During normal operation, a thread waiting on an WaitObject and the
object hold mutual references to each other for the duration of the
wait.
If a process is forcefully terminated (The CTR kernel has a SVC to do
this, TerminateProcess, though no equivalent exists for threads.) its
threads would also be stopped and destroyed, leaving dangling pointers
in the WaitObjects.
The solution is to simply have the Thread remove itself from WaitObjects
when it is stopped. The vector of Threads in WaitObject has also been
changed to hold SharedPtrs, just in case. (Better to have a reference
cycle than a crash.)
This should speed up compile times a bit, as well as enable more liberal
use of forward declarations. (Due to SharedPtr not trying to emit the
destructor anymore.)
- Separate wait checking from waiting the current thread
- Resume thread when wait_all=true only if all objects are available at once
- Set output to correct wait object index when there are duplicate handles
This thread will not actually execute instructions, it will only advance the timing/events and try to yield immediately to the next ready thread, if there aren't any ready threads then it will be rescheduled and start its job again.
Replace all the C-style complicated buffer management with a std::deque.
In addition to making the code easier to understand it also adds support
for non-POD IdTypes.
Also clean the rest of the code to follow our code style.
This handle manager more closely mirrors the behaviour of the CTR-OS
one. In addition object ref-counts and support for DuplicateHandle have
been added.
Note that support for DuplicateHandle is still experimental, since parts
of the kernel still use Handles internally, which will likely cause
troubles if two different handles to the same object are used to e.g.
wait on a synchronization primitive.
For now threads are using their Handle value as their Id, it should not really cause any problems because Handle values are unique in Citra, but it should be changed. I left a ToDo there because this is not correct behavior as per hardware.
All service calls in the CTR OS return result codes indicating the
success or failure of the call. Previous to this commit, Citra's HLE
emulation of services and the kernel universally either ignored errors
or returned dummy -1 error codes.
This commit makes an initial effort to provide an infrastructure for
error reporting and propagation which can be use going forward to make
HLE calls accurately return errors as the original system. A few parts
of the code have been updated to use the new system where applicable.
One part of this effort is the definition of the `ResultCode` type,
which provides facilities for constructing and parsing error codes in
the structured format used by the CTR.
The `ResultVal` type builds on `ResultCode` by providing a container for
values returned by function that can report errors. It enforces that
correct error checking will be done on function returns by preventing
the use of the return value if the function returned an error code.
Currently this change is mostly internal since errors are still
suppressed on the ARM<->HLE border, as a temporary compatibility hack.
As functionality is implemented and tested this hack can be eventually
removed.