mirror of
https://github.com/nillerusr/source-engine.git
synced 2024-12-22 14:16:50 +00:00
114 lines
2.2 KiB
C++
114 lines
2.2 KiB
C++
|
//========= Copyright Valve Corporation, All rights reserved. ============//
|
||
|
//
|
||
|
// Purpose:
|
||
|
//
|
||
|
// $NoKeywords: $
|
||
|
//
|
||
|
//=============================================================================//
|
||
|
|
||
|
#include "tier0/platform.h"
|
||
|
#include "linear_solver.h"
|
||
|
#include <stdio.h>
|
||
|
#include <string.h>
|
||
|
#include <math.h>
|
||
|
|
||
|
// BUGBUG: Remove/tune this number somehow!!!
|
||
|
#define DET_EPSILON 1e-6f
|
||
|
|
||
|
|
||
|
// assumes square matrix!
|
||
|
// ONLY SUPPORTS 2x2, 3x3, and 4x4
|
||
|
float Det( float *matrix, int rows )
|
||
|
{
|
||
|
if ( rows == 2 )
|
||
|
{
|
||
|
return matrix[0]*matrix[3] - matrix[1]*matrix[2];
|
||
|
}
|
||
|
if ( rows == 3 )
|
||
|
{
|
||
|
return matrix[0]*matrix[4]*matrix[8] - matrix[0]*matrix[7]*matrix[5] - matrix[1]*matrix[3]*matrix[8] +
|
||
|
matrix[1]*matrix[5]*matrix[6] + matrix[2]*matrix[3]*matrix[7] - matrix[2]*matrix[4]*matrix[6];
|
||
|
}
|
||
|
|
||
|
// ERROR no more than 4x4
|
||
|
if ( rows != 4 )
|
||
|
return 0;
|
||
|
|
||
|
// UNDONE: Generalize this to NxN
|
||
|
float tmp[9];
|
||
|
float det = 0.f;
|
||
|
// do 4 3x3 dets
|
||
|
for ( int i = 0; i < 4; i++ )
|
||
|
{
|
||
|
// develop on row 0
|
||
|
int out = 0;
|
||
|
for ( int j = 1; j < 4; j++ )
|
||
|
{
|
||
|
// iterate each column and
|
||
|
for ( int k = 0; k < 4; k++ )
|
||
|
{
|
||
|
if ( k == i )
|
||
|
continue;
|
||
|
tmp[out] = matrix[(j*rows)+k];
|
||
|
out++;
|
||
|
}
|
||
|
}
|
||
|
if ( i & 1 )
|
||
|
{
|
||
|
det -= matrix[i]*Det(tmp,3);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
det += matrix[i]*Det(tmp,3);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return det;
|
||
|
}
|
||
|
|
||
|
float *SolveCramer( const float *matrix, int rows, int columns )
|
||
|
{
|
||
|
// max 4 equations, 4 unknowns (until determinant routine is more general)
|
||
|
float tmpMain[16*16], tmpSub[16*16];
|
||
|
static float solution[16];
|
||
|
|
||
|
int i, j;
|
||
|
|
||
|
if ( rows > 4 || columns > 5 )
|
||
|
{
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
int outCol = columns - 1;
|
||
|
// copy out the square matrix
|
||
|
for ( i = 0; i < rows; i++ )
|
||
|
{
|
||
|
memcpy( tmpMain + (i*outCol), matrix + i*columns, sizeof(float)*outCol );
|
||
|
}
|
||
|
|
||
|
float detMain = Det( tmpMain, rows );
|
||
|
|
||
|
// probably degenerate!
|
||
|
if ( fabs(detMain) < DET_EPSILON )
|
||
|
{
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
for ( i = 0; i < rows; i++ )
|
||
|
{
|
||
|
// copy the square matrix
|
||
|
memcpy( tmpSub, tmpMain, sizeof(float)*rows*rows );
|
||
|
|
||
|
// copy the column of constants over the row
|
||
|
for ( j = 0; j < rows; j++ )
|
||
|
{
|
||
|
tmpSub[i+j*outCol] = matrix[j*columns+columns-1];
|
||
|
}
|
||
|
float det = Det( tmpSub, rows );
|
||
|
solution[i] = det / detMain;
|
||
|
}
|
||
|
|
||
|
return solution;
|
||
|
}
|