source-engine/filesystem/QueuedLoader.cpp

1979 lines
61 KiB
C++
Raw Normal View History

2020-04-22 16:56:21 +00:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Queued Loading of map resources. !!!!Specifically!!! designed for the map loading process.
//
// Not designed for application startup or gameplay time. Layered on top of async i/o.
// Queued loading is allowed during the map load process until full connection only,
// but can complete the remaining low priority jobs during the game render.
// The normal loading path can run in units of seconds if it does not have to do I/O,
// which is why this system runs first and gets all the data in memory unhindered
// by dependency blocking. The I/O delivery process achieves its speed by having all the I/O
// requests at once, performing the I/O, and handing the actual consumption
// of the I/O buffer to another available core/thread (via job pool) for computation work.
// The I/O (should be all unbuffered) is then only throttled by physical transfer rates.
//
// The Load process is broken into three phases. The first phase build up I/O requests.
// The second phase fulfills only the high priority I/O requests. This gets the critical
// data in memory, that has to be there for the normal load path to query, or the renderer
// to run (i.e. models and shaders). The third phase is the normal load process.
// The low priority jobs run concurrently with the normal load process. Low priority jobs
// are those that have been specially built such that the game or loading can operate unblocked
// without the actual data (i.e. d3d texture bits).
//
// Phase 1: The reslist is parsed into seperate lists based on handled extensions. Each list
// call its own loader which in turn generates its own dictionaries and I/O requests through
// "AddJob". A single reslist entry could cause a laoder to request multiple jobs. ( i.e. models )
// A loader marks its jobs as high or low priority.
// Phase 2: The I/O requests are sorted (which achieves seek offset order) and
// async i/o commences. Phase 2 does not end until all the high priority jobs
// are complete. This ensures critical data is resident.
// Phase 3: The !!!NORMAL!!! loading path can commence. The legacy loading path then
// is not expected to do I/O (it can, but that's a hole in the reslist), as all of the data
// that it queries, should be resident.
//
// Late added jobs are non-optimal (should have been in reslist), warned, but handled.
//
//===========================================================================//
#include "basefilesystem.h"
#include "tier0/vprof.h"
#include "tier0/tslist.h"
#include "tier1/utlbuffer.h"
#include "tier1/convar.h"
#include "tier1/KeyValues.h"
#include "tier1/utllinkedlist.h"
#include "tier1/utlstring.h"
#include "tier1/UtlSortVector.h"
#include "tier1/utldict.h"
#include "basefilesystem.h"
#include "tier0/icommandline.h"
#include "vstdlib/jobthread.h"
#include "filesystem/IQueuedLoader.h"
#include "tier2/tier2.h"
#include "characterset.h"
#if !defined( _X360 )
#include "xbox/xboxstubs.h"
#endif
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#define PRIORITY_HIGH 1
#define PRIORITY_NORMAL 0
#define PRIORITY_LOW -1
// main thread has reason to block and wait for thread pool to finish jobs
#define MAIN_THREAD_YIELD_TIME 20
// discrete stages in the preload process to tick the progress bar
#define PROGRESS_START 0.10f
#define PROGRESS_GOTRESLIST 0.12f
#define PROGRESS_PARSEDRESLIST 0.15f
#define PROGRESS_CREATEDRESOURCES 0.20f
#define PROGRESS_PREPURGE 0.22f
#define PROGRESS_IO 0.25f // up to 1.0
struct FileJob_t
{
FileJob_t()
{
Q_memset( this, 0, sizeof( FileJob_t ) );
}
FileNameHandle_t m_hFilename;
QueuedLoaderCallback_t m_pCallback;
FSAsyncControl_t m_hAsyncControl;
void *m_pContext;
void *m_pContext2;
void *m_pTargetData;
int m_nBytesToRead;
unsigned int m_nStartOffset;
LoaderPriority_t m_Priority;
unsigned int m_SubmitTime;
unsigned int m_FinishTime;
int m_SubmitTag;
int m_nActualBytesRead;
LoaderError_t m_LoaderError;
unsigned int m_ThreadId;
unsigned int m_bFinished : 1;
unsigned int m_bFreeTargetAfterIO : 1;
unsigned int m_bFileExists : 1;
unsigned int m_bClaimed : 1;
};
// dummy stubbed progress interface
class CDummyProgress : public ILoaderProgress
{
void BeginProgress() {}
void UpdateProgress( float progress ) {}
void EndProgress() {}
};
static CDummyProgress s_DummyProgress;
class CQueuedLoader : public CTier2AppSystem< IQueuedLoader >
{
typedef CTier2AppSystem< IQueuedLoader > BaseClass;
public:
CQueuedLoader();
virtual ~CQueuedLoader();
// Inherited from IAppSystem
virtual InitReturnVal_t Init();
virtual void Shutdown();
// IQueuedLoader
virtual void InstallLoader( ResourcePreload_t type, IResourcePreload *pLoader );
virtual void InstallProgress( ILoaderProgress *pProgress );
// Set bOptimizeReload if you want appropriate data (such as static prop lighting)
// to persist - rather than being purged and reloaded - when going from map A to map A.
virtual bool BeginMapLoading( const char *pMapName, bool bLoadForHDR, bool bOptimizeMapReload );
virtual void EndMapLoading( bool bAbort );
virtual bool AddJob( const LoaderJob_t *pLoaderJob );
virtual void AddMapResource( const char *pFilename );
virtual void DynamicLoadMapResource( const char *pFilename, DynamicResourceCallback_t pCallback, void *pContext, void *pContext2 );
virtual void QueueDynamicLoadFunctor( CFunctor* pFunctor );
virtual bool CompleteDynamicLoad();
virtual void QueueCleanupDynamicLoadFunctor( CFunctor* pFunctor );
virtual bool CleanupDynamicLoad();
virtual bool ClaimAnonymousJob( const char *pFilename, QueuedLoaderCallback_t pCallback, void *pContext, void *pContext2 );
virtual bool ClaimAnonymousJob( const char *pFilename, void **pData, int *pDataSize, LoaderError_t *pError );
virtual bool IsMapLoading() const;
virtual bool IsSameMapLoading() const;
virtual bool IsFinished() const;
virtual bool IsBatching() const;
virtual bool IsDynamic() const;
virtual int GetSpewDetail() const;
char *GetFilename( const FileNameHandle_t hFilename, char *pBuff, int nBuffSize );
FileNameHandle_t FindFilename( const char *pFilename );
void SpewInfo();
// submit any queued jobs to the async loader, called by main or async thread to get more work
void SubmitPendingJobs();
void PurgeAll();
private:
class CFileJobsLessFunc
{
public:
int GetLayoutOrderForFilename( const char *pFilename );
bool Less( FileJob_t* const &pFileJobLHS, FileJob_t* const &pFileJobRHS, void *pCtx );
};
class CResourceNameLessFunc
{
public:
bool Less( const FileNameHandle_t &hFilenameLHS, const FileNameHandle_t &hFilenameRHS, void *pCtx );
};
typedef CUtlSortVector< FileNameHandle_t, CResourceNameLessFunc > ResourceList_t;
static void BuildResources( IResourcePreload *pLoader, ResourceList_t *pList, float *pBuildTime );
static void BuildMaterialResources( IResourcePreload *pLoader, ResourceList_t *pList, float *pBuildTime );
void PurgeQueue();
void CleanQueue();
void SubmitBatchedJobs();
void SubmitBatchedJobsAndWait();
void ParseResourceList( CUtlBuffer &resourceList );
void GetJobRequests();
void PurgeUnreferencedResources();
void AddResourceToTable( const char *pFilename );
bool m_bStarted;
bool m_bActive;
bool m_bBatching;
bool m_bDynamic;
bool m_bCanBatch;
bool m_bLoadForHDR;
bool m_bDoProgress;
bool m_bSameMap;
int m_nSubmitCount;
unsigned int m_StartTime;
unsigned int m_EndTime;
char m_szMapNameToCompareSame[MAX_PATH];
DynamicResourceCallback_t m_pfnDynamicCallback;
CUtlString m_DynamicFileName;
void* m_pDynamicContext;
void* m_pDynamicContext2;
CThreadFastMutex m_FunctorQueueMutex;
CUtlVector< CFunctor* > m_FunctorQueue;
CUtlVector< CFunctor* > m_CleanupFunctorQueue;
CUtlFilenameSymbolTable m_Filenames;
CTSList< FileJob_t* > m_PendingJobs;
CTSList< FileJob_t* > m_BatchedJobs;
CUtlLinkedList< FileJob_t* > m_SubmittedJobs;
CUtlDict< FileJob_t*, int > m_AnonymousJobs;
CUtlSymbolTable m_AdditionalResources;
CUtlSortVector< FileNameHandle_t, CResourceNameLessFunc > m_ResourceNames[RESOURCEPRELOAD_COUNT];
IResourcePreload *m_pLoaders[RESOURCEPRELOAD_COUNT];
float m_LoaderTimes[RESOURCEPRELOAD_COUNT];
ILoaderProgress *m_pProgress;
CThreadFastMutex m_Mutex;
};
static CQueuedLoader g_QueuedLoader;
EXPOSE_SINGLE_INTERFACE_GLOBALVAR( CQueuedLoader, IQueuedLoader, QUEUEDLOADER_INTERFACE_VERSION, g_QueuedLoader );
class CResourcePreloadAnonymous : public IResourcePreload
{
virtual bool CreateResource( const char *pName )
{
// create an anonymous job to get the data in memory, claimed during load, or auto-freed
LoaderJob_t loaderJob;
loaderJob.m_pFilename = pName;
loaderJob.m_pPathID = "GAME";
loaderJob.m_Priority = LOADERPRIORITY_DURINGPRELOAD;
g_QueuedLoader.AddJob( &loaderJob );
return true;
}
virtual void PurgeUnreferencedResources() {}
virtual void OnEndMapLoading( bool bAbort ) {}
virtual void PurgeAll() {}
};
static CResourcePreloadAnonymous s_ResourcePreloadAnonymous;
const char *g_ResourceLoaderNames[RESOURCEPRELOAD_COUNT] =
{
"???", // RESOURCEPRELOAD_UNKNOWN
"Sounds", // RESOURCEPRELOAD_SOUND
"Materials", // RESOURCEPRELOAD_MATERIAL
"Models", // RESOURCEPRELOAD_MODEL
"Cubemaps", // RESOURCEPRELOAD_CUBEMAP
"PropLighting", // RESOURCEPRELOAD_STATICPROPLIGHTING
"Anonymous", // RESOURCEPRELOAD_ANONYMOUS
};
static CInterlockedInt g_nActiveJobs;
static CInterlockedInt g_nQueuedJobs;
static CInterlockedInt g_nHighPriorityJobs; // tracks jobs that must finish during preload
static CInterlockedInt g_nJobsToFinishBeforePlay; // tracks jobs that must finish before gameplay
static CInterlockedInt g_nIOMemory; // tracks I/O data from async delivery until consumed
static CInterlockedInt g_nAnonymousIOMemory; // tracks anonymous I/O data from async delivery until consumed
static CInterlockedInt g_SuspendIO; // used to throttle the I/O
static int g_nIOMemoryPeak;
static int g_nAnonymousIOMemoryPeak;
static int g_nHighIOSuspensionMark;
static int g_nLowIOSuspensionMark;
ConVar loader_spew_info( "loader_spew_info", "0", 0, "0:Off, 1:Timing, 2:Completions, 3:Late Completions, 4:Purges, -1:All " );
// Kyle says: this is here only to change the DLL size to force clients to update! This should be removed
// by whoever sees this comment after we've shipped a DLL using it!
ConVar loader_sped_info_ex( "loader_spew_info_ex", "0", 0, "(internal)" );
CON_COMMAND( loader_dump_table, "" )
{
g_QueuedLoader.SpewInfo();
}
//-----------------------------------------------------------------------------
// Constructor
//-----------------------------------------------------------------------------
CQueuedLoader::CQueuedLoader() : BaseClass( false )
{
m_bStarted = false;
m_bActive = false;
m_bBatching = false;
m_bDynamic = false;
m_bCanBatch = false;
m_bLoadForHDR = false;
m_bDoProgress = false;
m_bSameMap = false;
m_nSubmitCount = 0;
m_pfnDynamicCallback = NULL;
m_pDynamicContext = NULL;
m_pDynamicContext2 = NULL;
m_szMapNameToCompareSame[0] = '\0';
m_pProgress = &s_DummyProgress;
V_memset( m_pLoaders, 0, sizeof( m_pLoaders ) );
// set resource dictionaries sort context
for ( int i = 0; i < RESOURCEPRELOAD_COUNT; i++ )
{
m_ResourceNames[i].SetLessContext( (void *)i );
}
InstallLoader( RESOURCEPRELOAD_ANONYMOUS, &s_ResourcePreloadAnonymous );
}
//-----------------------------------------------------------------------------
// Destructor
//-----------------------------------------------------------------------------
CQueuedLoader::~CQueuedLoader()
{
}
//-----------------------------------------------------------------------------
// Computation job to build out objects
//-----------------------------------------------------------------------------
void CQueuedLoader::BuildResources( IResourcePreload *pLoader, ResourceList_t *pList, float *pBuildTime )
{
float t0 = Plat_FloatTime();
if ( pLoader )
{
pList->RedoSort();
for ( int i = 0; i < pList->Count(); i++ )
{
char szFilename[MAX_PATH];
g_QueuedLoader.GetFilename( pList->Element( i ), szFilename, sizeof( szFilename ) );
if ( szFilename[0] )
{
if ( !pLoader->CreateResource( szFilename ) )
{
Warning( "QueuedLoader: Failed to create resource %s\n", szFilename );
}
}
}
}
// finished with list
pList->Purge();
*pBuildTime = Plat_FloatTime() - t0;
}
//-----------------------------------------------------------------------------
// Computation job to build out material objects
//-----------------------------------------------------------------------------
void CQueuedLoader::BuildMaterialResources( IResourcePreload *pLoader, ResourceList_t *pList, float *pBuildTime )
{
float t0 = Plat_FloatTime();
char szLastFilename[MAX_PATH];
szLastFilename[0] = '\0';
// ensure cubemaps are first
pList->RedoSort();
// run a clean operation to cull the non-patched env_cubemap materials, which are not built directly
for ( int i = 0; i < pList->Count(); i++ )
{
char szFilename[MAX_PATH];
char *pFilename = g_QueuedLoader.GetFilename( pList->Element( i ), szFilename, sizeof( szFilename ) );
if ( !V_stristr( pFilename, "maps\\" ) )
{
// list is sorted, first non-cubemap marks end of relevant list
break;
}
// skip past maps/mapname/
pFilename += 5;
pFilename = strchr( pFilename, '\\' ) + 1;
// back up until end of material name is found, need to strip off _%d_%d_%d.vmt
char *pEndFilename = V_stristr( pFilename, ".vmt" );
if ( !pEndFilename )
{
pEndFilename = pFilename + strlen( pFilename );
}
int numUnderscores = 3;
while ( pEndFilename != pFilename && numUnderscores > 0 )
{
pEndFilename--;
if ( pEndFilename[0] == '_' )
{
numUnderscores--;
}
}
if ( numUnderscores == 0 )
{
*pEndFilename = '\0';
if ( !V_strcmp( szLastFilename, pFilename ) )
{
// same cubemap material base already processed, skip it
continue;
}
V_strncpy( szLastFilename, pFilename, sizeof( szLastFilename ) );
strcat( pFilename, ".vmt" );
FileNameHandle_t hFilename = g_QueuedLoader.FindFilename( pFilename );
if ( hFilename )
{
pList->Remove( hFilename );
}
}
}
// process clean list
BuildResources( pLoader, pList, pBuildTime );
*pBuildTime = Plat_FloatTime() - t0;
}
//-----------------------------------------------------------------------------
// Called by multiple worker threads. Throttle the I/O to ensure too many
// buffers don't flood the work queue. Anonymous I/O is allowed to grow unbounded.
//-----------------------------------------------------------------------------
void AdjustAsyncIOSpeed()
{
if ( g_QueuedLoader.IsDynamic() == true )
{
return;
}
// throttle back the I/O to keep the pending buffers from exhausting memory
if ( g_SuspendIO == 0 )
{
if ( g_nIOMemory >= g_nHighIOSuspensionMark && g_nActiveJobs != 0 )
{
// protect against another worker thread
if ( g_SuspendIO.AssignIf( 0, 1 ) )
{
if ( g_QueuedLoader.GetSpewDetail() )
{
Msg( "QueuedLoader: Suspending I/O at %.2f MB\n", (float)g_nIOMemory / ( 1024.0f * 1024.0f ) );
}
g_pFullFileSystem->AsyncSuspend();
}
}
}
else if ( g_SuspendIO == 1 )
{
if ( g_nIOMemory <= g_nLowIOSuspensionMark )
{
// protect against another worker thread
if ( g_SuspendIO.AssignIf( 1, 0 ) )
{
if ( g_QueuedLoader.GetSpewDetail() )
{
Msg( "QueuedLoader: Resuming I/O at %.2f MB\n", (float)g_nIOMemory / ( 1024.0f * 1024.0f ) );
}
g_pFullFileSystem->AsyncResume();
}
}
}
}
//-----------------------------------------------------------------------------
// Computation job to do work after IO, runs callback
//-----------------------------------------------------------------------------
void IOComputationJob( FileJob_t *pFileJob, void *pData, int nSize, LoaderError_t loaderError )
{
int spewDetail = g_QueuedLoader.GetSpewDetail();
if ( spewDetail & ( LOADER_DETAIL_COMPLETIONS|LOADER_DETAIL_LATECOMPLETIONS ) )
{
const char *pLateString = "";
if ( !g_QueuedLoader.IsMapLoading() )
{
// completed outside of load process
pLateString = "(Late) ";
}
if ( ( spewDetail & LOADER_DETAIL_COMPLETIONS ) || ( ( spewDetail & LOADER_DETAIL_LATECOMPLETIONS ) && pLateString[0] ) )
{
char szFilename[MAX_PATH];
g_QueuedLoader.GetFilename( pFileJob->m_hFilename, szFilename, sizeof( szFilename ) );
Msg( "QueuedLoader: Computation:%8.8x, Size:%7d %s%s\n", ThreadGetCurrentId(), nSize, pLateString, szFilename );
}
}
if ( loaderError != LOADERERROR_NONE && pFileJob->m_bFileExists )
{
char szFilename[MAX_PATH];
g_QueuedLoader.GetFilename( pFileJob->m_hFilename, szFilename, sizeof( szFilename ) );
Warning( "QueuedLoader:: I/O Error on %s\n", szFilename );
}
pFileJob->m_nActualBytesRead = nSize;
pFileJob->m_LoaderError = loaderError;
if ( !pFileJob->m_pCallback )
{
// absent callback means resource loader want this system to delay buffer until ready for it
if ( !pFileJob->m_pTargetData )
{
// track it for later, unclaimed buffers will get freed
pFileJob->m_pTargetData = pData;
}
}
else
{
// regardless of error, call job callback so caller can do cleanup of their context
pFileJob->m_pCallback( pFileJob->m_pContext, pFileJob->m_pContext2, pData, nSize, loaderError );
if ( pFileJob->m_bFreeTargetAfterIO && pData )
{
// free our data only
g_pFullFileSystem->FreeOptimalReadBuffer( pData );
}
// memory has been consumed
g_nIOMemory -= nSize;
}
// mark as completed
pFileJob->m_bFinished = true;
pFileJob->m_FinishTime = Plat_MSTime();
pFileJob->m_ThreadId = ThreadGetCurrentId();
if ( pFileJob->m_Priority == LOADERPRIORITY_DURINGPRELOAD )
{
g_nHighPriorityJobs--;
}
else if ( pFileJob->m_Priority == LOADERPRIORITY_BEFOREPLAY )
{
g_nJobsToFinishBeforePlay--;
}
g_nQueuedJobs--;
if ( g_nQueuedJobs == 0 && ( spewDetail & LOADER_DETAIL_TIMING ) )
{
Msg( "QueuedLoader: Finished I/O of all queued jobs!\n" );
}
AdjustAsyncIOSpeed();
}
//-----------------------------------------------------------------------------
// Computation job to do work after anonymous job was asynchronously claimed, runs callback.
//-----------------------------------------------------------------------------
void FinishAnonymousJob( FileJob_t *pFileJob, QueuedLoaderCallback_t pCallback, void *pContext, void *pContext2 )
{
// regardless of error, call job callback so caller can do cleanup of their context
pCallback( pContext, pContext2, pFileJob->m_pTargetData, pFileJob->m_nActualBytesRead, pFileJob->m_LoaderError );
if ( pFileJob->m_bFreeTargetAfterIO && pFileJob->m_pTargetData )
{
// free our data only
g_pFullFileSystem->FreeOptimalReadBuffer( pFileJob->m_pTargetData );
pFileJob->m_pTargetData = NULL;
}
pFileJob->m_bClaimed = true;
// memory has been consumed
g_nAnonymousIOMemory -= pFileJob->m_nActualBytesRead;
}
//-----------------------------------------------------------------------------
// Callback from I/O job thread. Purposely lightweight as possible to keep i/o from stalling.
//-----------------------------------------------------------------------------
void IOAsyncCallback( const FileAsyncRequest_t &asyncRequest, int numReadBytes, FSAsyncStatus_t asyncStatus )
{
FileJob_t *pFileJob = (FileJob_t *)asyncRequest.pContext;
// interpret the async error
LoaderError_t loaderError;
switch ( asyncStatus )
{
case FSASYNC_OK:
loaderError = LOADERERROR_NONE;
break;
case FSASYNC_ERR_FILEOPEN:
loaderError = LOADERERROR_FILEOPEN;
break;
default:
loaderError = LOADERERROR_READING;
}
// track how much i/o data is in flight, consumption will decrement
if ( !pFileJob->m_pCallback )
{
// anonymous io memory is tracked seperatley
g_nAnonymousIOMemory += numReadBytes;
if ( g_nAnonymousIOMemory > g_nAnonymousIOMemoryPeak )
{
g_nAnonymousIOMemoryPeak = g_nAnonymousIOMemory;
}
}
else
{
g_nIOMemory += numReadBytes;
if ( g_nIOMemory > g_nIOMemoryPeak )
{
g_nIOMemoryPeak = g_nIOMemory;
}
}
// have data or error, do callback as a computation job
if ( !g_QueuedLoader.IsDynamic() )
{
g_pThreadPool->QueueCall( IOComputationJob, pFileJob, asyncRequest.pData, numReadBytes, loaderError )->Release();
}
else
{
g_QueuedLoader.QueueDynamicLoadFunctor( CreateFunctor( IOComputationJob, pFileJob, asyncRequest.pData, numReadBytes, loaderError ) );
}
// don't let the i/o starve, possibly get some more work from the pending queue
g_QueuedLoader.SubmitPendingJobs();
// possibly goes to zero atomically, AFTER submission
// prevents contention between main thread
--g_nActiveJobs;
}
//-----------------------------------------------------------------------------
// Public method to filename dictionary
//-----------------------------------------------------------------------------
char *CQueuedLoader::GetFilename( const FileNameHandle_t hFilename, char *pBuff, int nBuffSize )
{
m_Filenames.String( hFilename, pBuff, nBuffSize );
return pBuff;
}
//-----------------------------------------------------------------------------
// Public method to filename dictionary
//-----------------------------------------------------------------------------
FileNameHandle_t CQueuedLoader::FindFilename( const char *pFilename )
{
return m_Filenames.FindFileName( pFilename );
}
//-----------------------------------------------------------------------------
// Sort function for resource names.
//-----------------------------------------------------------------------------
bool CQueuedLoader::CResourceNameLessFunc::Less( const FileNameHandle_t &hFilenameLHS, const FileNameHandle_t &hFilenameRHS, void *pCtx )
{
2022-02-23 11:50:30 +00:00
switch ( (intp)pCtx )
2020-04-22 16:56:21 +00:00
{
case RESOURCEPRELOAD_MATERIAL:
{
// Cubemap materials are expected to be at top of list
char szNameLHS[MAX_PATH];
char szNameRHS[MAX_PATH];
const char *pNameLHS = g_QueuedLoader.GetFilename( hFilenameLHS, szNameLHS, sizeof( szNameLHS ) );
const char *pNameRHS = g_QueuedLoader.GetFilename( hFilenameRHS, szNameRHS, sizeof( szNameRHS ) );
bool bIsCubemapLHS = V_stristr( pNameLHS, "maps\\" ) != NULL;
bool bIsCubemapRHS = V_stristr( pNameRHS, "maps\\" ) != NULL;
if ( bIsCubemapLHS != bIsCubemapRHS )
{
return ( bIsCubemapLHS == true && bIsCubemapRHS == false );
}
return ( V_stricmp( pNameLHS, pNameRHS ) < 0 );
}
break;
default:
// sort not really needed, just use numeric handles
return ( hFilenameLHS < hFilenameRHS );
}
}
//-----------------------------------------------------------------------------
// Resolve filenames to expected disc layout order as...
// bsp, graphs, platform, hl2, episodic, ep2, tf, portal, non-zip
// see XGD layout.
//-----------------------------------------------------------------------------
int CQueuedLoader::CFileJobsLessFunc::GetLayoutOrderForFilename( const char *pFilename )
{
bool bIsLocalizedZip = false;
if ( XBX_IsLocalized() )
{
if ( V_stristr( pFilename, "\\zip" ) && V_stristr( pFilename, XBX_GetLanguageString() ) )
{
bIsLocalizedZip = true;
}
}
int order;
if ( V_stristr( pFilename, "\\maps\\" ) )
{
// bsp's and graphs on the opposite layer, these must be topmost
// the queued loader is expecting to do these first, all at once
// this allows for a single layer switch
if ( V_stristr( pFilename, "\\graphs\\" ) )
{
order = 1;
}
else
{
order = 0;
}
}
else if ( V_stristr( pFilename, "\\platform\\zip" ) )
{
order = 2;
}
else if ( V_stristr( pFilename, "\\hl2\\zip" ) )
{
order = 3;
}
else if ( V_stristr( pFilename, "\\episodic\\zip" ) )
{
order = 4;
}
else if ( V_stristr( pFilename, "\\ep2\\zip" ) )
{
order = 5;
}
else if ( V_stristr( pFilename, "\\tf\\zip" ) )
{
order = 6;
}
else if ( V_stristr( pFilename, "\\portal\\zip" ) )
{
order = 7;
}
else
{
// other
order = 8;
}
// localized zips have same relative sort order, but after all other zips
return bIsLocalizedZip ? 10*order : order;
}
//-----------------------------------------------------------------------------
// Sort function, high priority jobs sort first, then offset, then zip
//-----------------------------------------------------------------------------
bool CQueuedLoader::CFileJobsLessFunc::Less( FileJob_t* const &pFileJobLHS, FileJob_t* const &pFileJobRHS, void *pCtx )
{
if ( pFileJobLHS->m_Priority != pFileJobRHS->m_Priority )
{
// higher priorities sort to top
return ( pFileJobLHS->m_Priority > pFileJobRHS->m_Priority );
}
if ( pFileJobLHS->m_hFilename == pFileJobRHS->m_hFilename )
{
// same file (zip), sort by offset
return pFileJobLHS->m_nStartOffset < pFileJobRHS->m_nStartOffset;
}
char szFilenameLHS[MAX_PATH];
char szFilenameRHS[MAX_PATH];
g_QueuedLoader.GetFilename( pFileJobLHS->m_hFilename, szFilenameLHS, sizeof( szFilenameLHS ) );
g_QueuedLoader.GetFilename( pFileJobRHS->m_hFilename, szFilenameRHS, sizeof( szFilenameRHS ) );
// resolve filename to match disk layout of zips
int layoutLHS = GetLayoutOrderForFilename( szFilenameLHS );
int layoutRHS = GetLayoutOrderForFilename( szFilenameRHS );
if ( layoutLHS != layoutRHS )
{
return layoutLHS < layoutRHS;
}
return CaselessStringLessThan( szFilenameLHS, szFilenameRHS );
}
//-----------------------------------------------------------------------------
// Dump the queue contents to the file system.
//-----------------------------------------------------------------------------
void CQueuedLoader::SubmitPendingJobs()
{
// prevents contention between I/O and main thread attempting to submit
if ( ThreadInMainThread() && g_nActiveJobs != 0 && m_bDynamic == false )
{
// main thread can only kick start work if the I/O is idle
// once the I/O is kicked off, the I/O thread is responsible for continual draining
return;
}
else if ( !ThreadInMainThread() && g_nActiveJobs != 1 && m_bDynamic == false )
{
// I/O thread requests more work, but will only fall through and get some when it expects to go idle
// I/O thread still has jobs and doesn't need any more yet
return;
}
CTSList<FileJob_t *>::Node_t *pNode = m_PendingJobs.Detach();
if ( !pNode )
{
return;
}
// used by spew to indicate submission blocks
m_nSubmitCount++;
// sort entries
CUtlSortVector< FileJob_t*, CFileJobsLessFunc > sortedFiles( 0, 128 );
while ( pNode )
{
FileJob_t *pFileJob = pNode->elem;
sortedFiles.InsertNoSort( pFileJob );
CTSList<FileJob_t *>::Node_t *pNext = (CTSList<FileJob_t *>::Node_t*)pNode->Next;
delete pNode;
pNode = pNext;
}
sortedFiles.RedoSort();
FileAsyncRequest_t asyncRequest;
asyncRequest.pfnCallback = IOAsyncCallback;
char szFilename[MAX_PATH];
for ( int i = 0; i<sortedFiles.Count(); i++ )
{
FileJob_t *pFileJob = sortedFiles[i];
pFileJob->m_SubmitTag = m_nSubmitCount;
pFileJob->m_SubmitTime = Plat_MSTime();
m_SubmittedJobs.AddToTail( pFileJob );
// build an async request
if ( pFileJob->m_Priority == LOADERPRIORITY_DURINGPRELOAD )
{
// must finish during preload
asyncRequest.priority = PRIORITY_HIGH;
g_nHighPriorityJobs++;
}
else if ( pFileJob->m_Priority == LOADERPRIORITY_BEFOREPLAY )
{
// must finish before gameplay
asyncRequest.priority = PRIORITY_NORMAL;
g_nJobsToFinishBeforePlay++;
}
else
{
// can finish during gameplay, normal priority
asyncRequest.priority = PRIORITY_NORMAL;
}
// async will allocate unless caller provided a target
// loader always takes ownership of buffer
asyncRequest.pData = pFileJob->m_pTargetData;
asyncRequest.flags = pFileJob->m_pTargetData ? 0 : FSASYNC_FLAGS_ALLOCNOFREE;
asyncRequest.nOffset = pFileJob->m_nStartOffset;
asyncRequest.nBytes = pFileJob->m_nBytesToRead;
asyncRequest.pszFilename = GetFilename( pFileJob->m_hFilename, szFilename, sizeof( szFilename ) );
asyncRequest.pContext = (void *)pFileJob;
if ( pFileJob->m_bFileExists )
{
// start the valid async request
g_nActiveJobs++;
g_pFullFileSystem->AsyncRead( asyncRequest, &pFileJob->m_hAsyncControl );
}
else
{
// prevent dragging the i/o system down for known failures
// still need to do callback so subsystems can do the right thing based on file absence
if ( IsDynamic() )
QueueDynamicLoadFunctor( CreateFunctor( IOComputationJob, pFileJob, pFileJob->m_pTargetData, 0, LOADERERROR_FILEOPEN ) );
else
g_pThreadPool->QueueCall( IOComputationJob, pFileJob, pFileJob->m_pTargetData, 0, LOADERERROR_FILEOPEN )->Release();
}
}
}
//-----------------------------------------------------------------------------
// Add to queue
//-----------------------------------------------------------------------------
bool CQueuedLoader::AddJob( const LoaderJob_t *pLoaderJob )
{
if ( !m_bActive )
{
return false;
}
Assert( pLoaderJob && pLoaderJob->m_pFilename );
if ( m_bCanBatch && !m_bBatching )
{
// should have been part of pre-load batch
DevWarning( "QueuedLoader: Late Queued Job: %s\n", pLoaderJob->m_pFilename );
}
// anonymous jobs lack callbacks and are heavily restricted to ensure their stability
// the caller is expected to claim these before load ends (which auto-purges them)
if ( !pLoaderJob->m_pCallback && pLoaderJob->m_Priority == LOADERPRIORITY_ANYTIME )
{
Assert( 0 );
DevWarning( "QueuedLoader: Ignoring Anonymous Job: %s\n", pLoaderJob->m_pFilename );
return false;
}
MEM_ALLOC_CREDIT();
// all bsp based files get forced to a higher priority in order to achieve a clustered sort
// the bsp files are not going to be anywhere near the zips, thus we don't want head thrashing
bool bFileIsFromBSP;
bool bExists = false;
char *pFullPath;
char szFullPath[MAX_PATH];
if ( V_IsAbsolutePath( pLoaderJob->m_pFilename ) )
{
// an absolute path is trusted, take as is
pFullPath = (char *)pLoaderJob->m_pFilename;
bFileIsFromBSP = V_stristr( pFullPath, ".bsp" ) != NULL;
bExists = true;
}
else
{
// must resolve now, all submitted paths must be absolute for proper sort which achieves seek linearization
// a resolved absolute file ensures its existence
PathTypeFilter_t pathFilter = FILTER_NONE;
if ( IsX360() && ( g_pFullFileSystem->GetDVDMode() == DVDMODE_STRICT ) )
{
if ( V_stristr( pLoaderJob->m_pFilename, ".bsp" ) || V_stristr( pLoaderJob->m_pFilename, ".ain" ) )
{
// only the bsp/ain are allowed to be external
pathFilter = FILTER_CULLPACK;
}
else
{
// all files are expected to be in zip
pathFilter = FILTER_CULLNONPACK;
}
}
PathTypeQuery_t pathType;
g_pFullFileSystem->RelativePathToFullPath( pLoaderJob->m_pFilename, pLoaderJob->m_pPathID, szFullPath, sizeof( szFullPath ), pathFilter, &pathType );
bExists = V_IsAbsolutePath( szFullPath );
pFullPath = szFullPath;
bFileIsFromBSP = ( (pathType & PATH_IS_MAPPACKFILE) != 0 );
}
// create a file job
FileJob_t *pFileJob = new FileJob_t;
pFileJob->m_hFilename = m_Filenames.FindOrAddFileName( pFullPath );
pFileJob->m_bFileExists = bExists;
pFileJob->m_pCallback = pLoaderJob->m_pCallback;
pFileJob->m_pContext = pLoaderJob->m_pContext;
pFileJob->m_pContext2 = pLoaderJob->m_pContext2;
pFileJob->m_pTargetData = pLoaderJob->m_pTargetData;
pFileJob->m_nBytesToRead = pLoaderJob->m_nBytesToRead;
pFileJob->m_nStartOffset = pLoaderJob->m_nStartOffset;
pFileJob->m_Priority = bFileIsFromBSP ? LOADERPRIORITY_DURINGPRELOAD : pLoaderJob->m_Priority;
if ( pLoaderJob->m_pTargetData )
{
// never free caller's buffer, if they provide, they have to free it
pFileJob->m_bFreeTargetAfterIO = false;
}
else
{
// caller can take over ownership, otherwise it gets freed after I/O
pFileJob->m_bFreeTargetAfterIO = ( pLoaderJob->m_bPersistTargetData == false );
}
if ( !pLoaderJob->m_pCallback )
{
// track anonymous jobs
AUTO_LOCK( m_Mutex );
char szFixedName[MAX_PATH];
V_strncpy( szFixedName, pLoaderJob->m_pFilename, sizeof( szFixedName ) );
V_FixSlashes( szFixedName );
m_AnonymousJobs.Insert( szFixedName, pFileJob );
}
g_nQueuedJobs++;
if ( m_bBatching )
{
m_BatchedJobs.PushItem( pFileJob );
}
else
{
m_PendingJobs.PushItem( pFileJob );
SubmitPendingJobs();
}
return true;
}
//-----------------------------------------------------------------------------
// Allows an external system to append to a map's reslist. The next map load
// will append these specified files. Unhandled resources will just get
// quietly discarded. An external system could use this to patch a hole
// or prevent a purge.
//-----------------------------------------------------------------------------
void CQueuedLoader::AddMapResource( const char *pFilename )
{
if ( !pFilename || !pFilename[0] )
{
// pointless
return;
}
// normalize the provided name as a filename
char szFilename[MAX_PATH];
V_strncpy( szFilename, pFilename, sizeof( szFilename ) );
V_FixSlashes( szFilename );
V_strlower( szFilename );
if ( m_AdditionalResources.Find( szFilename ) != UTL_INVAL_SYMBOL )
{
// already added
return;
}
m_AdditionalResources.AddString( szFilename );
}
//-----------------------------------------------------------------------------
// Asynchronous claim for an anonymous job.
// This allows loaders with deep dependencies to get their data in flight, and then claim it
// when the they are in a state to consume it.
//-----------------------------------------------------------------------------
bool CQueuedLoader::ClaimAnonymousJob( const char *pFilename, QueuedLoaderCallback_t pCallback, void *pContext, void *pContext2 )
{
Assert( ThreadInMainThread() );
Assert( pFilename && pCallback && !m_bBatching );
char szFixedName[MAX_PATH];
V_strncpy( szFixedName, pFilename, sizeof( szFixedName ) );
V_FixSlashes( szFixedName );
pFilename = szFixedName;
int iIndex = m_AnonymousJobs.Find( pFilename );
if ( iIndex == m_AnonymousJobs.InvalidIndex() )
{
// unknown
DevWarning( "QueuedLoader: Anonymous Job '%s' not found\n", pFilename );
return false;
}
// caller is claiming
FileJob_t *pFileJob = m_AnonymousJobs[iIndex];
if ( !pFileJob->m_bFinished )
{
// unfinished shouldn't happen and caller can't have it
// anonymous jobs and their claims are very restrictive in such a way to provide stability
// this dead job will get auto-cleaned at end of map loading
Assert( 0 );
return false;
}
m_AnonymousJobs.RemoveAt( iIndex );
g_pThreadPool->QueueCall( FinishAnonymousJob, pFileJob, pCallback, pContext, pContext2 )->Release();
return true;
}
//-----------------------------------------------------------------------------
// Synchronous claim for an anonymous job. This allows loaders
// with deep dependencies to get their data in flight, and then claim it
// when the they are in a state to consume it.
//-----------------------------------------------------------------------------
bool CQueuedLoader::ClaimAnonymousJob( const char *pFilename, void **pData, int *pDataSize, LoaderError_t *pError )
{
Assert( ThreadInMainThread() );
Assert( pFilename && !m_bBatching );
char szFixedName[MAX_PATH];
V_strncpy( szFixedName, pFilename, sizeof( szFixedName ) );
V_FixSlashes( szFixedName );
pFilename = szFixedName;
int iIndex = m_AnonymousJobs.Find( pFilename );
if ( iIndex == m_AnonymousJobs.InvalidIndex() )
{
// unknown
DevWarning( "QueuedLoader: Anonymous Job '%s' not found\n", pFilename );
return false;
}
// caller is claiming
FileJob_t *pFileJob = m_AnonymousJobs[iIndex];
if ( !pFileJob->m_bFinished )
{
// unfinished shouldn't happen and caller can't have it
// anonymous jobs and their claims are very restrictive in such a way to provide stability
// this dead job will get auto-cleaned at end of map loading
Assert( 0 );
return false;
}
pFileJob->m_bClaimed = true;
m_AnonymousJobs.RemoveAt( iIndex );
*pData = pFileJob->m_pTargetData;
*pDataSize = pFileJob->m_LoaderError == LOADERERROR_NONE ? pFileJob->m_nActualBytesRead : 0;
if ( pError )
{
*pError = pFileJob->m_LoaderError;
}
// caller owns the data, regardless of how the job was setup
pFileJob->m_pTargetData = NULL;
// memory has been consumed
g_nAnonymousIOMemory -= pFileJob->m_nActualBytesRead;
return true;
}
//-----------------------------------------------------------------------------
// End of batching. Moves jobs into pending queue and submits but does not wait
//-----------------------------------------------------------------------------
void CQueuedLoader::SubmitBatchedJobs()
{
// end of batching
m_bBatching = false;
CTSList<FileJob_t *>::Node_t *pNode = m_BatchedJobs.Detach();
if ( !pNode )
{
return;
}
// must wait for any initial i/o to finish
// i/o thread must stop in order to submit all the batched jobs atomically
// and get an accurate accounting of high priority jobs
while ( g_nActiveJobs != 0 )
{
g_pThreadPool->Yield( MAIN_THREAD_YIELD_TIME );
}
// dump batched jobs to pending jobs
while ( pNode )
{
FileJob_t *pFileJob = pNode->elem;
m_PendingJobs.PushItem( pFileJob );
CTSList<FileJob_t *>::Node_t *pNext = (CTSList<FileJob_t *>::Node_t*)pNode->Next;
delete pNode;
pNode = pNext;
}
SubmitPendingJobs();
if ( GetSpewDetail() )
{
Msg( "QueuedLoader: High Priority Jobs: %d\n", (int)g_nHighPriorityJobs );
}
}
//-----------------------------------------------------------------------------
// End of batching. High priority jobs are guaranteed completed before function returns.
//-----------------------------------------------------------------------------
void CQueuedLoader::SubmitBatchedJobsAndWait()
{
SubmitBatchedJobs();
// finish only the high priority jobs
// high priority jobs are expected to be complete at the conclusion of batching
int total = g_nHighPriorityJobs;
while ( g_nHighPriorityJobs != 0 )
{
float t = (float)( total - g_nHighPriorityJobs ) / (float)total;
m_pProgress->UpdateProgress( PROGRESS_IO + t * ( 1.0f - PROGRESS_IO ) );
// yield some time
g_pThreadPool->Yield( MAIN_THREAD_YIELD_TIME );
}
}
//-----------------------------------------------------------------------------
// Clean queue of stale entries. Active entries are skipped.
//-----------------------------------------------------------------------------
void CQueuedLoader::CleanQueue()
{
for ( int i = 0; i<RESOURCEPRELOAD_COUNT; i++ )
{
m_ResourceNames[i].Purge();
}
m_BatchedJobs.Purge();
int iIndex = m_SubmittedJobs.Head();
while ( iIndex != m_SubmittedJobs.InvalidIndex() )
{
int iNext = m_SubmittedJobs.Next( iIndex );
FileJob_t *pFileJob = m_SubmittedJobs[iIndex];
if ( pFileJob->m_bFinished )
{
// job is complete, safe to free
m_SubmittedJobs.Free( iIndex );
g_pFullFileSystem->AsyncRelease( pFileJob->m_hAsyncControl );
delete pFileJob;
}
iIndex = iNext;
}
m_Filenames.RemoveAll();
}
//-----------------------------------------------------------------------------
// Abandon queue
//-----------------------------------------------------------------------------
void CQueuedLoader::PurgeQueue()
{
}
//-----------------------------------------------------------------------------
// Spew info abut queued load
//-----------------------------------------------------------------------------
void CQueuedLoader::SpewInfo()
{
Msg( "Queued Loader:\n\n" );
int totalClaimed = 0;
int totalUnclaimed = 0;
if ( IsFinished() || m_bDynamic == true )
{
// can only access submitted jobs safely when io thread complete
int lastPriority = -1;
int iIndex = m_SubmittedJobs.Head();
while ( iIndex != m_SubmittedJobs.InvalidIndex() )
{
FileJob_t *pFileJob = m_SubmittedJobs[iIndex];
int asyncDuration = -1;
if ( pFileJob->m_FinishTime )
{
asyncDuration = pFileJob->m_FinishTime - pFileJob->m_SubmitTime;
}
if ( pFileJob->m_Priority != lastPriority )
{
switch ( pFileJob->m_Priority )
{
case LOADERPRIORITY_DURINGPRELOAD:
Msg( "---- FINISH DURING PRELOAD ( HIGH PRIORITY )----\n" );
break;
case LOADERPRIORITY_BEFOREPLAY:
Msg( "---- FINISH BEFORE GAMEPLAY ( NORMAL PRIORITY )----\n" );
break;
case LOADERPRIORITY_ANYTIME:
Msg( "---- FINISH ANYTIME ( NORMAL PRIORITY )----\n" );
break;
}
lastPriority = pFileJob->m_Priority;
}
char szAnonymousString[MAX_PATH];
const char *pAnonymousStatus = "";
if ( !pFileJob->m_pCallback )
{
V_snprintf( szAnonymousString, sizeof( szAnonymousString ), "(%s) ", pFileJob->m_bClaimed ? "Claimed" : "Unclaimed" );
pAnonymousStatus = szAnonymousString;
if ( pFileJob->m_bClaimed )
{
totalClaimed += pFileJob->m_nActualBytesRead;
}
else
{
totalUnclaimed += pFileJob->m_nActualBytesRead;
}
}
char szFilename[MAX_PATH];
Msg( "Submit:%5dms AsyncDuration:%5dms Tag:%d Thread:%8.8x Size:%7d %s%s\n",
pFileJob->m_SubmitTime - m_StartTime,
asyncDuration,
pFileJob->m_SubmitTag,
pFileJob->m_ThreadId,
pFileJob->m_nActualBytesRead,
pAnonymousStatus,
GetFilename( pFileJob->m_hFilename, szFilename, sizeof( szFilename ) ) );
iIndex = m_SubmittedJobs.Next( iIndex );
}
Msg( "%d Total Jobs\n", m_SubmittedJobs.Count() );
}
Msg( "%d Queued Jobs\n", (int)g_nQueuedJobs );
Msg( "%d Active Jobs\n", (int)g_nActiveJobs );
Msg( "Peak IO Memory: %.2f MB\n", (float)g_nIOMemoryPeak / ( 1024.0f * 1024.0f ) );
Msg( "Peak Anonymous IO Memory: %.2f MB\n", (float)g_nAnonymousIOMemoryPeak / ( 1024.0f * 1024.0f ) );
Msg( " Total Anonymous Claimed: %d\n", totalClaimed );
Msg( " Total Anonymous Unclaimed: %d\n", totalUnclaimed );
if ( m_EndTime )
{
Msg( "Queuing Duration: %dms\n", m_EndTime - m_StartTime );
}
}
//-----------------------------------------------------------------------------
// Initialization
//-----------------------------------------------------------------------------
InitReturnVal_t CQueuedLoader::Init()
{
InitReturnVal_t nRetVal = BaseClass::Init();
if ( nRetVal != INIT_OK )
{
return nRetVal;
}
return INIT_OK;
}
//-----------------------------------------------------------------------------
// Shutdown
//-----------------------------------------------------------------------------
void CQueuedLoader::Shutdown()
{
BaseClass::Shutdown();
}
//-----------------------------------------------------------------------------
// Install a type specific interface from managing system.
//-----------------------------------------------------------------------------
void CQueuedLoader::InstallLoader( ResourcePreload_t type, IResourcePreload *pLoader )
{
m_pLoaders[type] = pLoader;
}
void CQueuedLoader::InstallProgress( ILoaderProgress *pProgress )
{
m_pProgress = pProgress;
}
//-----------------------------------------------------------------------------
// Invoke the loader systems to purge dead resources
//-----------------------------------------------------------------------------
void CQueuedLoader::PurgeUnreferencedResources()
{
ResourcePreload_t purgeOrder[RESOURCEPRELOAD_COUNT];
// the purge operations require a specific order (models and cubemaps before materials)
int numPurges = 0;
purgeOrder[numPurges++] = RESOURCEPRELOAD_SOUND;
purgeOrder[numPurges++] = RESOURCEPRELOAD_STATICPROPLIGHTING;
purgeOrder[numPurges++] = RESOURCEPRELOAD_MODEL;
purgeOrder[numPurges++] = RESOURCEPRELOAD_CUBEMAP;
purgeOrder[numPurges++] = RESOURCEPRELOAD_MATERIAL;
// iterate according to order
for ( int i = 0; i < numPurges; i++ )
{
ResourcePreload_t loader = purgeOrder[i];
if ( m_pLoaders[loader] )
{
m_pLoaders[loader]->PurgeUnreferencedResources();
}
}
m_pProgress->UpdateProgress( PROGRESS_PREPURGE );
}
//-----------------------------------------------------------------------------
// Invoke the loader systems to purge all resources, if possible
//-----------------------------------------------------------------------------
void CQueuedLoader::PurgeAll()
{
ResourcePreload_t purgeOrder[RESOURCEPRELOAD_COUNT];
// the purge operations require a specific order (models and cubemaps before materials)
int numPurges = 0;
purgeOrder[numPurges++] = RESOURCEPRELOAD_SOUND;
purgeOrder[numPurges++] = RESOURCEPRELOAD_STATICPROPLIGHTING;
purgeOrder[numPurges++] = RESOURCEPRELOAD_MODEL;
purgeOrder[numPurges++] = RESOURCEPRELOAD_CUBEMAP;
purgeOrder[numPurges++] = RESOURCEPRELOAD_MATERIAL;
// iterate according to order
for ( int i = 0; i < numPurges; i++ )
{
ResourcePreload_t loader = purgeOrder[i];
if ( m_pLoaders[loader] )
{
m_pLoaders[loader]->PurgeAll();
}
}
*m_szMapNameToCompareSame = 0;
}
//-----------------------------------------------------------------------------
// Invoke the loader systems to request i/o jobs, which are batched.
//-----------------------------------------------------------------------------
void CQueuedLoader::GetJobRequests()
{
COM_TimestampedLog( "CQueuedLoader::GetJobRequests - Start" );
// causes the batch queue to fill with i/o requests
m_bCanBatch = true;
m_bBatching = true;
float t0 = Plat_FloatTime();
if ( !IsPC() && !m_bDynamic )
{
// cubemap textures must be first to install correctly before their cubemap materials are built (and precache the cubmeap textures)
// cannot be overlapped, must run serially
BuildResources( m_pLoaders[RESOURCEPRELOAD_CUBEMAP], &m_ResourceNames[RESOURCEPRELOAD_CUBEMAP], &m_LoaderTimes[RESOURCEPRELOAD_CUBEMAP] );
// Overlapping these is not critical in any way, total time is currently < 2 seconds.
// These operations flood calls (AddJob) back into the queued loader (which has to mutex its lists),
// so in fact it's slightly slower to queue these at this stage. As these routines age they may become more heavyweight.
CJob *jobs[5];
jobs[0] = g_pThreadPool->QueueCall( BuildResources, m_pLoaders[RESOURCEPRELOAD_SOUND], &m_ResourceNames[RESOURCEPRELOAD_SOUND], &m_LoaderTimes[RESOURCEPRELOAD_SOUND] );
jobs[1] = g_pThreadPool->QueueCall( BuildMaterialResources, m_pLoaders[RESOURCEPRELOAD_MATERIAL], &m_ResourceNames[RESOURCEPRELOAD_MATERIAL], &m_LoaderTimes[RESOURCEPRELOAD_MATERIAL] );
jobs[2] = g_pThreadPool->QueueCall( BuildResources, m_pLoaders[RESOURCEPRELOAD_STATICPROPLIGHTING], &m_ResourceNames[RESOURCEPRELOAD_STATICPROPLIGHTING], &m_LoaderTimes[RESOURCEPRELOAD_STATICPROPLIGHTING] );
jobs[3] = g_pThreadPool->QueueCall( BuildResources, m_pLoaders[RESOURCEPRELOAD_MODEL], &m_ResourceNames[RESOURCEPRELOAD_MODEL], &m_LoaderTimes[RESOURCEPRELOAD_MODEL] );
jobs[4] = g_pThreadPool->QueueCall( BuildResources, m_pLoaders[RESOURCEPRELOAD_ANONYMOUS], &m_ResourceNames[RESOURCEPRELOAD_ANONYMOUS], &m_LoaderTimes[RESOURCEPRELOAD_ANONYMOUS] );
// all jobs must finish
float flLastUpdateT = -1000.0f;
// Update as if this takes 2 seconds
float flDelta = ( PROGRESS_CREATEDRESOURCES - PROGRESS_PARSEDRESLIST ) * 0.03 / 2.0f;
float flProgress = PROGRESS_PARSEDRESLIST;
while( true )
{
bool bIsDone = true;
for ( int i=0; i<ARRAYSIZE( jobs ); i++ )
{
if ( !jobs[i]->IsFinished() )
{
bIsDone = false;
break;
}
}
if ( bIsDone )
break;
// Can't sleep; that will allow this thread to be used by the thread pool
float newt = Plat_FloatTime();
if ( newt - flLastUpdateT > .03 )
{
m_pProgress->UpdateProgress( flProgress );
flProgress = clamp( flProgress + flDelta, PROGRESS_PARSEDRESLIST, PROGRESS_CREATEDRESOURCES );
// Necessary to take into account any waits for vsync
flLastUpdateT = Plat_FloatTime();
}
}
for ( int i=0; i<ARRAYSIZE( jobs ); i++ )
{
jobs[i]->Release();
}
}
else
{
BuildResources( m_pLoaders[RESOURCEPRELOAD_CUBEMAP], &m_ResourceNames[RESOURCEPRELOAD_CUBEMAP], &m_LoaderTimes[RESOURCEPRELOAD_CUBEMAP] );
BuildResources( m_pLoaders[RESOURCEPRELOAD_SOUND], &m_ResourceNames[RESOURCEPRELOAD_SOUND], &m_LoaderTimes[RESOURCEPRELOAD_SOUND] );
BuildMaterialResources( m_pLoaders[RESOURCEPRELOAD_MATERIAL], &m_ResourceNames[RESOURCEPRELOAD_MATERIAL], &m_LoaderTimes[RESOURCEPRELOAD_MATERIAL] );
BuildResources( m_pLoaders[RESOURCEPRELOAD_STATICPROPLIGHTING], &m_ResourceNames[RESOURCEPRELOAD_STATICPROPLIGHTING], &m_LoaderTimes[RESOURCEPRELOAD_STATICPROPLIGHTING] );
BuildResources( m_pLoaders[RESOURCEPRELOAD_MODEL], &m_ResourceNames[RESOURCEPRELOAD_MODEL], &m_LoaderTimes[RESOURCEPRELOAD_MODEL] );
BuildResources( m_pLoaders[RESOURCEPRELOAD_ANONYMOUS], &m_ResourceNames[RESOURCEPRELOAD_ANONYMOUS], &m_LoaderTimes[RESOURCEPRELOAD_ANONYMOUS] );
}
if ( g_QueuedLoader.GetSpewDetail() & LOADER_DETAIL_TIMING )
{
for ( int i = RESOURCEPRELOAD_UNKNOWN+1; i<RESOURCEPRELOAD_COUNT; i++ )
{
Msg( "QueuedLoader: %s Creating: %.2f seconds\n", g_ResourceLoaderNames[i], m_LoaderTimes[i] );
}
Msg( "QueuedLoader: Total Creating: %.2f seconds\n", Plat_FloatTime() - t0 );
}
m_pProgress->UpdateProgress( PROGRESS_CREATEDRESOURCES );
COM_TimestampedLog( "CQueuedLoader::GetJobRequests - End" );
}
void CQueuedLoader::AddResourceToTable( const char *pFilename )
{
const char *pExt = V_GetFileExtension( pFilename );
if ( !pExt )
{
// unknown
// all resources are identified by their extension
return;
}
const char *pTypeDir = NULL;
const char *pName = pFilename;
ResourcePreload_t type = RESOURCEPRELOAD_UNKNOWN;
if ( !V_stricmp( pExt, "wav" ) )
{
type = RESOURCEPRELOAD_SOUND;
pTypeDir = "sound\\";
}
else if ( !V_stricmp( pExt, "vmt" ) )
{
type = RESOURCEPRELOAD_MATERIAL;
pTypeDir = "materials\\";
}
else if ( !V_stricmp( pExt, "vtf" ) )
{
if ( V_stristr( pFilename, "maps\\" ) )
{
// only want cubemap textures
if ( !m_bLoadForHDR && V_stristr( pFilename, ".hdr." ) )
{
return;
}
else if ( m_bLoadForHDR && !V_stristr( pFilename, ".hdr." ) )
{
return;
}
type = RESOURCEPRELOAD_CUBEMAP;
pTypeDir = "materials\\";
}
else
{
return;
}
}
else if ( !V_stricmp( pExt, "mdl" ) )
{
type = RESOURCEPRELOAD_MODEL;
pTypeDir = "models\\";
}
else if ( !V_stricmp( pExt, "vhv" ) )
{
// want static props only
pName = V_stristr( pFilename, "sp_" );
if ( !pName )
{
return;
}
if ( !m_bLoadForHDR && V_stristr( pFilename, "_hdr_" ) )
{
return;
}
else if ( m_bLoadForHDR && !V_stristr( pFilename, "_hdr_" ) )
{
return;
}
type = RESOURCEPRELOAD_STATICPROPLIGHTING;
}
else
{
// unknown, ignored
return;
}
if ( pTypeDir )
{
// want object name only
// skip past game/type directory prefixing
const char *pDir = V_stristr( pName, pTypeDir );
if ( pDir )
{
pName = pDir + strlen( pTypeDir );
}
}
FileNameHandle_t hFilename = m_Filenames.FindOrAddFileName( pName );
m_ResourceNames[type].InsertNoSort( hFilename );
}
//-----------------------------------------------------------------------------
// Parse the raw resource list into resource dictionaries
//-----------------------------------------------------------------------------
void CQueuedLoader::ParseResourceList( CUtlBuffer &resourceList )
{
// parse resource list into known types
characterset_t breakSet;
CharacterSetBuild( &breakSet, "" );
char szToken[MAX_PATH];
for ( ;; )
{
int nTokenSize = resourceList.ParseToken( &breakSet, szToken, sizeof( szToken ) );
if ( nTokenSize <= 0 )
{
break;
}
AddResourceToTable( szToken );
}
// add any additional resources
// duplicates don't need to be culled, loaders are supposed to handle resources that already exist
for ( int i = 0; i < m_AdditionalResources.GetNumStrings(); i++ )
{
if ( g_QueuedLoader.GetSpewDetail() )
{
Msg( "QueuedLoader: Appending: %s\n", m_AdditionalResources.String( i ) );
}
AddResourceToTable( m_AdditionalResources.String( i ) );
}
if ( g_QueuedLoader.GetSpewDetail() )
{
for ( int i = RESOURCEPRELOAD_UNKNOWN+1; i < RESOURCEPRELOAD_COUNT; i++ )
{
Msg( "QueuedLoader: %s: %d Entries\n", g_ResourceLoaderNames[i], m_ResourceNames[i].Count() );
}
}
m_pProgress->UpdateProgress( PROGRESS_PARSEDRESLIST );
}
//-----------------------------------------------------------------------------
// Mark the start of the queued loading process.
//-----------------------------------------------------------------------------
bool CQueuedLoader::BeginMapLoading( const char *pMapName, bool bLoadForHDR, bool bOptimizeMapReload )
{
if ( IsPC() )
{
return false;
}
if ( CommandLine()->FindParm( "-noqueuedload" ) || ( g_pFullFileSystem->GetDVDMode() != DVDMODE_STRICT ) )
{
return false;
}
if ( m_bStarted )
{
// already started, shouldn't be started more than once
Assert( 0 );
return true;
}
COM_TimestampedLog( "CQueuedLoader::BeginMapLoading" );
// set the IO throttle markers based on available memory
// these safety watermarks throttle the i/o from flooding memory, when the cores cannot keep up
// the delta must be larger than any single operation, otherwise deadlock
// markers that are too close will cause excessive suspension
size_t usedMemory, freeMemory;
MemAlloc_GlobalMemoryStatus( &usedMemory, &freeMemory );
if ( freeMemory >= 64*1024*1024 )
{
// lots of available memory, can afford to have let the i/o get ahead
g_nHighIOSuspensionMark = 10*1024*1024;
g_nLowIOSuspensionMark = 2*1024*1024;
}
else
{
// low memory, suspend the i/o more frequently
g_nHighIOSuspensionMark = 5*1024*1024;
g_nLowIOSuspensionMark = 1*1024*1024;
}
if ( GetSpewDetail() )
{
Msg( "QueuedLoader: Suspend I/O at [%.2f,%.2f] MB\n", (float)g_nLowIOSuspensionMark/(1024.0f*1024.0f), (float)g_nHighIOSuspensionMark/(1024.0f*1024.0f) );
}
m_bStarted = true;
m_bDynamic = false;
m_bLoadForHDR = bLoadForHDR;
// map pak will be accessed asynchronously throughout loading and into game frame
g_pFullFileSystem->BeginMapAccess();
// remove any prior stale entries
CleanQueue();
Assert( m_SubmittedJobs.Count() == 0 && g_nActiveJobs == 0 && g_nQueuedJobs == 0 );
m_bActive = true;
m_nSubmitCount = 0;
m_StartTime = Plat_MSTime();
m_EndTime = 0;
m_bCanBatch = false;
m_bBatching = false;
m_bDoProgress = false;
g_nIOMemory = 0;
g_nAnonymousIOMemory = 0;
g_nIOMemoryPeak = 0;
g_nAnonymousIOMemoryPeak = 0;
m_bSameMap = bOptimizeMapReload && ( V_stricmp( pMapName, m_szMapNameToCompareSame ) == 0 );
if ( m_bSameMap )
{
// Data will persist (so reloading a map is v. fast)
}
else
{
// Full load of the new map's data
V_strncpy( m_szMapNameToCompareSame, pMapName, sizeof( m_szMapNameToCompareSame ) );
}
m_pProgress->BeginProgress();
m_pProgress->UpdateProgress( PROGRESS_START );
// load this map's resource list before any other i/o
char szBaseName[MAX_PATH];
char szFilename[MAX_PATH];
V_FileBase( pMapName, szBaseName, sizeof( szBaseName ) );
V_snprintf( szFilename, sizeof( szFilename ), "reslists_xbox/%s%s.lst", szBaseName, GetPlatformExt() );
MEM_ALLOC_CREDIT();
CUtlBuffer resListBuffer( 0, 0, CUtlBuffer::TEXT_BUFFER );
if ( !g_pFullFileSystem->ReadFile( szFilename, "GAME", resListBuffer, 0, 0 ) )
{
// very bad, a valid reslist is critical
DevWarning( "QueuedLoader: Failed to get reslist '%s', Non-Optimal Loading.\n", szFilename );
m_bActive = false;
return false;
}
if ( XBX_IsLocalized() )
{
// find optional localized reslist fixup
V_snprintf( szFilename, sizeof( szFilename ), "reslists_xbox/%s%s.lst", XBX_GetLanguageString(), GetPlatformExt() );
CUtlBuffer localizedBuffer( 0, 0, CUtlBuffer::TEXT_BUFFER );
if ( g_pFullFileSystem->ReadFile( szFilename, "GAME", localizedBuffer, 0, 0 ) )
{
// append it
resListBuffer.EnsureCapacity( resListBuffer.TellPut() + localizedBuffer.TellPut() );
resListBuffer.Put( localizedBuffer.PeekGet(), localizedBuffer.TellPut() );
}
}
m_pProgress->UpdateProgress( PROGRESS_GOTRESLIST );
// due to its size, the bsp load is a lengthy i/o operation
// this causes a non-batched async i/o operation to commence immediately
if ( !m_pLoaders[RESOURCEPRELOAD_MODEL]->CreateResource( pMapName ) )
{
// very bad, a valid bsp is critical
DevWarning( "QueuedLoader: Failed to mount BSP '%s', Non-Optimal Loading.\n", pMapName );
m_bActive = false;
return false;
}
// parse the raw resource list into loader specific dictionaries
ParseResourceList( resListBuffer );
// run the distributed precache loaders, generating a batch of i/o requests
GetJobRequests();
// event each loader to discard dead resources
PurgeUnreferencedResources();
// sort and start async fulfilling the i/o requests
// waits for all "must complete" jobs to finish
SubmitBatchedJobsAndWait();
// progress is only relevant during preload
// normal load process takes over any progress bar
// disable progress tracking to prevent any late queued operation from updating
m_pProgress->EndProgress();
return m_bActive;
}
//-----------------------------------------------------------------------------
// Signal the end of the queued loading process, i/o will still be in progress.
//-----------------------------------------------------------------------------
void CQueuedLoader::EndMapLoading( bool bAbort )
{
if ( !m_bStarted )
{
// already stopped or never started
return;
}
/////////////////////////////////////////////////////
// TBD: Cannot abort!!!! feature has not been done //
/////////////////////////////////////////////////////
bAbort = false;
if ( m_bActive )
{
if ( bAbort )
{
PurgeQueue();
}
else
{
// finish all outstanding priority jobs
SubmitPendingJobs();
while ( g_nHighPriorityJobs != 0 || g_nJobsToFinishBeforePlay != 0 )
{
// yield some time
g_pThreadPool->Yield( MAIN_THREAD_YIELD_TIME );
}
}
m_EndTime = Plat_MSTime();
m_bActive = false;
// transmit the end map event
for ( int i = RESOURCEPRELOAD_UNKNOWN+1; i < RESOURCEPRELOAD_COUNT; i++ )
{
if ( m_pLoaders[i] )
{
m_pLoaders[i]->OnEndMapLoading( bAbort );
}
}
// free any unclaimed anonymous buffers
int iIndex = m_AnonymousJobs.First();
while ( iIndex != m_AnonymousJobs.InvalidIndex() )
{
FileJob_t *pFileJob = m_AnonymousJobs[iIndex];
if ( pFileJob->m_bFreeTargetAfterIO && pFileJob->m_pTargetData )
{
g_pFullFileSystem->FreeOptimalReadBuffer( pFileJob->m_pTargetData );
pFileJob->m_pTargetData = NULL;
}
g_nAnonymousIOMemory -= pFileJob->m_nActualBytesRead;
iIndex = m_AnonymousJobs.Next( iIndex );
}
m_AnonymousJobs.Purge();
if ( g_nIOMemory || g_nAnonymousIOMemory )
{
// expected to be zero, otherwise logic flaw
DevWarning( "CQueuedLoader: Unclaimed I/O memory: total:%d anonymous:%d\n", (int)g_nIOMemory, (int)g_nAnonymousIOMemory );
g_nIOMemory = 0;
g_nAnonymousIOMemory = 0;
}
// no longer needed
m_AdditionalResources.RemoveAll();
}
g_pFullFileSystem->EndMapAccess();
m_bStarted = false;
}
//-----------------------------------------------------------------------------
// Returns true if loader is accepting queue requests.
//-----------------------------------------------------------------------------
bool CQueuedLoader::IsMapLoading() const
{
return m_bActive;
}
//-----------------------------------------------------------------------------
// Returns true if loader is working on same map as last load
//-----------------------------------------------------------------------------
bool CQueuedLoader::IsSameMapLoading() const
{
return m_bActive && m_bSameMap;
}
//-----------------------------------------------------------------------------
// Returns true if the loader is idle, indicates all i/o and work has completed.
//-----------------------------------------------------------------------------
bool CQueuedLoader::IsFinished() const
{
return ( m_bActive == false && g_nActiveJobs == 0 && g_nQueuedJobs == 0 );
}
//-----------------------------------------------------------------------------
// Returns true if loader is batching
//-----------------------------------------------------------------------------
bool CQueuedLoader::IsBatching() const
{
return m_bBatching;
}
//-----------------------------------------------------------------------------
// Returns true if loader is batching
//-----------------------------------------------------------------------------
bool CQueuedLoader::IsDynamic() const
{
return m_bDynamic;
}
int CQueuedLoader::GetSpewDetail() const
{
int spewDetail = loader_spew_info.GetInt();
if ( spewDetail <= 0 )
{
return spewDetail;
}
return 1 << ( spewDetail - 1 );
}
void CQueuedLoader::DynamicLoadMapResource( const char *pFilename, DynamicResourceCallback_t pCallback, void *pContext, void *pContext2 )
{
Assert( m_bActive == false );
m_bActive = true;
m_bDynamic = true;
m_DynamicFileName = pFilename;
m_pfnDynamicCallback = pCallback;
m_pDynamicContext = pContext;
m_pDynamicContext2 = pContext2;
CleanQueue();
AddResourceToTable( m_DynamicFileName );
// run the distributed precache loaders, generating a batch of i/o requests
GetJobRequests();
// sort and start async fulfilling the i/o requests
Assert( m_bBatching && g_nActiveJobs == 0 );
SubmitBatchedJobs();
Assert( !m_bBatching );
}
void CQueuedLoader::QueueDynamicLoadFunctor( CFunctor* pFunctor )
{
AUTO_LOCK( m_FunctorQueueMutex );
m_FunctorQueue.AddToTail( pFunctor );
}
bool CQueuedLoader::CompleteDynamicLoad()
{
Assert( m_bActive && m_bDynamic && !m_bBatching );
bool bDone = true;
if ( m_bDynamic )
{
CUtlVector< CFunctor* > functors;
{
AUTO_LOCK( m_FunctorQueueMutex );
functors.Swap( m_FunctorQueue );
}
FOR_EACH_VEC( functors, i )
{
( *functors[i] )();
functors[i]->Release();
}
{
AUTO_LOCK( m_FunctorQueueMutex );
bDone = m_FunctorQueue.Count() == 0 && g_nQueuedJobs == 0 && g_nActiveJobs == 0;
}
if ( bDone )
{
if ( m_pfnDynamicCallback )
{
( *m_pfnDynamicCallback )( m_DynamicFileName, m_pDynamicContext, m_pDynamicContext2 );
}
m_DynamicFileName.Clear();
m_bActive = false;
m_bDynamic = false;
}
}
return bDone;
}
void CQueuedLoader::QueueCleanupDynamicLoadFunctor( CFunctor* pFunctor )
{
Assert( ThreadInMainThread() );
m_CleanupFunctorQueue.AddToTail( pFunctor );
}
bool CQueuedLoader::CleanupDynamicLoad()
{
Assert( ThreadInMainThread() );
FOR_EACH_VEC( m_CleanupFunctorQueue, i )
{
( *m_CleanupFunctorQueue[i] )();
m_CleanupFunctorQueue[i]->Release();
}
m_CleanupFunctorQueue.Purge();
return true;
}