r_epoch)
return &s->d1->bitmap;
/*
* Only HM and ALERT messages can be from the next epoch and only if we
* have already processed all of the unprocessed records from the last
* epoch
*/
else if (rr->epoch == (unsigned long)(s->d1->r_epoch + 1) &&
s->d1->unprocessed_rcds.epoch != s->d1->r_epoch &&
(rr->type == SSL3_RT_HANDSHAKE || rr->type == SSL3_RT_ALERT)) {
*is_next_epoch = 1;
return &s->d1->next_bitmap;
}
return NULL;
}
#if 0
static int
dtls1_record_needs_buffering(SSL *s, SSL3_RECORD *rr,
unsigned short *priority, unsigned long *offset)
{
/* alerts are passed up immediately */
if (rr->type == SSL3_RT_APPLICATION_DATA || rr->type == SSL3_RT_ALERT)
return 0;
/*
* Only need to buffer if a handshake is underway. (this implies that
* Hello Request and Client Hello are passed up immediately)
*/
if (SSL_in_init(s)) {
unsigned char *data = rr->data;
/* need to extract the HM/CCS sequence number here */
if (rr->type == SSL3_RT_HANDSHAKE ||
rr->type == SSL3_RT_CHANGE_CIPHER_SPEC) {
unsigned short seq_num;
struct hm_header_st msg_hdr;
struct ccs_header_st ccs_hdr;
if (rr->type == SSL3_RT_HANDSHAKE) {
dtls1_get_message_header(data, &msg_hdr);
seq_num = msg_hdr.seq;
*offset = msg_hdr.frag_off;
} else {
dtls1_get_ccs_header(data, &ccs_hdr);
seq_num = ccs_hdr.seq;
*offset = 0;
}
/*
* this is either a record we're waiting for, or a retransmit of
* something we happened to previously receive (higher layers
* will drop the repeat silently
*/
if (seq_num < s->d1->handshake_read_seq)
return 0;
if (rr->type == SSL3_RT_HANDSHAKE &&
seq_num == s->d1->handshake_read_seq &&
msg_hdr.frag_off < s->d1->r_msg_hdr.frag_off)
return 0;
else if (seq_num == s->d1->handshake_read_seq &&
(rr->type == SSL3_RT_CHANGE_CIPHER_SPEC ||
msg_hdr.frag_off == s->d1->r_msg_hdr.frag_off))
return 0;
else {
*priority = seq_num;
return 1;
}
} else /* unknown record type */
return 0;
}
return 0;
}
#endif
void dtls1_reset_seq_numbers(SSL *s, int rw)
{
unsigned char *seq;
unsigned int seq_bytes = sizeof(s->s3->read_sequence);
if (rw & SSL3_CC_READ) {
seq = s->s3->read_sequence;
s->d1->r_epoch++;
memcpy(&(s->d1->bitmap), &(s->d1->next_bitmap), sizeof(DTLS1_BITMAP));
memset(&(s->d1->next_bitmap), 0x00, sizeof(DTLS1_BITMAP));
/*
* We must not use any buffered messages received from the previous
* epoch
*/
dtls1_clear_received_buffer(s);
} else {
seq = s->s3->write_sequence;
memcpy(s->d1->last_write_sequence, seq,
sizeof(s->s3->write_sequence));
s->d1->w_epoch++;
}
memset(seq, 0x00, seq_bytes);
}