source-engine/utils/vmpi/vmpi_distribute_work_sdk.cpp

700 lines
20 KiB
C++
Raw Normal View History

2020-04-22 16:56:21 +00:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
//=============================================================================
#include "vmpi.h"
#include "vmpi_distribute_work.h"
#include "tier0/platform.h"
#include "tier0/dbg.h"
#include "utlvector.h"
#include "utllinkedlist.h"
#include "vmpi_dispatch.h"
#include "pacifier.h"
#include "vstdlib/random.h"
#include "mathlib/mathlib.h"
#include "threadhelpers.h"
#include "threads.h"
#include "tier1/strtools.h"
#include "tier1/utlmap.h"
#include "tier1/smartptr.h"
#include "tier0/icommandline.h"
#include "cmdlib.h"
#include "vmpi_distribute_tracker.h"
#include "vmpi_distribute_work_internal.h"
#define DW_SUBPACKETID_SHUFFLE (VMPI_DISTRIBUTE_WORK_EXTRA_SUBPACKET_BASE+0)
#define DW_SUBPACKETID_REQUEST_SHUFFLE (VMPI_DISTRIBUTE_WORK_EXTRA_SUBPACKET_BASE+1)
#define DW_SUBPACKETID_WUS_COMPLETED_LIST (VMPI_DISTRIBUTE_WORK_EXTRA_SUBPACKET_BASE+2)
// This is a pretty simple iterator. Basically, it holds a matrix of numbers.
// Each row is assigned to a worker, and the worker just walks through his row.
//
// When a worker reaches the end of his row, it gets a little trickier.
// They'll start doing their neighbor's row
// starting at the back and continue on. At about this time, the master should reshuffle the
// remaining work units to evenly distribute them amongst the workers.
class CWorkUnitWalker
{
public:
CWorkUnitWalker()
{
m_nWorkUnits = 0;
}
// This is all that's needed for it to start assigning work units.
void Init( WUIndexType matrixWidth, WUIndexType matrixHeight, WUIndexType nWorkUnits )
{
m_nWorkUnits = nWorkUnits;
m_MatrixWidth = matrixWidth;
m_MatrixHeight = matrixHeight;
Assert( m_MatrixWidth * m_MatrixHeight >= nWorkUnits );
m_WorkerInfos.RemoveAll();
m_WorkerInfos.EnsureCount( m_MatrixHeight );
for ( int i=0; i < m_MatrixHeight; i++ )
{
m_WorkerInfos[i].m_iStartWorkUnit = matrixWidth * i;
m_WorkerInfos[i].m_iWorkUnitOffset = 0;
}
}
// This is the main function of the shuffler
bool GetNextWorkUnit( int iWorker, WUIndexType *pWUIndex, bool *bWorkerFinishedHisColumn )
{
if ( iWorker < 0 || iWorker >= m_WorkerInfos.Count() )
{
Assert( false );
return false;
}
// If this worker has walked through all the work units, then he's done.
CWorkerInfo *pWorker = &m_WorkerInfos[iWorker];
if ( pWorker->m_iWorkUnitOffset >= m_nWorkUnits )
return false;
// If we've gone past the end of our work unit list, then we start at the BACK of the other rows of work units
// in the hopes that we won't collide with the guy working there. We also should tell the master to reshuffle.
WUIndexType iWorkUnitOffset = pWorker->m_iWorkUnitOffset;
if ( iWorkUnitOffset >= m_MatrixWidth )
{
WUIndexType xOffset = iWorkUnitOffset % m_MatrixWidth;
WUIndexType yOffset = iWorkUnitOffset / m_MatrixWidth;
xOffset = m_MatrixWidth - xOffset - 1;
iWorkUnitOffset = yOffset * m_MatrixWidth + xOffset;
*bWorkerFinishedHisColumn = true;
}
else
{
*bWorkerFinishedHisColumn = false;
}
*pWUIndex = (pWorker->m_iStartWorkUnit + iWorkUnitOffset) % m_nWorkUnits;
++pWorker->m_iWorkUnitOffset;
return true;
}
private:
class CWorkerInfo
{
public:
WUIndexType m_iStartWorkUnit;
WUIndexType m_iWorkUnitOffset; // Which work unit in my list of work units am I working on?
};
WUIndexType m_nWorkUnits;
WUIndexType m_MatrixWidth;
WUIndexType m_MatrixHeight;
CUtlVector<CWorkerInfo> m_WorkerInfos;
};
class IShuffleRequester
{
public:
virtual void RequestShuffle() = 0;
};
// This is updated every time the master decides to reshuffle.
// In-between shuffles, you can call NoteWorkUnitCompleted when a work unit is completed
// and it'll avoid returning that work unit from GetNextWorkUnit again, but it WON'T
class CShuffledWorkUnitWalker
{
public:
void Init( WUIndexType nWorkUnits, IShuffleRequester *pRequester )
{
m_iLastShuffleRequest = 0;
m_iCurShuffle = 1;
m_flLastShuffleTime = Plat_FloatTime();
m_pShuffleRequester = pRequester;
int nBytes = PAD_NUMBER( nWorkUnits, 8 ) / 8;
m_CompletedWUBits.SetSize( nBytes );
m_LocalCompletedWUBits.SetSize( nBytes );
for ( WUIndexType i=0; i < m_CompletedWUBits.Count(); i++ )
m_LocalCompletedWUBits[i] = m_CompletedWUBits[i] = 0;
// Setup our list of work units remaining.
for ( WUIndexType iWU=0; iWU < nWorkUnits; iWU++ )
{
// Note: we're making an assumption here that if we add entries to a CUtlLinkedList in ascending order, their indices
// will be ascending 1-by-1 as well. If that assumption breaks, we can create an extra array here to map WU indices to the linked list indices.
WUIndexType index = m_WorkUnitsRemaining.AddToTail( iWU );
if ( index != iWU )
{
Error( "CShuffledWorkUnitWalker: assumption on CUtlLinkedList indexing failed.\n" );
}
}
}
void Shuffle( int nWorkers )
{
if ( nWorkers == 0 )
return;
++m_iCurShuffle;
m_flLastShuffleTime = Plat_FloatTime();
CCriticalSectionLock csLock( &m_CS );
csLock.Lock();
m_WorkUnitsMap.RemoveAll();
m_WorkUnitsMap.EnsureCount( m_WorkUnitsRemaining.Count() );
// Here's the shuffle. The CWorkUnitWalker is going to walk each worker through its own group from 0-W,
// and our job is to interleave it so when worker 0 goes [0,1,2] and worker 1 goes [100,101,102], they're actually
// doing [0,N,2N] and [1,N+1,2N+1] where N=# of workers.
// The grid is RxW long, and R*W is >= nWorkUnits.
// R = # units per worker = width of the matrix
// W = # workers = height of the matrix
WUIndexType matrixHeight = nWorkers;
WUIndexType matrixWidth = m_WorkUnitsRemaining.Count() / matrixHeight;
if ( (m_WorkUnitsRemaining.Count() % matrixHeight) != 0 )
++matrixWidth;
Assert( matrixWidth * matrixHeight >= m_WorkUnitsRemaining.Count() );
WUIndexType iWorkUnit = 0;
FOR_EACH_LL( m_WorkUnitsRemaining, i )
{
WUIndexType xCoord = iWorkUnit / matrixHeight;
WUIndexType yCoord = iWorkUnit % matrixHeight;
Assert( xCoord < matrixWidth );
Assert( yCoord < matrixHeight );
m_WorkUnitsMap[yCoord*matrixWidth+xCoord] = m_WorkUnitsRemaining[i];
++iWorkUnit;
}
m_Walker.Init( matrixWidth, matrixHeight, m_WorkUnitsRemaining.Count() );
}
// Threadsafe.
bool Thread_IsWorkUnitCompleted( WUIndexType iWU )
{
CCriticalSectionLock csLock( &m_CS );
csLock.Lock();
byte val = m_CompletedWUBits[iWU >> 3] & (1 << (iWU & 7));
return (val != 0);
}
WUIndexType Thread_NumWorkUnitsRemaining()
{
CCriticalSectionLock csLock( &m_CS );
csLock.Lock();
return m_WorkUnitsRemaining.Count();
}
bool Thread_GetNextWorkUnit( int iWorker, WUIndexType *pWUIndex )
{
CCriticalSectionLock csLock( &m_CS );
csLock.Lock();
while ( 1 )
{
WUIndexType iUnmappedWorkUnit;
bool bWorkerFinishedHisColumn;
if ( !m_Walker.GetNextWorkUnit( iWorker, &iUnmappedWorkUnit, &bWorkerFinishedHisColumn ) )
return false;
// If we've done all the work units assigned to us in the last shuffle, then request a reshuffle.
if ( bWorkerFinishedHisColumn )
HandleWorkerFinishedColumn();
// Check the pending list.
*pWUIndex = m_WorkUnitsMap[iUnmappedWorkUnit];
byte bIsCompleted = m_CompletedWUBits[*pWUIndex >> 3] & (1 << (*pWUIndex & 7));
byte bIsCompletedLocally = m_LocalCompletedWUBits[*pWUIndex >> 3] & (1 << (*pWUIndex & 7));
if ( !bIsCompleted && !bIsCompletedLocally )
return true;
}
}
void HandleWorkerFinishedColumn()
{
if ( m_iLastShuffleRequest != m_iCurShuffle )
{
double flCurTime = Plat_FloatTime();
if ( flCurTime - m_flLastShuffleTime > 2.0f )
{
m_pShuffleRequester->RequestShuffle();
m_iLastShuffleRequest = m_iCurShuffle;
}
}
}
void Thread_NoteWorkUnitCompleted( WUIndexType iWU )
{
CCriticalSectionLock csLock( &m_CS );
csLock.Lock();
byte val = m_CompletedWUBits[iWU >> 3] & (1 << (iWU & 7));
if ( val == 0 )
{
m_WorkUnitsRemaining.Remove( iWU );
m_CompletedWUBits[iWU >> 3] |= (1 << (iWU & 7));
}
}
void Thread_NoteLocalWorkUnitCompleted( WUIndexType iWU )
{
CCriticalSectionLock csLock( &m_CS );
csLock.Lock();
m_LocalCompletedWUBits[iWU >> 3] |= (1 << (iWU & 7));
}
CRC32_t GetShuffleCRC()
{
#ifdef _DEBUG
static bool bCalcShuffleCRC = true;
#else
static bool bCalcShuffleCRC = VMPI_IsParamUsed( mpi_CalcShuffleCRC );
#endif
if ( bCalcShuffleCRC )
{
CCriticalSectionLock csLock( &m_CS );
csLock.Lock();
CRC32_t ret;
CRC32_Init( &ret );
FOR_EACH_LL( m_WorkUnitsRemaining, i )
{
WUIndexType iWorkUnit = m_WorkUnitsRemaining[i];
CRC32_ProcessBuffer( &ret, &iWorkUnit, sizeof( iWorkUnit ) );
}
for ( int i=0; i < m_WorkUnitsMap.Count(); i++ )
{
WUIndexType iWorkUnit = m_WorkUnitsMap[i];
CRC32_ProcessBuffer( &ret, &iWorkUnit, sizeof( iWorkUnit ) );
}
CRC32_Final( &ret );
return ret;
}
else
{
return false;
}
}
private:
// These are PENDING WU completions until we call Shuffle() again, at which point we actually reorder the list
// based on the completed WUs.
CUtlVector<byte> m_CompletedWUBits; // Bit vector of completed WUs.
CUtlLinkedList<WUIndexType, WUIndexType> m_WorkUnitsRemaining;
CUtlVector<WUIndexType> m_WorkUnitsMap; // Maps the 0-N indices in the CWorkUnitWalker to the list of remaining work units.
// Helps us avoid some duplicates that happen during shuffling if we've completed some WUs and sent them
// to the master, but the master hasn't included them in the DW_SUBPACKETID_WUS_COMPLETED_LIST yet.
CUtlVector<byte> m_LocalCompletedWUBits; // Bit vector of completed WUs.
// Used to control how frequently we request a reshuffle.
unsigned int m_iCurShuffle;
unsigned int m_iLastShuffleRequest; // The index of the shuffle we last requested a reshuffle on (don't request a reshuffle on the same one).
double m_flLastShuffleTime;
IShuffleRequester *m_pShuffleRequester;
CWorkUnitWalker m_Walker;
CCriticalSection m_CS;
};
class CDistributor_SDKMaster : public IWorkUnitDistributorMaster, public IShuffleRequester
{
public:
virtual void Release()
{
delete this;
}
static void Master_WorkerThread_Static( int iThread, void *pUserData )
{
((CDistributor_SDKMaster*)pUserData)->Master_WorkerThread( iThread );
}
void Master_WorkerThread( int iThread )
{
while ( m_WorkUnitWalker.Thread_NumWorkUnitsRemaining() > 0 && !g_bVMPIEarlyExit )
{
WUIndexType iWU;
if ( !m_WorkUnitWalker.Thread_GetNextWorkUnit( 0, &iWU ) )
{
// Wait until there are some WUs to do.
VMPI_Sleep( 10 );
continue;
}
// Do this work unit.
m_WorkUnitWalker.Thread_NoteLocalWorkUnitCompleted( iWU ); // We do this before it's completed because otherwise if a Shuffle() occurs,
// the other thread might happen to pickup this work unit and we don't want that.
m_pInfo->m_WorkerInfo.m_pProcessFn( iThread, iWU, NULL );
NotifyLocalMasterCompletedWorkUnit( iWU );
}
}
virtual void DistributeWork_Master( CDSInfo *pInfo )
{
m_pInfo = pInfo;
m_bForceShuffle = false;
m_bShuffleRequested = false;
m_flLastShuffleRequestServiceTime = Plat_FloatTime();
// Spawn idle-priority worker threads right here.
m_bUsingMasterLocalThreads = (pInfo->m_WorkerInfo.m_pProcessFn != 0);
if ( VMPI_IsParamUsed( mpi_NoMasterWorkerThreads ) )
{
Msg( "%s found. No worker threads will be created.\n", VMPI_GetParamString( mpi_NoMasterWorkerThreads ) );
m_bUsingMasterLocalThreads = false;
}
m_WorkUnitWalker.Init( pInfo->m_nWorkUnits, this );
Shuffle();
if ( m_bUsingMasterLocalThreads )
RunThreads_Start( Master_WorkerThread_Static, this, k_eRunThreadsPriority_Idle );
uint64 lastShuffleTime = Plat_MSTime();
while ( m_WorkUnitWalker.Thread_NumWorkUnitsRemaining() > 0 )
{
VMPI_DispatchNextMessage( 200 );
CheckLocalMasterCompletedWorkUnits();
VMPITracker_HandleDebugKeypresses();
if ( g_pDistributeWorkCallbacks && g_pDistributeWorkCallbacks->Update() )
break;
// Reshuffle the work units optimally every certain interval.
if ( m_bForceShuffle || CheckShuffleRequest() )
{
Shuffle();
lastShuffleTime = Plat_MSTime();
m_bForceShuffle = false;
}
}
RunThreads_End();
}
virtual void RequestShuffle()
{
m_bShuffleRequested = true;
}
bool CheckShuffleRequest()
{
if ( m_bShuffleRequested )
{
double flCurTime = Plat_FloatTime();
if ( flCurTime - m_flLastShuffleRequestServiceTime > 2.0f ) // Only handle shuffle requests every so often.
{
m_flLastShuffleRequestServiceTime = flCurTime;
m_bShuffleRequested = false;
return true;
}
}
return false;
}
void Shuffle()
{
// Build a list of who's working.
CUtlVector<unsigned short> whosWorking;
if ( m_bUsingMasterLocalThreads )
{
whosWorking.AddToTail( VMPI_MASTER_ID );
Assert( VMPI_MASTER_ID == 0 );
}
{
CWorkersReady *pWorkersReady = m_WorkersReadyCS.Lock();
for ( int i=0; i < pWorkersReady->m_WorkersReady.Count(); i++ )
{
int iWorker = pWorkersReady->m_WorkersReady[i];
if ( VMPI_IsProcConnected( iWorker ) )
whosWorking.AddToTail( iWorker );
}
m_WorkersReadyCS.Unlock();
}
// Before sending the shuffle command, tell any of these active workers about the pending WUs completed.
CWUsCompleted *pWUsCompleted = m_WUsCompletedCS.Lock();
m_WUSCompletedMessageBuffer.setLen( 0 );
if ( BuildWUsCompletedMessage( pWUsCompleted->m_Pending, m_WUSCompletedMessageBuffer ) > 0 )
{
for ( int i=m_bUsingMasterLocalThreads; i < whosWorking.Count(); i++ )
{
VMPI_SendData( m_WUSCompletedMessageBuffer.data, m_WUSCompletedMessageBuffer.getLen(), whosWorking[i] );
}
}
pWUsCompleted->m_Completed.AddMultipleToTail( pWUsCompleted->m_Pending.Count(), pWUsCompleted->m_Pending.Base() ); // Add the pending ones to the full list now.
pWUsCompleted->m_Pending.RemoveAll();
m_WUsCompletedCS.Unlock();
// Shuffle ourselves.
m_WorkUnitWalker.Shuffle( whosWorking.Count() );
// Send the shuffle command to the workers.
MessageBuffer mb;
PrepareDistributeWorkHeader( &mb, DW_SUBPACKETID_SHUFFLE );
unsigned short nWorkers = whosWorking.Count();
mb.write( &nWorkers, sizeof( nWorkers ) );
CRC32_t shuffleCRC = m_WorkUnitWalker.GetShuffleCRC();
mb.write( &shuffleCRC, sizeof( shuffleCRC ) );
// Now for each worker, assign him an index in the shuffle and send the shuffle command.
int workerIDPos = mb.getLen();
unsigned short id = 0;
mb.write( &id, sizeof( id ) );
for ( int i=m_bUsingMasterLocalThreads; i < whosWorking.Count(); i++ )
{
id = (unsigned short)i;
mb.update( workerIDPos, &id, sizeof( id ) );
VMPI_SendData( mb.data, mb.getLen(), whosWorking[i] );
}
}
int BuildWUsCompletedMessage( CUtlVector<WUIndexType> &wusCompleted, MessageBuffer &mb )
{
PrepareDistributeWorkHeader( &mb, DW_SUBPACKETID_WUS_COMPLETED_LIST );
m_pInfo->WriteWUIndex( wusCompleted.Count(), &mb );
for ( int i=0; i < wusCompleted.Count(); i++ )
{
m_pInfo->WriteWUIndex( wusCompleted[i], &mb );
}
return wusCompleted.Count();
}
virtual void OnWorkerReady( int iSource )
{
CWorkersReady *pWorkersReady = m_WorkersReadyCS.Lock();
if ( pWorkersReady->m_WorkersReady.Find( iSource ) == -1 )
{
pWorkersReady->m_WorkersReady.AddToTail( iSource );
// Get this guy up to speed on which WUs are done.
{
CWUsCompleted *pWUsCompleted = m_WUsCompletedCS.Lock();
m_WUSCompletedMessageBuffer.setLen( 0 );
BuildWUsCompletedMessage( pWUsCompleted->m_Completed, m_WUSCompletedMessageBuffer );
m_WUsCompletedCS.Unlock();
}
VMPI_SendData( m_WUSCompletedMessageBuffer.data, m_WUSCompletedMessageBuffer.getLen(), iSource );
m_bForceShuffle = true;
}
m_WorkersReadyCS.Unlock();
}
virtual bool HandleWorkUnitResults( WUIndexType iWorkUnit )
{
return Thread_HandleWorkUnitResults( iWorkUnit );
}
bool Thread_HandleWorkUnitResults( WUIndexType iWorkUnit )
{
if ( m_WorkUnitWalker.Thread_IsWorkUnitCompleted( iWorkUnit ) )
{
return false;
}
else
{
m_WorkUnitWalker.Thread_NoteWorkUnitCompleted( iWorkUnit );
// We need the lock on here because our own worker threads can call into here.
CWUsCompleted *pWUsCompleted = m_WUsCompletedCS.Lock();
pWUsCompleted->m_Pending.AddToTail( iWorkUnit );
m_WUsCompletedCS.Unlock();
return true;
}
}
virtual bool HandlePacket( MessageBuffer *pBuf, int iSource, bool bIgnoreContents )
{
if ( pBuf->data[1] == DW_SUBPACKETID_REQUEST_SHUFFLE )
{
if ( bIgnoreContents )
return true;
m_bShuffleRequested = true;
}
return false;
}
virtual void DisconnectHandler( int workerID )
{
CWorkersReady *pWorkersReady = m_WorkersReadyCS.Lock();
if ( pWorkersReady->m_WorkersReady.Find( workerID ) != -1 )
m_bForceShuffle = true;
m_WorkersReadyCS.Unlock();
}
public:
CDSInfo *m_pInfo;
class CWorkersReady
{
public:
CUtlVector<int> m_WorkersReady; // The list of workers who have said they're ready to participate.
};
CCriticalSectionData<CWorkersReady> m_WorkersReadyCS;
class CWUsCompleted
{
public:
CUtlVector<WUIndexType> m_Completed; // WUs completed that we have sent to workers.
CUtlVector<WUIndexType> m_Pending; // WUs completed that we haven't sent to workers.
};
CCriticalSectionData<CWUsCompleted> m_WUsCompletedCS;
MessageBuffer m_WUSCompletedMessageBuffer; // Used to send lists of completed WUs.
int m_bUsingMasterLocalThreads;
bool m_bForceShuffle;
bool m_bShuffleRequested;
double m_flLastShuffleRequestServiceTime;
CShuffledWorkUnitWalker m_WorkUnitWalker;
};
class CDistributor_SDKWorker : public IWorkUnitDistributorWorker, public IShuffleRequester
{
public:
virtual void Init( CDSInfo *pInfo )
{
m_iMyWorkUnitWalkerID = -1;
m_pInfo = pInfo;
m_WorkUnitWalker.Init( pInfo->m_nWorkUnits, this );
}
virtual void Release()
{
delete this;
}
virtual bool GetNextWorkUnit( WUIndexType *pWUIndex )
{
// If we don't have an ID yet, we haven't received a Shuffle() command, so we're waiting for that before working.
// TODO: we could do some random WUs here while we're waiting, although that could suck if the WUs take forever to do
// and they're duplicates.
if ( m_iMyWorkUnitWalkerID == -1 )
return false;
// Look in our current shuffled list of work units for the next one.
return m_WorkUnitWalker.Thread_GetNextWorkUnit( m_iMyWorkUnitWalkerID, pWUIndex );
}
virtual void NoteLocalWorkUnitCompleted( WUIndexType iWU )
{
m_WorkUnitWalker.Thread_NoteLocalWorkUnitCompleted( iWU );
}
virtual bool HandlePacket( MessageBuffer *pBuf, int iSource, bool bIgnoreContents )
{
// If it's a SHUFFLE message, then shuffle..
if ( pBuf->data[1] == DW_SUBPACKETID_SHUFFLE )
{
if ( bIgnoreContents )
return true;
unsigned short nWorkers, myID;
CRC32_t shuffleCRC;
pBuf->read( &nWorkers, sizeof( nWorkers ) );
pBuf->read( &shuffleCRC, sizeof( shuffleCRC ) );
pBuf->read( &myID, sizeof( myID ) );
m_iMyWorkUnitWalkerID = myID;
m_WorkUnitWalker.Shuffle( nWorkers );
if ( m_WorkUnitWalker.GetShuffleCRC() != shuffleCRC )
{
static int nWarnings = 1;
if ( ++nWarnings <= 2 )
Warning( "\nShuffle CRC mismatch\n" );
}
return true;
}
else if ( pBuf->data[1] == DW_SUBPACKETID_WUS_COMPLETED_LIST )
{
if ( bIgnoreContents )
return true;
WUIndexType nCompleted;
m_pInfo->ReadWUIndex( &nCompleted, pBuf );
for ( WUIndexType i=0; i < nCompleted; i++ )
{
WUIndexType iWU;
m_pInfo->ReadWUIndex( &iWU, pBuf );
m_WorkUnitWalker.Thread_NoteWorkUnitCompleted( iWU );
}
return true;
}
return false;
}
virtual void RequestShuffle()
{
// Ok.. request a reshuffle.
MessageBuffer mb;
PrepareDistributeWorkHeader( &mb, DW_SUBPACKETID_REQUEST_SHUFFLE );
VMPI_SendData( mb.data, mb.getLen(), VMPI_MASTER_ID );
}
private:
CDSInfo *m_pInfo;
CShuffledWorkUnitWalker m_WorkUnitWalker;
int m_iMyWorkUnitWalkerID;
};
IWorkUnitDistributorMaster* CreateWUDistributor_SDKMaster()
{
return new CDistributor_SDKMaster;
}
IWorkUnitDistributorWorker* CreateWUDistributor_SDKWorker()
{
return new CDistributor_SDKWorker;
}