mirror of
https://github.com/nillerusr/source-engine.git
synced 2024-12-27 08:36:49 +00:00
917 lines
23 KiB
C
917 lines
23 KiB
C
|
/* crypto/bn/bn_lib.c */
|
||
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* This package is an SSL implementation written
|
||
|
* by Eric Young (eay@cryptsoft.com).
|
||
|
* The implementation was written so as to conform with Netscapes SSL.
|
||
|
*
|
||
|
* This library is free for commercial and non-commercial use as long as
|
||
|
* the following conditions are aheared to. The following conditions
|
||
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
||
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
||
|
* included with this distribution is covered by the same copyright terms
|
||
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
||
|
*
|
||
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
||
|
* the code are not to be removed.
|
||
|
* If this package is used in a product, Eric Young should be given attribution
|
||
|
* as the author of the parts of the library used.
|
||
|
* This can be in the form of a textual message at program startup or
|
||
|
* in documentation (online or textual) provided with the package.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. All advertising materials mentioning features or use of this software
|
||
|
* must display the following acknowledgement:
|
||
|
* "This product includes cryptographic software written by
|
||
|
* Eric Young (eay@cryptsoft.com)"
|
||
|
* The word 'cryptographic' can be left out if the rouines from the library
|
||
|
* being used are not cryptographic related :-).
|
||
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
||
|
* the apps directory (application code) you must include an acknowledgement:
|
||
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*
|
||
|
* The licence and distribution terms for any publically available version or
|
||
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
||
|
* copied and put under another distribution licence
|
||
|
* [including the GNU Public Licence.]
|
||
|
*/
|
||
|
|
||
|
#ifndef BN_DEBUG
|
||
|
# undef NDEBUG /* avoid conflicting definitions */
|
||
|
# define NDEBUG
|
||
|
#endif
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include <limits.h>
|
||
|
#include <stdio.h>
|
||
|
#include "cryptlib.h"
|
||
|
#include "bn_lcl.h"
|
||
|
|
||
|
const char BN_version[] = "Big Number" OPENSSL_VERSION_PTEXT;
|
||
|
|
||
|
/* This stuff appears to be completely unused, so is deprecated */
|
||
|
#ifndef OPENSSL_NO_DEPRECATED
|
||
|
/*-
|
||
|
* For a 32 bit machine
|
||
|
* 2 - 4 == 128
|
||
|
* 3 - 8 == 256
|
||
|
* 4 - 16 == 512
|
||
|
* 5 - 32 == 1024
|
||
|
* 6 - 64 == 2048
|
||
|
* 7 - 128 == 4096
|
||
|
* 8 - 256 == 8192
|
||
|
*/
|
||
|
static int bn_limit_bits = 0;
|
||
|
static int bn_limit_num = 8; /* (1<<bn_limit_bits) */
|
||
|
static int bn_limit_bits_low = 0;
|
||
|
static int bn_limit_num_low = 8; /* (1<<bn_limit_bits_low) */
|
||
|
static int bn_limit_bits_high = 0;
|
||
|
static int bn_limit_num_high = 8; /* (1<<bn_limit_bits_high) */
|
||
|
static int bn_limit_bits_mont = 0;
|
||
|
static int bn_limit_num_mont = 8; /* (1<<bn_limit_bits_mont) */
|
||
|
|
||
|
void BN_set_params(int mult, int high, int low, int mont)
|
||
|
{
|
||
|
if (mult >= 0) {
|
||
|
if (mult > (int)(sizeof(int) * 8) - 1)
|
||
|
mult = sizeof(int) * 8 - 1;
|
||
|
bn_limit_bits = mult;
|
||
|
bn_limit_num = 1 << mult;
|
||
|
}
|
||
|
if (high >= 0) {
|
||
|
if (high > (int)(sizeof(int) * 8) - 1)
|
||
|
high = sizeof(int) * 8 - 1;
|
||
|
bn_limit_bits_high = high;
|
||
|
bn_limit_num_high = 1 << high;
|
||
|
}
|
||
|
if (low >= 0) {
|
||
|
if (low > (int)(sizeof(int) * 8) - 1)
|
||
|
low = sizeof(int) * 8 - 1;
|
||
|
bn_limit_bits_low = low;
|
||
|
bn_limit_num_low = 1 << low;
|
||
|
}
|
||
|
if (mont >= 0) {
|
||
|
if (mont > (int)(sizeof(int) * 8) - 1)
|
||
|
mont = sizeof(int) * 8 - 1;
|
||
|
bn_limit_bits_mont = mont;
|
||
|
bn_limit_num_mont = 1 << mont;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int BN_get_params(int which)
|
||
|
{
|
||
|
if (which == 0)
|
||
|
return (bn_limit_bits);
|
||
|
else if (which == 1)
|
||
|
return (bn_limit_bits_high);
|
||
|
else if (which == 2)
|
||
|
return (bn_limit_bits_low);
|
||
|
else if (which == 3)
|
||
|
return (bn_limit_bits_mont);
|
||
|
else
|
||
|
return (0);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
const BIGNUM *BN_value_one(void)
|
||
|
{
|
||
|
static const BN_ULONG data_one = 1L;
|
||
|
static const BIGNUM const_one =
|
||
|
{ (BN_ULONG *)&data_one, 1, 1, 0, BN_FLG_STATIC_DATA };
|
||
|
|
||
|
return (&const_one);
|
||
|
}
|
||
|
|
||
|
int BN_num_bits_word(BN_ULONG l)
|
||
|
{
|
||
|
static const unsigned char bits[256] = {
|
||
|
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
|
||
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
||
|
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
||
|
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
||
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
||
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
||
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
||
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
||
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
||
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
||
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
||
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
||
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
||
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
||
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
||
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
||
|
};
|
||
|
|
||
|
#if defined(SIXTY_FOUR_BIT_LONG)
|
||
|
if (l & 0xffffffff00000000L) {
|
||
|
if (l & 0xffff000000000000L) {
|
||
|
if (l & 0xff00000000000000L) {
|
||
|
return (bits[(int)(l >> 56)] + 56);
|
||
|
} else
|
||
|
return (bits[(int)(l >> 48)] + 48);
|
||
|
} else {
|
||
|
if (l & 0x0000ff0000000000L) {
|
||
|
return (bits[(int)(l >> 40)] + 40);
|
||
|
} else
|
||
|
return (bits[(int)(l >> 32)] + 32);
|
||
|
}
|
||
|
} else
|
||
|
#else
|
||
|
# ifdef SIXTY_FOUR_BIT
|
||
|
if (l & 0xffffffff00000000LL) {
|
||
|
if (l & 0xffff000000000000LL) {
|
||
|
if (l & 0xff00000000000000LL) {
|
||
|
return (bits[(int)(l >> 56)] + 56);
|
||
|
} else
|
||
|
return (bits[(int)(l >> 48)] + 48);
|
||
|
} else {
|
||
|
if (l & 0x0000ff0000000000LL) {
|
||
|
return (bits[(int)(l >> 40)] + 40);
|
||
|
} else
|
||
|
return (bits[(int)(l >> 32)] + 32);
|
||
|
}
|
||
|
} else
|
||
|
# endif
|
||
|
#endif
|
||
|
{
|
||
|
#if defined(THIRTY_TWO_BIT) || defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
|
||
|
if (l & 0xffff0000L) {
|
||
|
if (l & 0xff000000L)
|
||
|
return (bits[(int)(l >> 24L)] + 24);
|
||
|
else
|
||
|
return (bits[(int)(l >> 16L)] + 16);
|
||
|
} else
|
||
|
#endif
|
||
|
{
|
||
|
#if defined(THIRTY_TWO_BIT) || defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
|
||
|
if (l & 0xff00L)
|
||
|
return (bits[(int)(l >> 8)] + 8);
|
||
|
else
|
||
|
#endif
|
||
|
return (bits[(int)(l)]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int BN_num_bits(const BIGNUM *a)
|
||
|
{
|
||
|
int i = a->top - 1;
|
||
|
bn_check_top(a);
|
||
|
|
||
|
if (BN_is_zero(a))
|
||
|
return 0;
|
||
|
return ((i * BN_BITS2) + BN_num_bits_word(a->d[i]));
|
||
|
}
|
||
|
|
||
|
void BN_clear_free(BIGNUM *a)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
if (a == NULL)
|
||
|
return;
|
||
|
bn_check_top(a);
|
||
|
if (a->d != NULL) {
|
||
|
OPENSSL_cleanse(a->d, a->dmax * sizeof(a->d[0]));
|
||
|
if (!(BN_get_flags(a, BN_FLG_STATIC_DATA)))
|
||
|
OPENSSL_free(a->d);
|
||
|
}
|
||
|
i = BN_get_flags(a, BN_FLG_MALLOCED);
|
||
|
OPENSSL_cleanse(a, sizeof(BIGNUM));
|
||
|
if (i)
|
||
|
OPENSSL_free(a);
|
||
|
}
|
||
|
|
||
|
void BN_free(BIGNUM *a)
|
||
|
{
|
||
|
if (a == NULL)
|
||
|
return;
|
||
|
bn_check_top(a);
|
||
|
if ((a->d != NULL) && !(BN_get_flags(a, BN_FLG_STATIC_DATA)))
|
||
|
OPENSSL_free(a->d);
|
||
|
if (a->flags & BN_FLG_MALLOCED)
|
||
|
OPENSSL_free(a);
|
||
|
else {
|
||
|
#ifndef OPENSSL_NO_DEPRECATED
|
||
|
a->flags |= BN_FLG_FREE;
|
||
|
#endif
|
||
|
a->d = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void BN_init(BIGNUM *a)
|
||
|
{
|
||
|
memset(a, 0, sizeof(BIGNUM));
|
||
|
bn_check_top(a);
|
||
|
}
|
||
|
|
||
|
BIGNUM *BN_new(void)
|
||
|
{
|
||
|
BIGNUM *ret;
|
||
|
|
||
|
if ((ret = (BIGNUM *)OPENSSL_malloc(sizeof(BIGNUM))) == NULL) {
|
||
|
BNerr(BN_F_BN_NEW, ERR_R_MALLOC_FAILURE);
|
||
|
return (NULL);
|
||
|
}
|
||
|
ret->flags = BN_FLG_MALLOCED;
|
||
|
ret->top = 0;
|
||
|
ret->neg = 0;
|
||
|
ret->dmax = 0;
|
||
|
ret->d = NULL;
|
||
|
bn_check_top(ret);
|
||
|
return (ret);
|
||
|
}
|
||
|
|
||
|
/* This is used both by bn_expand2() and bn_dup_expand() */
|
||
|
/* The caller MUST check that words > b->dmax before calling this */
|
||
|
static BN_ULONG *bn_expand_internal(const BIGNUM *b, int words)
|
||
|
{
|
||
|
BN_ULONG *A, *a = NULL;
|
||
|
const BN_ULONG *B;
|
||
|
int i;
|
||
|
|
||
|
bn_check_top(b);
|
||
|
|
||
|
if (words > (INT_MAX / (4 * BN_BITS2))) {
|
||
|
BNerr(BN_F_BN_EXPAND_INTERNAL, BN_R_BIGNUM_TOO_LONG);
|
||
|
return NULL;
|
||
|
}
|
||
|
if (BN_get_flags(b, BN_FLG_STATIC_DATA)) {
|
||
|
BNerr(BN_F_BN_EXPAND_INTERNAL, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA);
|
||
|
return (NULL);
|
||
|
}
|
||
|
a = A = (BN_ULONG *)OPENSSL_malloc(sizeof(BN_ULONG) * words);
|
||
|
if (A == NULL) {
|
||
|
BNerr(BN_F_BN_EXPAND_INTERNAL, ERR_R_MALLOC_FAILURE);
|
||
|
return (NULL);
|
||
|
}
|
||
|
#ifdef PURIFY
|
||
|
/*
|
||
|
* Valgrind complains in BN_consttime_swap because we process the whole
|
||
|
* array even if it's not initialised yet. This doesn't matter in that
|
||
|
* function - what's important is constant time operation (we're not
|
||
|
* actually going to use the data)
|
||
|
*/
|
||
|
memset(a, 0, sizeof(BN_ULONG) * words);
|
||
|
#endif
|
||
|
|
||
|
#if 1
|
||
|
B = b->d;
|
||
|
/* Check if the previous number needs to be copied */
|
||
|
if (B != NULL) {
|
||
|
for (i = b->top >> 2; i > 0; i--, A += 4, B += 4) {
|
||
|
/*
|
||
|
* The fact that the loop is unrolled
|
||
|
* 4-wise is a tribute to Intel. It's
|
||
|
* the one that doesn't have enough
|
||
|
* registers to accomodate more data.
|
||
|
* I'd unroll it 8-wise otherwise:-)
|
||
|
*
|
||
|
* <appro@fy.chalmers.se>
|
||
|
*/
|
||
|
BN_ULONG a0, a1, a2, a3;
|
||
|
a0 = B[0];
|
||
|
a1 = B[1];
|
||
|
a2 = B[2];
|
||
|
a3 = B[3];
|
||
|
A[0] = a0;
|
||
|
A[1] = a1;
|
||
|
A[2] = a2;
|
||
|
A[3] = a3;
|
||
|
}
|
||
|
/*
|
||
|
* workaround for ultrix cc: without 'case 0', the optimizer does
|
||
|
* the switch table by doing a=top&3; a--; goto jump_table[a];
|
||
|
* which fails for top== 0
|
||
|
*/
|
||
|
switch (b->top & 3) {
|
||
|
case 3:
|
||
|
A[2] = B[2];
|
||
|
case 2:
|
||
|
A[1] = B[1];
|
||
|
case 1:
|
||
|
A[0] = B[0];
|
||
|
case 0:
|
||
|
;
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
memset(A, 0, sizeof(BN_ULONG) * words);
|
||
|
memcpy(A, b->d, sizeof(b->d[0]) * b->top);
|
||
|
#endif
|
||
|
|
||
|
return (a);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is an internal function that can be used instead of bn_expand2() when
|
||
|
* there is a need to copy BIGNUMs instead of only expanding the data part,
|
||
|
* while still expanding them. Especially useful when needing to expand
|
||
|
* BIGNUMs that are declared 'const' and should therefore not be changed. The
|
||
|
* reason to use this instead of a BN_dup() followed by a bn_expand2() is
|
||
|
* memory allocation overhead. A BN_dup() followed by a bn_expand2() will
|
||
|
* allocate new memory for the BIGNUM data twice, and free it once, while
|
||
|
* bn_dup_expand() makes sure allocation is made only once.
|
||
|
*/
|
||
|
|
||
|
#ifndef OPENSSL_NO_DEPRECATED
|
||
|
BIGNUM *bn_dup_expand(const BIGNUM *b, int words)
|
||
|
{
|
||
|
BIGNUM *r = NULL;
|
||
|
|
||
|
bn_check_top(b);
|
||
|
|
||
|
/*
|
||
|
* This function does not work if words <= b->dmax && top < words because
|
||
|
* BN_dup() does not preserve 'dmax'! (But bn_dup_expand() is not used
|
||
|
* anywhere yet.)
|
||
|
*/
|
||
|
|
||
|
if (words > b->dmax) {
|
||
|
BN_ULONG *a = bn_expand_internal(b, words);
|
||
|
|
||
|
if (a) {
|
||
|
r = BN_new();
|
||
|
if (r) {
|
||
|
r->top = b->top;
|
||
|
r->dmax = words;
|
||
|
r->neg = b->neg;
|
||
|
r->d = a;
|
||
|
} else {
|
||
|
/* r == NULL, BN_new failure */
|
||
|
OPENSSL_free(a);
|
||
|
}
|
||
|
}
|
||
|
/*
|
||
|
* If a == NULL, there was an error in allocation in
|
||
|
* bn_expand_internal(), and NULL should be returned
|
||
|
*/
|
||
|
} else {
|
||
|
r = BN_dup(b);
|
||
|
}
|
||
|
|
||
|
bn_check_top(r);
|
||
|
return r;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* This is an internal function that should not be used in applications. It
|
||
|
* ensures that 'b' has enough room for a 'words' word number and initialises
|
||
|
* any unused part of b->d with leading zeros. It is mostly used by the
|
||
|
* various BIGNUM routines. If there is an error, NULL is returned. If not,
|
||
|
* 'b' is returned.
|
||
|
*/
|
||
|
|
||
|
BIGNUM *bn_expand2(BIGNUM *b, int words)
|
||
|
{
|
||
|
bn_check_top(b);
|
||
|
|
||
|
if (words > b->dmax) {
|
||
|
BN_ULONG *a = bn_expand_internal(b, words);
|
||
|
if (!a)
|
||
|
return NULL;
|
||
|
if (b->d)
|
||
|
OPENSSL_free(b->d);
|
||
|
b->d = a;
|
||
|
b->dmax = words;
|
||
|
}
|
||
|
|
||
|
/* None of this should be necessary because of what b->top means! */
|
||
|
#if 0
|
||
|
/*
|
||
|
* NB: bn_wexpand() calls this only if the BIGNUM really has to grow
|
||
|
*/
|
||
|
if (b->top < b->dmax) {
|
||
|
int i;
|
||
|
BN_ULONG *A = &(b->d[b->top]);
|
||
|
for (i = (b->dmax - b->top) >> 3; i > 0; i--, A += 8) {
|
||
|
A[0] = 0;
|
||
|
A[1] = 0;
|
||
|
A[2] = 0;
|
||
|
A[3] = 0;
|
||
|
A[4] = 0;
|
||
|
A[5] = 0;
|
||
|
A[6] = 0;
|
||
|
A[7] = 0;
|
||
|
}
|
||
|
for (i = (b->dmax - b->top) & 7; i > 0; i--, A++)
|
||
|
A[0] = 0;
|
||
|
assert(A == &(b->d[b->dmax]));
|
||
|
}
|
||
|
#endif
|
||
|
bn_check_top(b);
|
||
|
return b;
|
||
|
}
|
||
|
|
||
|
BIGNUM *BN_dup(const BIGNUM *a)
|
||
|
{
|
||
|
BIGNUM *t;
|
||
|
|
||
|
if (a == NULL)
|
||
|
return NULL;
|
||
|
bn_check_top(a);
|
||
|
|
||
|
t = BN_new();
|
||
|
if (t == NULL)
|
||
|
return NULL;
|
||
|
if (!BN_copy(t, a)) {
|
||
|
BN_free(t);
|
||
|
return NULL;
|
||
|
}
|
||
|
bn_check_top(t);
|
||
|
return t;
|
||
|
}
|
||
|
|
||
|
BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b)
|
||
|
{
|
||
|
int i;
|
||
|
BN_ULONG *A;
|
||
|
const BN_ULONG *B;
|
||
|
|
||
|
bn_check_top(b);
|
||
|
|
||
|
if (a == b)
|
||
|
return (a);
|
||
|
if (bn_wexpand(a, b->top) == NULL)
|
||
|
return (NULL);
|
||
|
|
||
|
#if 1
|
||
|
A = a->d;
|
||
|
B = b->d;
|
||
|
for (i = b->top >> 2; i > 0; i--, A += 4, B += 4) {
|
||
|
BN_ULONG a0, a1, a2, a3;
|
||
|
a0 = B[0];
|
||
|
a1 = B[1];
|
||
|
a2 = B[2];
|
||
|
a3 = B[3];
|
||
|
A[0] = a0;
|
||
|
A[1] = a1;
|
||
|
A[2] = a2;
|
||
|
A[3] = a3;
|
||
|
}
|
||
|
/* ultrix cc workaround, see comments in bn_expand_internal */
|
||
|
switch (b->top & 3) {
|
||
|
case 3:
|
||
|
A[2] = B[2];
|
||
|
case 2:
|
||
|
A[1] = B[1];
|
||
|
case 1:
|
||
|
A[0] = B[0];
|
||
|
case 0:;
|
||
|
}
|
||
|
#else
|
||
|
memcpy(a->d, b->d, sizeof(b->d[0]) * b->top);
|
||
|
#endif
|
||
|
|
||
|
a->top = b->top;
|
||
|
a->neg = b->neg;
|
||
|
bn_check_top(a);
|
||
|
return (a);
|
||
|
}
|
||
|
|
||
|
void BN_swap(BIGNUM *a, BIGNUM *b)
|
||
|
{
|
||
|
int flags_old_a, flags_old_b;
|
||
|
BN_ULONG *tmp_d;
|
||
|
int tmp_top, tmp_dmax, tmp_neg;
|
||
|
|
||
|
bn_check_top(a);
|
||
|
bn_check_top(b);
|
||
|
|
||
|
flags_old_a = a->flags;
|
||
|
flags_old_b = b->flags;
|
||
|
|
||
|
tmp_d = a->d;
|
||
|
tmp_top = a->top;
|
||
|
tmp_dmax = a->dmax;
|
||
|
tmp_neg = a->neg;
|
||
|
|
||
|
a->d = b->d;
|
||
|
a->top = b->top;
|
||
|
a->dmax = b->dmax;
|
||
|
a->neg = b->neg;
|
||
|
|
||
|
b->d = tmp_d;
|
||
|
b->top = tmp_top;
|
||
|
b->dmax = tmp_dmax;
|
||
|
b->neg = tmp_neg;
|
||
|
|
||
|
a->flags =
|
||
|
(flags_old_a & BN_FLG_MALLOCED) | (flags_old_b & BN_FLG_STATIC_DATA);
|
||
|
b->flags =
|
||
|
(flags_old_b & BN_FLG_MALLOCED) | (flags_old_a & BN_FLG_STATIC_DATA);
|
||
|
bn_check_top(a);
|
||
|
bn_check_top(b);
|
||
|
}
|
||
|
|
||
|
void BN_clear(BIGNUM *a)
|
||
|
{
|
||
|
bn_check_top(a);
|
||
|
if (a->d != NULL)
|
||
|
OPENSSL_cleanse(a->d, a->dmax * sizeof(a->d[0]));
|
||
|
a->top = 0;
|
||
|
a->neg = 0;
|
||
|
}
|
||
|
|
||
|
BN_ULONG BN_get_word(const BIGNUM *a)
|
||
|
{
|
||
|
if (a->top > 1)
|
||
|
return BN_MASK2;
|
||
|
else if (a->top == 1)
|
||
|
return a->d[0];
|
||
|
/* a->top == 0 */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int BN_set_word(BIGNUM *a, BN_ULONG w)
|
||
|
{
|
||
|
bn_check_top(a);
|
||
|
if (bn_expand(a, (int)sizeof(BN_ULONG) * 8) == NULL)
|
||
|
return (0);
|
||
|
a->neg = 0;
|
||
|
a->d[0] = w;
|
||
|
a->top = (w ? 1 : 0);
|
||
|
bn_check_top(a);
|
||
|
return (1);
|
||
|
}
|
||
|
|
||
|
BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
|
||
|
{
|
||
|
unsigned int i, m;
|
||
|
unsigned int n;
|
||
|
BN_ULONG l;
|
||
|
BIGNUM *bn = NULL;
|
||
|
|
||
|
if (ret == NULL)
|
||
|
ret = bn = BN_new();
|
||
|
if (ret == NULL)
|
||
|
return (NULL);
|
||
|
bn_check_top(ret);
|
||
|
l = 0;
|
||
|
n = len;
|
||
|
if (n == 0) {
|
||
|
ret->top = 0;
|
||
|
return (ret);
|
||
|
}
|
||
|
i = ((n - 1) / BN_BYTES) + 1;
|
||
|
m = ((n - 1) % (BN_BYTES));
|
||
|
if (bn_wexpand(ret, (int)i) == NULL) {
|
||
|
if (bn)
|
||
|
BN_free(bn);
|
||
|
return NULL;
|
||
|
}
|
||
|
ret->top = i;
|
||
|
ret->neg = 0;
|
||
|
while (n--) {
|
||
|
l = (l << 8L) | *(s++);
|
||
|
if (m-- == 0) {
|
||
|
ret->d[--i] = l;
|
||
|
l = 0;
|
||
|
m = BN_BYTES - 1;
|
||
|
}
|
||
|
}
|
||
|
/*
|
||
|
* need to call this due to clear byte at top if avoiding having the top
|
||
|
* bit set (-ve number)
|
||
|
*/
|
||
|
bn_correct_top(ret);
|
||
|
return (ret);
|
||
|
}
|
||
|
|
||
|
/* ignore negative */
|
||
|
int BN_bn2bin(const BIGNUM *a, unsigned char *to)
|
||
|
{
|
||
|
int n, i;
|
||
|
BN_ULONG l;
|
||
|
|
||
|
bn_check_top(a);
|
||
|
n = i = BN_num_bytes(a);
|
||
|
while (i--) {
|
||
|
l = a->d[i / BN_BYTES];
|
||
|
*(to++) = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff;
|
||
|
}
|
||
|
return (n);
|
||
|
}
|
||
|
|
||
|
int BN_ucmp(const BIGNUM *a, const BIGNUM *b)
|
||
|
{
|
||
|
int i;
|
||
|
BN_ULONG t1, t2, *ap, *bp;
|
||
|
|
||
|
bn_check_top(a);
|
||
|
bn_check_top(b);
|
||
|
|
||
|
i = a->top - b->top;
|
||
|
if (i != 0)
|
||
|
return (i);
|
||
|
ap = a->d;
|
||
|
bp = b->d;
|
||
|
for (i = a->top - 1; i >= 0; i--) {
|
||
|
t1 = ap[i];
|
||
|
t2 = bp[i];
|
||
|
if (t1 != t2)
|
||
|
return ((t1 > t2) ? 1 : -1);
|
||
|
}
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
int BN_cmp(const BIGNUM *a, const BIGNUM *b)
|
||
|
{
|
||
|
int i;
|
||
|
int gt, lt;
|
||
|
BN_ULONG t1, t2;
|
||
|
|
||
|
if ((a == NULL) || (b == NULL)) {
|
||
|
if (a != NULL)
|
||
|
return (-1);
|
||
|
else if (b != NULL)
|
||
|
return (1);
|
||
|
else
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
bn_check_top(a);
|
||
|
bn_check_top(b);
|
||
|
|
||
|
if (a->neg != b->neg) {
|
||
|
if (a->neg)
|
||
|
return (-1);
|
||
|
else
|
||
|
return (1);
|
||
|
}
|
||
|
if (a->neg == 0) {
|
||
|
gt = 1;
|
||
|
lt = -1;
|
||
|
} else {
|
||
|
gt = -1;
|
||
|
lt = 1;
|
||
|
}
|
||
|
|
||
|
if (a->top > b->top)
|
||
|
return (gt);
|
||
|
if (a->top < b->top)
|
||
|
return (lt);
|
||
|
for (i = a->top - 1; i >= 0; i--) {
|
||
|
t1 = a->d[i];
|
||
|
t2 = b->d[i];
|
||
|
if (t1 > t2)
|
||
|
return (gt);
|
||
|
if (t1 < t2)
|
||
|
return (lt);
|
||
|
}
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
int BN_set_bit(BIGNUM *a, int n)
|
||
|
{
|
||
|
int i, j, k;
|
||
|
|
||
|
if (n < 0)
|
||
|
return 0;
|
||
|
|
||
|
i = n / BN_BITS2;
|
||
|
j = n % BN_BITS2;
|
||
|
if (a->top <= i) {
|
||
|
if (bn_wexpand(a, i + 1) == NULL)
|
||
|
return (0);
|
||
|
for (k = a->top; k < i + 1; k++)
|
||
|
a->d[k] = 0;
|
||
|
a->top = i + 1;
|
||
|
}
|
||
|
|
||
|
a->d[i] |= (((BN_ULONG)1) << j);
|
||
|
bn_check_top(a);
|
||
|
return (1);
|
||
|
}
|
||
|
|
||
|
int BN_clear_bit(BIGNUM *a, int n)
|
||
|
{
|
||
|
int i, j;
|
||
|
|
||
|
bn_check_top(a);
|
||
|
if (n < 0)
|
||
|
return 0;
|
||
|
|
||
|
i = n / BN_BITS2;
|
||
|
j = n % BN_BITS2;
|
||
|
if (a->top <= i)
|
||
|
return (0);
|
||
|
|
||
|
a->d[i] &= (~(((BN_ULONG)1) << j));
|
||
|
bn_correct_top(a);
|
||
|
return (1);
|
||
|
}
|
||
|
|
||
|
int BN_is_bit_set(const BIGNUM *a, int n)
|
||
|
{
|
||
|
int i, j;
|
||
|
|
||
|
bn_check_top(a);
|
||
|
if (n < 0)
|
||
|
return 0;
|
||
|
i = n / BN_BITS2;
|
||
|
j = n % BN_BITS2;
|
||
|
if (a->top <= i)
|
||
|
return 0;
|
||
|
return (int)(((a->d[i]) >> j) & ((BN_ULONG)1));
|
||
|
}
|
||
|
|
||
|
int BN_mask_bits(BIGNUM *a, int n)
|
||
|
{
|
||
|
int b, w;
|
||
|
|
||
|
bn_check_top(a);
|
||
|
if (n < 0)
|
||
|
return 0;
|
||
|
|
||
|
w = n / BN_BITS2;
|
||
|
b = n % BN_BITS2;
|
||
|
if (w >= a->top)
|
||
|
return 0;
|
||
|
if (b == 0)
|
||
|
a->top = w;
|
||
|
else {
|
||
|
a->top = w + 1;
|
||
|
a->d[w] &= ~(BN_MASK2 << b);
|
||
|
}
|
||
|
bn_correct_top(a);
|
||
|
return (1);
|
||
|
}
|
||
|
|
||
|
void BN_set_negative(BIGNUM *a, int b)
|
||
|
{
|
||
|
if (b && !BN_is_zero(a))
|
||
|
a->neg = 1;
|
||
|
else
|
||
|
a->neg = 0;
|
||
|
}
|
||
|
|
||
|
int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n)
|
||
|
{
|
||
|
int i;
|
||
|
BN_ULONG aa, bb;
|
||
|
|
||
|
aa = a[n - 1];
|
||
|
bb = b[n - 1];
|
||
|
if (aa != bb)
|
||
|
return ((aa > bb) ? 1 : -1);
|
||
|
for (i = n - 2; i >= 0; i--) {
|
||
|
aa = a[i];
|
||
|
bb = b[i];
|
||
|
if (aa != bb)
|
||
|
return ((aa > bb) ? 1 : -1);
|
||
|
}
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Here follows a specialised variants of bn_cmp_words(). It has the
|
||
|
* property of performing the operation on arrays of different sizes. The
|
||
|
* sizes of those arrays is expressed through cl, which is the common length
|
||
|
* ( basicall, min(len(a),len(b)) ), and dl, which is the delta between the
|
||
|
* two lengths, calculated as len(a)-len(b). All lengths are the number of
|
||
|
* BN_ULONGs...
|
||
|
*/
|
||
|
|
||
|
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl)
|
||
|
{
|
||
|
int n, i;
|
||
|
n = cl - 1;
|
||
|
|
||
|
if (dl < 0) {
|
||
|
for (i = dl; i < 0; i++) {
|
||
|
if (b[n - i] != 0)
|
||
|
return -1; /* a < b */
|
||
|
}
|
||
|
}
|
||
|
if (dl > 0) {
|
||
|
for (i = dl; i > 0; i--) {
|
||
|
if (a[n + i] != 0)
|
||
|
return 1; /* a > b */
|
||
|
}
|
||
|
}
|
||
|
return bn_cmp_words(a, b, cl);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Constant-time conditional swap of a and b.
|
||
|
* a and b are swapped if condition is not 0. The code assumes that at most one bit of condition is set.
|
||
|
* nwords is the number of words to swap. The code assumes that at least nwords are allocated in both a and b,
|
||
|
* and that no more than nwords are used by either a or b.
|
||
|
* a and b cannot be the same number
|
||
|
*/
|
||
|
void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords)
|
||
|
{
|
||
|
BN_ULONG t;
|
||
|
int i;
|
||
|
|
||
|
bn_wcheck_size(a, nwords);
|
||
|
bn_wcheck_size(b, nwords);
|
||
|
|
||
|
assert(a != b);
|
||
|
assert((condition & (condition - 1)) == 0);
|
||
|
assert(sizeof(BN_ULONG) >= sizeof(int));
|
||
|
|
||
|
condition = ((condition - 1) >> (BN_BITS2 - 1)) - 1;
|
||
|
|
||
|
t = (a->top ^ b->top) & condition;
|
||
|
a->top ^= t;
|
||
|
b->top ^= t;
|
||
|
|
||
|
#define BN_CONSTTIME_SWAP(ind) \
|
||
|
do { \
|
||
|
t = (a->d[ind] ^ b->d[ind]) & condition; \
|
||
|
a->d[ind] ^= t; \
|
||
|
b->d[ind] ^= t; \
|
||
|
} while (0)
|
||
|
|
||
|
switch (nwords) {
|
||
|
default:
|
||
|
for (i = 10; i < nwords; i++)
|
||
|
BN_CONSTTIME_SWAP(i);
|
||
|
/* Fallthrough */
|
||
|
case 10:
|
||
|
BN_CONSTTIME_SWAP(9); /* Fallthrough */
|
||
|
case 9:
|
||
|
BN_CONSTTIME_SWAP(8); /* Fallthrough */
|
||
|
case 8:
|
||
|
BN_CONSTTIME_SWAP(7); /* Fallthrough */
|
||
|
case 7:
|
||
|
BN_CONSTTIME_SWAP(6); /* Fallthrough */
|
||
|
case 6:
|
||
|
BN_CONSTTIME_SWAP(5); /* Fallthrough */
|
||
|
case 5:
|
||
|
BN_CONSTTIME_SWAP(4); /* Fallthrough */
|
||
|
case 4:
|
||
|
BN_CONSTTIME_SWAP(3); /* Fallthrough */
|
||
|
case 3:
|
||
|
BN_CONSTTIME_SWAP(2); /* Fallthrough */
|
||
|
case 2:
|
||
|
BN_CONSTTIME_SWAP(1); /* Fallthrough */
|
||
|
case 1:
|
||
|
BN_CONSTTIME_SWAP(0);
|
||
|
}
|
||
|
#undef BN_CONSTTIME_SWAP
|
||
|
}
|