citra/src/core/hle/kernel/thread.cpp
Yuri Kunde Schlesner 52f58e64ef Kernel: Make WaitObjects share ownership of Threads waiting on them
During normal operation, a thread waiting on an WaitObject and the
object hold mutual references to each other for the duration of the
wait.

If a process is forcefully terminated (The CTR kernel has a SVC to do
this, TerminateProcess, though no equivalent exists for threads.) its
threads would also be stopped and destroyed, leaving dangling pointers
in the WaitObjects.

The solution is to simply have the Thread remove itself from WaitObjects
when it is stopped. The vector of Threads in WaitObject has also been
changed to hold SharedPtrs, just in case. (Better to have a reference
cycle than a crash.)
2015-02-02 15:37:08 -02:00

499 lines
16 KiB
C++

// Copyright 2014 Citra Emulator Project / PPSSPP Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <list>
#include <vector>
#include "common/common.h"
#include "common/thread_queue_list.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/hle.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/mutex.h"
#include "core/hle/result.h"
#include "core/mem_map.h"
namespace Kernel {
bool Thread::ShouldWait() {
return status != THREADSTATUS_DORMANT;
}
void Thread::Acquire() {
_assert_msg_(Kernel, !ShouldWait(), "object unavailable!");
}
// Lists all thread ids that aren't deleted/etc.
static std::vector<SharedPtr<Thread>> thread_list;
// Lists only ready thread ids.
static Common::ThreadQueueList<Thread*, THREADPRIO_LOWEST+1> thread_ready_queue;
static Thread* current_thread;
static const u32 INITIAL_THREAD_ID = 1; ///< The first available thread id at startup
static u32 next_thread_id; ///< The next available thread id
Thread::Thread() {}
Thread::~Thread() {}
Thread* GetCurrentThread() {
return current_thread;
}
/// Resets a thread
static void ResetThread(Thread* t, u32 arg, s32 lowest_priority) {
memset(&t->context, 0, sizeof(Core::ThreadContext));
t->context.cpu_registers[0] = arg;
t->context.pc = t->entry_point;
t->context.sp = t->stack_top;
t->context.cpsr = 0x1F; // Usermode
// TODO(bunnei): This instructs the CPU core to start the execution as if it is "resuming" a
// thread. This is somewhat Sky-Eye specific, and should be re-architected in the future to be
// agnostic of the CPU core.
t->context.mode = 8;
if (t->current_priority < lowest_priority) {
t->current_priority = t->initial_priority;
}
t->wait_objects.clear();
t->wait_address = 0;
}
/// Change a thread to "ready" state
static void ChangeReadyState(Thread* t, bool ready) {
if (t->IsReady()) {
if (!ready) {
thread_ready_queue.remove(t->current_priority, t);
}
} else if (ready) {
if (t->IsRunning()) {
thread_ready_queue.push_front(t->current_priority, t);
} else {
thread_ready_queue.push_back(t->current_priority, t);
}
t->status = THREADSTATUS_READY;
}
}
/// Check if a thread is waiting on a the specified wait object
static bool CheckWait_WaitObject(const Thread* thread, WaitObject* wait_object) {
auto itr = std::find(thread->wait_objects.begin(), thread->wait_objects.end(), wait_object);
if (itr != thread->wait_objects.end())
return thread->IsWaiting();
return false;
}
/// Check if the specified thread is waiting on the specified address to be arbitrated
static bool CheckWait_AddressArbiter(const Thread* thread, VAddr wait_address) {
return thread->IsWaiting() && thread->wait_objects.empty() && wait_address == thread->wait_address;
}
/// Stops the current thread
void Thread::Stop(const char* reason) {
// Release all the mutexes that this thread holds
ReleaseThreadMutexes(this);
ChangeReadyState(this, false);
status = THREADSTATUS_DORMANT;
WakeupAllWaitingThreads();
// Stopped threads are never waiting.
for (auto& wait_object : wait_objects) {
wait_object->RemoveWaitingThread(this);
}
wait_objects.clear();
wait_address = 0;
}
/// Changes a threads state
static void ChangeThreadState(Thread* t, ThreadStatus new_status) {
if (!t || t->status == new_status) {
return;
}
ChangeReadyState(t, (new_status & THREADSTATUS_READY) != 0);
t->status = new_status;
}
/// Arbitrate the highest priority thread that is waiting
Thread* ArbitrateHighestPriorityThread(u32 address) {
Thread* highest_priority_thread = nullptr;
s32 priority = THREADPRIO_LOWEST;
// Iterate through threads, find highest priority thread that is waiting to be arbitrated...
for (auto& thread : thread_list) {
if (!CheckWait_AddressArbiter(thread.get(), address))
continue;
if (thread == nullptr)
continue;
if(thread->current_priority <= priority) {
highest_priority_thread = thread.get();
priority = thread->current_priority;
}
}
// If a thread was arbitrated, resume it
if (nullptr != highest_priority_thread) {
highest_priority_thread->ResumeFromWait();
}
return highest_priority_thread;
}
/// Arbitrate all threads currently waiting
void ArbitrateAllThreads(u32 address) {
// Iterate through threads, find highest priority thread that is waiting to be arbitrated...
for (auto& thread : thread_list) {
if (CheckWait_AddressArbiter(thread.get(), address))
thread->ResumeFromWait();
}
}
/// Calls a thread by marking it as "ready" (note: will not actually execute until current thread yields)
static void CallThread(Thread* t) {
// Stop waiting
ChangeThreadState(t, THREADSTATUS_READY);
}
/// Switches CPU context to that of the specified thread
static void SwitchContext(Thread* t) {
Thread* cur = GetCurrentThread();
// Save context for current thread
if (cur) {
Core::g_app_core->SaveContext(cur->context);
if (cur->IsRunning()) {
ChangeReadyState(cur, true);
}
}
// Load context of new thread
if (t) {
current_thread = t;
ChangeReadyState(t, false);
t->status = (t->status | THREADSTATUS_RUNNING) & ~THREADSTATUS_READY;
Core::g_app_core->LoadContext(t->context);
} else {
current_thread = nullptr;
}
}
/// Gets the next thread that is ready to be run by priority
static Thread* NextThread() {
Thread* next;
Thread* cur = GetCurrentThread();
if (cur && cur->IsRunning()) {
next = thread_ready_queue.pop_first_better(cur->current_priority);
} else {
next = thread_ready_queue.pop_first();
}
if (next == 0) {
return nullptr;
}
return next;
}
void WaitCurrentThread_Sleep() {
Thread* thread = GetCurrentThread();
ChangeThreadState(thread, ThreadStatus(THREADSTATUS_WAIT | (thread->status & THREADSTATUS_SUSPEND)));
}
void WaitCurrentThread_WaitSynchronization(SharedPtr<WaitObject> wait_object, bool wait_set_output, bool wait_all) {
Thread* thread = GetCurrentThread();
thread->wait_set_output = wait_set_output;
thread->wait_all = wait_all;
// It's possible to call WaitSynchronizationN without any objects passed in...
if (wait_object != nullptr)
thread->wait_objects.push_back(wait_object);
ChangeThreadState(thread, ThreadStatus(THREADSTATUS_WAIT | (thread->status & THREADSTATUS_SUSPEND)));
}
void WaitCurrentThread_ArbitrateAddress(VAddr wait_address) {
Thread* thread = GetCurrentThread();
thread->wait_address = wait_address;
ChangeThreadState(thread, ThreadStatus(THREADSTATUS_WAIT | (thread->status & THREADSTATUS_SUSPEND)));
}
/// Event type for the thread wake up event
static int ThreadWakeupEventType = -1;
// TODO(yuriks): This can be removed if Thread objects are explicitly pooled in the future, allowing
// us to simply use a pool index or similar.
static Kernel::HandleTable wakeup_callback_handle_table;
/// Callback that will wake up the thread it was scheduled for
static void ThreadWakeupCallback(u64 thread_handle, int cycles_late) {
SharedPtr<Thread> thread = wakeup_callback_handle_table.Get<Thread>((Handle)thread_handle);
if (thread == nullptr) {
LOG_CRITICAL(Kernel, "Callback fired for invalid thread %08X", thread_handle);
return;
}
thread->SetWaitSynchronizationResult(ResultCode(ErrorDescription::Timeout, ErrorModule::OS,
ErrorSummary::StatusChanged, ErrorLevel::Info));
if (thread->wait_set_output)
thread->SetWaitSynchronizationOutput(-1);
thread->ResumeFromWait();
}
void Thread::WakeAfterDelay(s64 nanoseconds) {
// Don't schedule a wakeup if the thread wants to wait forever
if (nanoseconds == -1)
return;
u64 microseconds = nanoseconds / 1000;
CoreTiming::ScheduleEvent(usToCycles(microseconds), ThreadWakeupEventType, callback_handle);
}
void Thread::ReleaseWaitObject(WaitObject* wait_object) {
if (wait_objects.empty()) {
LOG_CRITICAL(Kernel, "thread is not waiting on any objects!");
return;
}
// Remove this thread from the waiting object's thread list
wait_object->RemoveWaitingThread(this);
unsigned index = 0;
bool wait_all_failed = false; // Will be set to true if any object is unavailable
// Iterate through all waiting objects to check availability...
for (auto itr = wait_objects.begin(); itr != wait_objects.end(); ++itr) {
if ((*itr)->ShouldWait())
wait_all_failed = true;
// The output should be the last index of wait_object
if (*itr == wait_object)
index = itr - wait_objects.begin();
}
// If we are waiting on all objects...
if (wait_all) {
// Resume the thread only if all are available...
if (!wait_all_failed) {
SetWaitSynchronizationResult(RESULT_SUCCESS);
SetWaitSynchronizationOutput(-1);
ResumeFromWait();
}
} else {
// Otherwise, resume
SetWaitSynchronizationResult(RESULT_SUCCESS);
if (wait_set_output)
SetWaitSynchronizationOutput(index);
ResumeFromWait();
}
}
void Thread::ResumeFromWait() {
// Cancel any outstanding wakeup events
CoreTiming::UnscheduleEvent(ThreadWakeupEventType, callback_handle);
status &= ~THREADSTATUS_WAIT;
// Remove this thread from all other WaitObjects
for (auto wait_object : wait_objects)
wait_object->RemoveWaitingThread(this);
wait_objects.clear();
wait_set_output = false;
wait_all = false;
wait_address = 0;
if (!(status & (THREADSTATUS_WAITSUSPEND | THREADSTATUS_DORMANT | THREADSTATUS_DEAD))) {
ChangeReadyState(this, true);
}
}
/// Prints the thread queue for debugging purposes
static void DebugThreadQueue() {
Thread* thread = GetCurrentThread();
if (!thread) {
return;
}
LOG_DEBUG(Kernel, "0x%02X %u (current)", thread->current_priority, GetCurrentThread()->GetObjectId());
for (auto& t : thread_list) {
s32 priority = thread_ready_queue.contains(t.get());
if (priority != -1) {
LOG_DEBUG(Kernel, "0x%02X %u", priority, t->GetObjectId());
}
}
}
ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point, s32 priority,
u32 arg, s32 processor_id, VAddr stack_top, u32 stack_size) {
if (stack_size < 0x200) {
LOG_ERROR(Kernel, "(name=%s): invalid stack_size=0x%08X", name.c_str(), stack_size);
// TODO: Verify error
return ResultCode(ErrorDescription::InvalidSize, ErrorModule::Kernel,
ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
}
if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) {
s32 new_priority = CLAMP(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST);
LOG_WARNING(Kernel_SVC, "(name=%s): invalid priority=%d, clamping to %d",
name.c_str(), priority, new_priority);
// TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm
// validity of this
priority = new_priority;
}
if (!Memory::GetPointer(entry_point)) {
LOG_ERROR(Kernel_SVC, "(name=%s): invalid entry %08x", name.c_str(), entry_point);
// TODO: Verify error
return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::Kernel,
ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
}
SharedPtr<Thread> thread(new Thread);
// TODO(yuriks): Thread requires a handle to be inserted into the various scheduling queues for
// the time being. Create a handle here, it will be copied to the handle field in
// the object and use by the rest of the code. This should be removed when other
// code doesn't rely on the handle anymore.
ResultVal<Handle> handle = Kernel::g_handle_table.Create(thread);
if (handle.Failed())
return handle.Code();
thread_list.push_back(thread);
thread_ready_queue.prepare(priority);
thread->thread_id = next_thread_id++;
thread->status = THREADSTATUS_DORMANT;
thread->entry_point = entry_point;
thread->stack_top = stack_top;
thread->stack_size = stack_size;
thread->initial_priority = thread->current_priority = priority;
thread->processor_id = processor_id;
thread->wait_set_output = false;
thread->wait_all = false;
thread->wait_objects.clear();
thread->wait_address = 0;
thread->name = std::move(name);
thread->callback_handle = wakeup_callback_handle_table.Create(thread).MoveFrom();
ResetThread(thread.get(), arg, 0);
CallThread(thread.get());
return MakeResult<SharedPtr<Thread>>(std::move(thread));
}
/// Set the priority of the thread specified by handle
void Thread::SetPriority(s32 priority) {
// If priority is invalid, clamp to valid range
if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) {
s32 new_priority = CLAMP(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST);
LOG_WARNING(Kernel_SVC, "invalid priority=%d, clamping to %d", priority, new_priority);
// TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm
// validity of this
priority = new_priority;
}
// Change thread priority
s32 old = current_priority;
thread_ready_queue.remove(old, this);
current_priority = priority;
thread_ready_queue.prepare(current_priority);
// Change thread status to "ready" and push to ready queue
if (IsRunning()) {
status = (status & ~THREADSTATUS_RUNNING) | THREADSTATUS_READY;
}
if (IsReady()) {
thread_ready_queue.push_back(current_priority, this);
}
}
SharedPtr<Thread> SetupIdleThread() {
// We need to pass a few valid values to get around parameter checking in Thread::Create.
auto thread = Thread::Create("idle", Memory::KERNEL_MEMORY_VADDR, THREADPRIO_LOWEST, 0,
THREADPROCESSORID_0, 0, Kernel::DEFAULT_STACK_SIZE).MoveFrom();
thread->idle = true;
CallThread(thread.get());
return thread;
}
SharedPtr<Thread> SetupMainThread(s32 priority, u32 stack_size) {
// Initialize new "main" thread
auto thread_res = Thread::Create("main", Core::g_app_core->GetPC(), priority, 0,
THREADPROCESSORID_0, Memory::SCRATCHPAD_VADDR_END, stack_size);
// TODO(yuriks): Propagate error
_dbg_assert_(Kernel, thread_res.Succeeded());
SharedPtr<Thread> thread = std::move(*thread_res);
// If running another thread already, set it to "ready" state
Thread* cur = GetCurrentThread();
if (cur && cur->IsRunning()) {
ChangeReadyState(cur, true);
}
// Run new "main" thread
current_thread = thread.get();
thread->status = THREADSTATUS_RUNNING;
Core::g_app_core->LoadContext(thread->context);
return thread;
}
/// Reschedules to the next available thread (call after current thread is suspended)
void Reschedule() {
Thread* prev = GetCurrentThread();
Thread* next = NextThread();
HLE::g_reschedule = false;
if (next != nullptr) {
LOG_TRACE(Kernel, "context switch %u -> %u", prev->GetObjectId(), next->GetObjectId());
SwitchContext(next);
} else {
LOG_TRACE(Kernel, "cannot context switch from %u, no higher priority thread!", prev->GetObjectId());
for (auto& thread : thread_list) {
LOG_TRACE(Kernel, "\tid=%u prio=0x%02X, status=0x%08X", thread->GetObjectId(),
thread->current_priority, thread->status);
}
}
}
void Thread::SetWaitSynchronizationResult(ResultCode result) {
context.cpu_registers[0] = result.raw;
}
void Thread::SetWaitSynchronizationOutput(s32 output) {
context.cpu_registers[1] = output;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
void ThreadingInit() {
next_thread_id = INITIAL_THREAD_ID;
ThreadWakeupEventType = CoreTiming::RegisterEvent("ThreadWakeupCallback", ThreadWakeupCallback);
}
void ThreadingShutdown() {
}
} // namespace