mirror of
https://github.com/nillerusr/source-engine.git
synced 2025-01-02 21:46:43 +00:00
504 lines
17 KiB
Plaintext
504 lines
17 KiB
Plaintext
|
=pod
|
||
|
|
||
|
=head1 NAME
|
||
|
|
||
|
PEM, PEM_read_bio_PrivateKey, PEM_read_PrivateKey, PEM_write_bio_PrivateKey,
|
||
|
PEM_write_PrivateKey, PEM_write_bio_PKCS8PrivateKey, PEM_write_PKCS8PrivateKey,
|
||
|
PEM_write_bio_PKCS8PrivateKey_nid, PEM_write_PKCS8PrivateKey_nid,
|
||
|
PEM_read_bio_PUBKEY, PEM_read_PUBKEY, PEM_write_bio_PUBKEY, PEM_write_PUBKEY,
|
||
|
PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey,
|
||
|
PEM_write_bio_RSAPrivateKey, PEM_write_RSAPrivateKey,
|
||
|
PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey,
|
||
|
PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY,
|
||
|
PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey,
|
||
|
PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey,
|
||
|
PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY,
|
||
|
PEM_write_DSA_PUBKEY, PEM_read_bio_DSAparams, PEM_read_DSAparams,
|
||
|
PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams,
|
||
|
PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams,
|
||
|
PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509,
|
||
|
PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX,
|
||
|
PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ,
|
||
|
PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW,
|
||
|
PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL,
|
||
|
PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7,
|
||
|
PEM_write_bio_PKCS7, PEM_write_PKCS7, PEM_read_bio_NETSCAPE_CERT_SEQUENCE,
|
||
|
PEM_read_NETSCAPE_CERT_SEQUENCE, PEM_write_bio_NETSCAPE_CERT_SEQUENCE,
|
||
|
PEM_write_NETSCAPE_CERT_SEQUENCE - PEM routines
|
||
|
|
||
|
=head1 SYNOPSIS
|
||
|
|
||
|
#include <openssl/pem.h>
|
||
|
|
||
|
EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
||
|
unsigned char *kstr, int klen,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
||
|
unsigned char *kstr, int klen,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
||
|
char *kstr, int klen,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
||
|
char *kstr, int klen,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
|
||
|
char *kstr, int klen,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
|
||
|
char *kstr, int klen,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
|
||
|
int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);
|
||
|
|
||
|
RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
|
||
|
unsigned char *kstr, int klen,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
|
||
|
unsigned char *kstr, int klen,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);
|
||
|
|
||
|
int PEM_write_RSAPublicKey(FILE *fp, RSA *x);
|
||
|
|
||
|
RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);
|
||
|
|
||
|
int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);
|
||
|
|
||
|
DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
|
||
|
unsigned char *kstr, int klen,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
|
||
|
unsigned char *kstr, int klen,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);
|
||
|
|
||
|
int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);
|
||
|
|
||
|
DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);
|
||
|
|
||
|
DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_bio_DSAparams(BIO *bp, DSA *x);
|
||
|
|
||
|
int PEM_write_DSAparams(FILE *fp, DSA *x);
|
||
|
|
||
|
DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);
|
||
|
|
||
|
DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_bio_DHparams(BIO *bp, DH *x);
|
||
|
|
||
|
int PEM_write_DHparams(FILE *fp, DH *x);
|
||
|
|
||
|
X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
|
||
|
|
||
|
X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_bio_X509(BIO *bp, X509 *x);
|
||
|
|
||
|
int PEM_write_X509(FILE *fp, X509 *x);
|
||
|
|
||
|
X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
|
||
|
|
||
|
X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);
|
||
|
|
||
|
int PEM_write_X509_AUX(FILE *fp, X509 *x);
|
||
|
|
||
|
X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);
|
||
|
|
||
|
int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);
|
||
|
|
||
|
int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);
|
||
|
|
||
|
int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);
|
||
|
|
||
|
X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
|
||
|
int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);
|
||
|
|
||
|
PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);
|
||
|
|
||
|
PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);
|
||
|
|
||
|
int PEM_write_PKCS7(FILE *fp, PKCS7 *x);
|
||
|
|
||
|
NETSCAPE_CERT_SEQUENCE *PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp,
|
||
|
NETSCAPE_CERT_SEQUENCE **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
NETSCAPE_CERT_SEQUENCE *PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp,
|
||
|
NETSCAPE_CERT_SEQUENCE **x,
|
||
|
pem_password_cb *cb, void *u);
|
||
|
|
||
|
int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x);
|
||
|
|
||
|
int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x);
|
||
|
|
||
|
=head1 DESCRIPTION
|
||
|
|
||
|
The PEM functions read or write structures in PEM format. In
|
||
|
this sense PEM format is simply base64 encoded data surrounded
|
||
|
by header lines.
|
||
|
|
||
|
For more details about the meaning of arguments see the
|
||
|
B<PEM FUNCTION ARGUMENTS> section.
|
||
|
|
||
|
Each operation has four functions associated with it. For
|
||
|
clarity the term "B<foobar> functions" will be used to collectively
|
||
|
refer to the PEM_read_bio_foobar(), PEM_read_foobar(),
|
||
|
PEM_write_bio_foobar() and PEM_write_foobar() functions.
|
||
|
|
||
|
The B<PrivateKey> functions read or write a private key in
|
||
|
PEM format using an EVP_PKEY structure. The write routines use
|
||
|
"traditional" private key format and can handle both RSA and DSA
|
||
|
private keys. The read functions can additionally transparently
|
||
|
handle PKCS#8 format encrypted and unencrypted keys too.
|
||
|
|
||
|
PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey()
|
||
|
write a private key in an EVP_PKEY structure in PKCS#8
|
||
|
EncryptedPrivateKeyInfo format using PKCS#5 v2.0 password based encryption
|
||
|
algorithms. The B<cipher> argument specifies the encryption algorithm to
|
||
|
use: unlike all other PEM routines the encryption is applied at the
|
||
|
PKCS#8 level and not in the PEM headers. If B<cipher> is NULL then no
|
||
|
encryption is used and a PKCS#8 PrivateKeyInfo structure is used instead.
|
||
|
|
||
|
PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid()
|
||
|
also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however
|
||
|
it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm
|
||
|
to use is specified in the B<nid> parameter and should be the NID of the
|
||
|
corresponding OBJECT IDENTIFIER (see NOTES section).
|
||
|
|
||
|
The B<PUBKEY> functions process a public key using an EVP_PKEY
|
||
|
structure. The public key is encoded as a SubjectPublicKeyInfo
|
||
|
structure.
|
||
|
|
||
|
The B<RSAPrivateKey> functions process an RSA private key using an
|
||
|
RSA structure. It handles the same formats as the B<PrivateKey>
|
||
|
functions but an error occurs if the private key is not RSA.
|
||
|
|
||
|
The B<RSAPublicKey> functions process an RSA public key using an
|
||
|
RSA structure. The public key is encoded using a PKCS#1 RSAPublicKey
|
||
|
structure.
|
||
|
|
||
|
The B<RSA_PUBKEY> functions also process an RSA public key using
|
||
|
an RSA structure. However the public key is encoded using a
|
||
|
SubjectPublicKeyInfo structure and an error occurs if the public
|
||
|
key is not RSA.
|
||
|
|
||
|
The B<DSAPrivateKey> functions process a DSA private key using a
|
||
|
DSA structure. It handles the same formats as the B<PrivateKey>
|
||
|
functions but an error occurs if the private key is not DSA.
|
||
|
|
||
|
The B<DSA_PUBKEY> functions process a DSA public key using
|
||
|
a DSA structure. The public key is encoded using a
|
||
|
SubjectPublicKeyInfo structure and an error occurs if the public
|
||
|
key is not DSA.
|
||
|
|
||
|
The B<DSAparams> functions process DSA parameters using a DSA
|
||
|
structure. The parameters are encoded using a Dss-Parms structure
|
||
|
as defined in RFC2459.
|
||
|
|
||
|
The B<DHparams> functions process DH parameters using a DH
|
||
|
structure. The parameters are encoded using a PKCS#3 DHparameter
|
||
|
structure.
|
||
|
|
||
|
The B<X509> functions process an X509 certificate using an X509
|
||
|
structure. They will also process a trusted X509 certificate but
|
||
|
any trust settings are discarded.
|
||
|
|
||
|
The B<X509_AUX> functions process a trusted X509 certificate using
|
||
|
an X509 structure.
|
||
|
|
||
|
The B<X509_REQ> and B<X509_REQ_NEW> functions process a PKCS#10
|
||
|
certificate request using an X509_REQ structure. The B<X509_REQ>
|
||
|
write functions use B<CERTIFICATE REQUEST> in the header whereas
|
||
|
the B<X509_REQ_NEW> functions use B<NEW CERTIFICATE REQUEST>
|
||
|
(as required by some CAs). The B<X509_REQ> read functions will
|
||
|
handle either form so there are no B<X509_REQ_NEW> read functions.
|
||
|
|
||
|
The B<X509_CRL> functions process an X509 CRL using an X509_CRL
|
||
|
structure.
|
||
|
|
||
|
The B<PKCS7> functions process a PKCS#7 ContentInfo using a PKCS7
|
||
|
structure.
|
||
|
|
||
|
The B<NETSCAPE_CERT_SEQUENCE> functions process a Netscape Certificate
|
||
|
Sequence using a NETSCAPE_CERT_SEQUENCE structure.
|
||
|
|
||
|
=head1 PEM FUNCTION ARGUMENTS
|
||
|
|
||
|
The PEM functions have many common arguments.
|
||
|
|
||
|
The B<bp> BIO parameter (if present) specifies the BIO to read from
|
||
|
or write to.
|
||
|
|
||
|
The B<fp> FILE parameter (if present) specifies the FILE pointer to
|
||
|
read from or write to.
|
||
|
|
||
|
The PEM read functions all take an argument B<TYPE **x> and return
|
||
|
a B<TYPE *> pointer. Where B<TYPE> is whatever structure the function
|
||
|
uses. If B<x> is NULL then the parameter is ignored. If B<x> is not
|
||
|
NULL but B<*x> is NULL then the structure returned will be written
|
||
|
to B<*x>. If neither B<x> nor B<*x> is NULL then an attempt is made
|
||
|
to reuse the structure at B<*x> (but see BUGS and EXAMPLES sections).
|
||
|
Irrespective of the value of B<x> a pointer to the structure is always
|
||
|
returned (or NULL if an error occurred).
|
||
|
|
||
|
The PEM functions which write private keys take an B<enc> parameter
|
||
|
which specifies the encryption algorithm to use, encryption is done
|
||
|
at the PEM level. If this parameter is set to NULL then the private
|
||
|
key is written in unencrypted form.
|
||
|
|
||
|
The B<cb> argument is the callback to use when querying for the pass
|
||
|
phrase used for encrypted PEM structures (normally only private keys).
|
||
|
|
||
|
For the PEM write routines if the B<kstr> parameter is not NULL then
|
||
|
B<klen> bytes at B<kstr> are used as the passphrase and B<cb> is
|
||
|
ignored.
|
||
|
|
||
|
If the B<cb> parameters is set to NULL and the B<u> parameter is not
|
||
|
NULL then the B<u> parameter is interpreted as a null terminated string
|
||
|
to use as the passphrase. If both B<cb> and B<u> are NULL then the
|
||
|
default callback routine is used which will typically prompt for the
|
||
|
passphrase on the current terminal with echoing turned off.
|
||
|
|
||
|
The default passphrase callback is sometimes inappropriate (for example
|
||
|
in a GUI application) so an alternative can be supplied. The callback
|
||
|
routine has the following form:
|
||
|
|
||
|
int cb(char *buf, int size, int rwflag, void *u);
|
||
|
|
||
|
B<buf> is the buffer to write the passphrase to. B<size> is the maximum
|
||
|
length of the passphrase (i.e. the size of buf). B<rwflag> is a flag
|
||
|
which is set to 0 when reading and 1 when writing. A typical routine
|
||
|
will ask the user to verify the passphrase (for example by prompting
|
||
|
for it twice) if B<rwflag> is 1. The B<u> parameter has the same
|
||
|
value as the B<u> parameter passed to the PEM routine. It allows
|
||
|
arbitrary data to be passed to the callback by the application
|
||
|
(for example a window handle in a GUI application). The callback
|
||
|
B<must> return the number of characters in the passphrase or 0 if
|
||
|
an error occurred.
|
||
|
|
||
|
=head1 EXAMPLES
|
||
|
|
||
|
Although the PEM routines take several arguments in almost all applications
|
||
|
most of them are set to 0 or NULL.
|
||
|
|
||
|
Read a certificate in PEM format from a BIO:
|
||
|
|
||
|
X509 *x;
|
||
|
x = PEM_read_bio_X509(bp, NULL, 0, NULL);
|
||
|
if (x == NULL)
|
||
|
{
|
||
|
/* Error */
|
||
|
}
|
||
|
|
||
|
Alternative method:
|
||
|
|
||
|
X509 *x = NULL;
|
||
|
if (!PEM_read_bio_X509(bp, &x, 0, NULL))
|
||
|
{
|
||
|
/* Error */
|
||
|
}
|
||
|
|
||
|
Write a certificate to a BIO:
|
||
|
|
||
|
if (!PEM_write_bio_X509(bp, x))
|
||
|
{
|
||
|
/* Error */
|
||
|
}
|
||
|
|
||
|
Write an unencrypted private key to a FILE pointer:
|
||
|
|
||
|
if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL))
|
||
|
{
|
||
|
/* Error */
|
||
|
}
|
||
|
|
||
|
Write a private key (using traditional format) to a BIO using
|
||
|
triple DES encryption, the pass phrase is prompted for:
|
||
|
|
||
|
if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
|
||
|
{
|
||
|
/* Error */
|
||
|
}
|
||
|
|
||
|
Write a private key (using PKCS#8 format) to a BIO using triple
|
||
|
DES encryption, using the pass phrase "hello":
|
||
|
|
||
|
if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello"))
|
||
|
{
|
||
|
/* Error */
|
||
|
}
|
||
|
|
||
|
Read a private key from a BIO using the pass phrase "hello":
|
||
|
|
||
|
key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello");
|
||
|
if (key == NULL)
|
||
|
{
|
||
|
/* Error */
|
||
|
}
|
||
|
|
||
|
Read a private key from a BIO using a pass phrase callback:
|
||
|
|
||
|
key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
|
||
|
if (key == NULL)
|
||
|
{
|
||
|
/* Error */
|
||
|
}
|
||
|
|
||
|
Skeleton pass phrase callback:
|
||
|
|
||
|
int pass_cb(char *buf, int size, int rwflag, void *u);
|
||
|
{
|
||
|
int len;
|
||
|
char *tmp;
|
||
|
/* We'd probably do something else if 'rwflag' is 1 */
|
||
|
printf("Enter pass phrase for \"%s\"\n", u);
|
||
|
|
||
|
/* get pass phrase, length 'len' into 'tmp' */
|
||
|
tmp = "hello";
|
||
|
len = strlen(tmp);
|
||
|
|
||
|
if (len <= 0) return 0;
|
||
|
/* if too long, truncate */
|
||
|
if (len > size) len = size;
|
||
|
memcpy(buf, tmp, len);
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
=head1 NOTES
|
||
|
|
||
|
The old B<PrivateKey> write routines are retained for compatibility.
|
||
|
New applications should write private keys using the
|
||
|
PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines
|
||
|
because they are more secure (they use an iteration count of 2048 whereas
|
||
|
the traditional routines use a count of 1) unless compatibility with older
|
||
|
versions of OpenSSL is important.
|
||
|
|
||
|
The B<PrivateKey> read routines can be used in all applications because
|
||
|
they handle all formats transparently.
|
||
|
|
||
|
A frequent cause of problems is attempting to use the PEM routines like
|
||
|
this:
|
||
|
|
||
|
X509 *x;
|
||
|
PEM_read_bio_X509(bp, &x, 0, NULL);
|
||
|
|
||
|
this is a bug because an attempt will be made to reuse the data at B<x>
|
||
|
which is an uninitialised pointer.
|
||
|
|
||
|
=head1 PEM ENCRYPTION FORMAT
|
||
|
|
||
|
This old B<PrivateKey> routines use a non standard technique for encryption.
|
||
|
|
||
|
The private key (or other data) takes the following form:
|
||
|
|
||
|
-----BEGIN RSA PRIVATE KEY-----
|
||
|
Proc-Type: 4,ENCRYPTED
|
||
|
DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89
|
||
|
|
||
|
...base64 encoded data...
|
||
|
-----END RSA PRIVATE KEY-----
|
||
|
|
||
|
The line beginning DEK-Info contains two comma separated pieces of information:
|
||
|
the encryption algorithm name as used by EVP_get_cipherbyname() and an 8
|
||
|
byte B<salt> encoded as a set of hexadecimal digits.
|
||
|
|
||
|
After this is the base64 encoded encrypted data.
|
||
|
|
||
|
The encryption key is determined using EVP_BytesToKey(), using B<salt> and an
|
||
|
iteration count of 1. The IV used is the value of B<salt> and *not* the IV
|
||
|
returned by EVP_BytesToKey().
|
||
|
|
||
|
=head1 BUGS
|
||
|
|
||
|
The PEM read routines in some versions of OpenSSL will not correctly reuse
|
||
|
an existing structure. Therefore the following:
|
||
|
|
||
|
PEM_read_bio_X509(bp, &x, 0, NULL);
|
||
|
|
||
|
where B<x> already contains a valid certificate, may not work, whereas:
|
||
|
|
||
|
X509_free(x);
|
||
|
x = PEM_read_bio_X509(bp, NULL, 0, NULL);
|
||
|
|
||
|
is guaranteed to work.
|
||
|
|
||
|
=head1 RETURN CODES
|
||
|
|
||
|
The read routines return either a pointer to the structure read or NULL
|
||
|
if an error occurred.
|
||
|
|
||
|
The write routines return 1 for success or 0 for failure.
|
||
|
|
||
|
=head1 SEE ALSO
|
||
|
|
||
|
L<EVP_get_cipherbyname(3)|EVP_get_cipherbyname>, L<EVP_BytesToKey(3)|EVP_BytesToKey(3)>
|