yuzu/src/video_core/shader/shader.h
2015-08-16 15:14:54 +02:00

353 lines
11 KiB
C++

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <vector>
#include <boost/container/static_vector.hpp>
#include <nihstro/shader_binary.h>
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/vector_math.h"
#include "video_core/pica.h"
using nihstro::RegisterType;
using nihstro::SourceRegister;
using nihstro::DestRegister;
namespace Pica {
namespace Shader {
struct InputVertex {
Math::Vec4<float24> attr[16];
};
struct OutputVertex {
OutputVertex() = default;
// VS output attributes
Math::Vec4<float24> pos;
Math::Vec4<float24> quat;
Math::Vec4<float24> color;
Math::Vec2<float24> tc0;
Math::Vec2<float24> tc1;
float24 pad[6];
Math::Vec2<float24> tc2;
// Padding for optimal alignment
float24 pad2[4];
// Attributes used to store intermediate results
// position after perspective divide
Math::Vec3<float24> screenpos;
float24 pad3;
// Linear interpolation
// factor: 0=this, 1=vtx
void Lerp(float24 factor, const OutputVertex& vtx) {
pos = pos * factor + vtx.pos * (float24::FromFloat32(1) - factor);
// TODO: Should perform perspective correct interpolation here...
tc0 = tc0 * factor + vtx.tc0 * (float24::FromFloat32(1) - factor);
tc1 = tc1 * factor + vtx.tc1 * (float24::FromFloat32(1) - factor);
tc2 = tc2 * factor + vtx.tc2 * (float24::FromFloat32(1) - factor);
screenpos = screenpos * factor + vtx.screenpos * (float24::FromFloat32(1) - factor);
color = color * factor + vtx.color * (float24::FromFloat32(1) - factor);
}
// Linear interpolation
// factor: 0=v0, 1=v1
static OutputVertex Lerp(float24 factor, const OutputVertex& v0, const OutputVertex& v1) {
OutputVertex ret = v0;
ret.Lerp(factor, v1);
return ret;
}
};
static_assert(std::is_pod<OutputVertex>::value, "Structure is not POD");
static_assert(sizeof(OutputVertex) == 32 * sizeof(float), "OutputVertex has invalid size");
// Helper structure used to keep track of data useful for inspection of shader emulation
template<bool full_debugging>
struct DebugData;
template<>
struct DebugData<false> {
// TODO: Hide these behind and interface and move them to DebugData<true>
u32 max_offset; // maximum program counter ever reached
u32 max_opdesc_id; // maximum swizzle pattern index ever used
};
template<>
struct DebugData<true> {
// Records store the input and output operands of a particular instruction.
struct Record {
enum Type {
// Floating point arithmetic operands
SRC1 = 0x1,
SRC2 = 0x2,
SRC3 = 0x4,
// Initial and final output operand value
DEST_IN = 0x8,
DEST_OUT = 0x10,
// Current and next instruction offset (in words)
CUR_INSTR = 0x20,
NEXT_INSTR = 0x40,
// Output address register value
ADDR_REG_OUT = 0x80,
// Result of a comparison instruction
CMP_RESULT = 0x100,
// Input values for conditional flow control instructions
COND_BOOL_IN = 0x200,
COND_CMP_IN = 0x400,
// Input values for a loop
LOOP_INT_IN = 0x800,
};
Math::Vec4<float24> src1;
Math::Vec4<float24> src2;
Math::Vec4<float24> src3;
Math::Vec4<float24> dest_in;
Math::Vec4<float24> dest_out;
s32 address_registers[2];
bool conditional_code[2];
bool cond_bool;
bool cond_cmp[2];
Math::Vec4<u8> loop_int;
u32 instruction_offset;
u32 next_instruction;
// set of enabled fields (as a combination of Type flags)
unsigned mask = 0;
};
u32 max_offset; // maximum program counter ever reached
u32 max_opdesc_id; // maximum swizzle pattern index ever used
// List of records for each executed shader instruction
std::vector<DebugData<true>::Record> records;
};
// Type alias for better readability
using DebugDataRecord = DebugData<true>::Record;
// Helper function to set a DebugData<true>::Record field based on the template enum parameter.
template<DebugDataRecord::Type type, typename ValueType>
inline void SetField(DebugDataRecord& record, ValueType value);
template<>
inline void SetField<DebugDataRecord::SRC1>(DebugDataRecord& record, float24* value) {
record.src1.x = value[0];
record.src1.y = value[1];
record.src1.z = value[2];
record.src1.w = value[3];
}
template<>
inline void SetField<DebugDataRecord::SRC2>(DebugDataRecord& record, float24* value) {
record.src2.x = value[0];
record.src2.y = value[1];
record.src2.z = value[2];
record.src2.w = value[3];
}
template<>
inline void SetField<DebugDataRecord::SRC3>(DebugDataRecord& record, float24* value) {
record.src3.x = value[0];
record.src3.y = value[1];
record.src3.z = value[2];
record.src3.w = value[3];
}
template<>
inline void SetField<DebugDataRecord::DEST_IN>(DebugDataRecord& record, float24* value) {
record.dest_in.x = value[0];
record.dest_in.y = value[1];
record.dest_in.z = value[2];
record.dest_in.w = value[3];
}
template<>
inline void SetField<DebugDataRecord::DEST_OUT>(DebugDataRecord& record, float24* value) {
record.dest_out.x = value[0];
record.dest_out.y = value[1];
record.dest_out.z = value[2];
record.dest_out.w = value[3];
}
template<>
inline void SetField<DebugDataRecord::ADDR_REG_OUT>(DebugDataRecord& record, s32* value) {
record.address_registers[0] = value[0];
record.address_registers[1] = value[1];
}
template<>
inline void SetField<DebugDataRecord::CMP_RESULT>(DebugDataRecord& record, bool* value) {
record.conditional_code[0] = value[0];
record.conditional_code[1] = value[1];
}
template<>
inline void SetField<DebugDataRecord::COND_BOOL_IN>(DebugDataRecord& record, bool value) {
record.cond_bool = value;
}
template<>
inline void SetField<DebugDataRecord::COND_CMP_IN>(DebugDataRecord& record, bool* value) {
record.cond_cmp[0] = value[0];
record.cond_cmp[1] = value[1];
}
template<>
inline void SetField<DebugDataRecord::LOOP_INT_IN>(DebugDataRecord& record, Math::Vec4<u8> value) {
record.loop_int = value;
}
template<>
inline void SetField<DebugDataRecord::CUR_INSTR>(DebugDataRecord& record, u32 value) {
record.instruction_offset = value;
}
template<>
inline void SetField<DebugDataRecord::NEXT_INSTR>(DebugDataRecord& record, u32 value) {
record.next_instruction = value;
}
// Helper function to set debug information on the current shader iteration.
template<DebugDataRecord::Type type, typename ValueType>
inline void Record(DebugData<false>& debug_data, u32 offset, ValueType value) {
// Debugging disabled => nothing to do
}
template<DebugDataRecord::Type type, typename ValueType>
inline void Record(DebugData<true>& debug_data, u32 offset, ValueType value) {
if (offset >= debug_data.records.size())
debug_data.records.resize(offset + 1);
SetField<type, ValueType>(debug_data.records[offset], value);
debug_data.records[offset].mask |= type;
}
/**
* This structure contains the state information that needs to be unique for a shader unit. The 3DS
* has four shader units that process shaders in parallel. At the present, Citra only implements a
* single shader unit that processes all shaders serially. Putting the state information in a struct
* here will make it easier for us to parallelize the shader processing later.
*/
template<bool Debug>
struct UnitState {
struct Registers {
// The registers are accessed by the shader JIT using SSE instructions, and are therefore
// required to be 16-byte aligned.
Math::Vec4<float24> MEMORY_ALIGNED16(input[16]);
Math::Vec4<float24> MEMORY_ALIGNED16(output[16]);
Math::Vec4<float24> MEMORY_ALIGNED16(temporary[16]);
} registers;
static_assert(std::is_pod<Registers>::value, "Structure is not POD");
u32 program_counter;
bool conditional_code[2];
// Two Address registers and one loop counter
// TODO: How many bits do these actually have?
s32 address_registers[3];
enum {
INVALID_ADDRESS = 0xFFFFFFFF
};
struct CallStackElement {
u32 final_address; // Address upon which we jump to return_address
u32 return_address; // Where to jump when leaving scope
u8 repeat_counter; // How often to repeat until this call stack element is removed
u8 loop_increment; // Which value to add to the loop counter after an iteration
// TODO: Should this be a signed value? Does it even matter?
u32 loop_address; // The address where we'll return to after each loop iteration
};
// TODO: Is there a maximal size for this?
boost::container::static_vector<CallStackElement, 16> call_stack;
DebugData<Debug> debug;
static int InputOffset(const SourceRegister& reg) {
switch (reg.GetRegisterType()) {
case RegisterType::Input:
return (int)offsetof(UnitState::Registers, input) + reg.GetIndex()*sizeof(Math::Vec4<float24>);
case RegisterType::Temporary:
return (int)offsetof(UnitState::Registers, temporary) + reg.GetIndex()*sizeof(Math::Vec4<float24>);
default:
UNREACHABLE();
return 0;
}
}
static int OutputOffset(const DestRegister& reg) {
switch (reg.GetRegisterType()) {
case RegisterType::Output:
return (int)offsetof(UnitState::Registers, output) + reg.GetIndex()*sizeof(Math::Vec4<float24>);
case RegisterType::Temporary:
return (int)offsetof(UnitState::Registers, temporary) + reg.GetIndex()*sizeof(Math::Vec4<float24>);
default:
UNREACHABLE();
return 0;
}
}
};
/**
* Performs any shader unit setup that only needs to happen once per shader (as opposed to once per
* vertex, which would happen within the `Run` function).
* @param state Shader unit state, must be setup per shader and per shader unit
*/
void Setup(UnitState<false>& state);
/// Performs any cleanup when the emulator is shutdown
void Shutdown();
/**
* Runs the currently setup shader
* @param state Shader unit state, must be setup per shader and per shader unit
* @param input Input vertex into the shader
* @param num_attributes The number of vertex shader attributes
* @return The output vertex, after having been processed by the vertex shader
*/
OutputVertex Run(UnitState<false>& state, const InputVertex& input, int num_attributes);
/**
* Produce debug information based on the given shader and input vertex
* @param input Input vertex into the shader
* @param num_attributes The number of vertex shader attributes
* @param config Configuration object for the shader pipeline
* @param setup Setup object for the shader pipeline
* @return Debug information for this shader with regards to the given vertex
*/
DebugData<true> ProduceDebugInfo(const InputVertex& input, int num_attributes, const Regs::ShaderConfig& config, const State::ShaderSetup& setup);
} // namespace Shader
} // namespace Pica