251 lines
7.9 KiB
C++
251 lines
7.9 KiB
C++
// Copyright 2014 Citra Emulator Project
|
|
// Licensed under GPLv2
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <map>
|
|
|
|
#include "common/common.h"
|
|
|
|
#include "core/mem_map.h"
|
|
#include "core/hw/hw.h"
|
|
#include "hle/hle.h"
|
|
|
|
namespace Memory {
|
|
|
|
std::map<u32, MemoryBlock> g_heap_map;
|
|
std::map<u32, MemoryBlock> g_heap_gsp_map;
|
|
std::map<u32, MemoryBlock> g_shared_map;
|
|
|
|
/// Convert a physical address to virtual address
|
|
u32 _AddressPhysicalToVirtual(const u32 addr) {
|
|
// Our memory interface read/write functions assume virtual addresses. Put any physical address
|
|
// to virtual address translations here. This is obviously quite hacky... But we're not doing
|
|
// any MMU emulation yet or anything
|
|
if ((addr >= FCRAM_PADDR) && (addr < (FCRAM_PADDR_END))) {
|
|
return (addr & FCRAM_MASK) | FCRAM_VADDR;
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
template <typename T>
|
|
inline void _Read(T &var, const u32 addr) {
|
|
// TODO: Figure out the fastest order of tests for both read and write (they are probably different).
|
|
// TODO: Make sure this represents the mirrors in a correct way.
|
|
// Could just do a base-relative read, too.... TODO
|
|
|
|
const u32 vaddr = _AddressPhysicalToVirtual(addr);
|
|
|
|
// Memory allocated for HLE use that can be addressed from the emulated application
|
|
// The primary use of this is sharing a commandbuffer between the HLE OS (syscore) and the LLE
|
|
// core running the user application (appcore)
|
|
if (vaddr >= HLE::CMD_BUFFER_ADDR && vaddr < HLE::CMD_BUFFER_ADDR_END) {
|
|
HLE::Read<T>(var, vaddr);
|
|
|
|
// Hardware I/O register reads
|
|
// 0x10XXXXXX- is physical address space, 0x1EXXXXXX is virtual address space
|
|
} else if ((vaddr >= HARDWARE_IO_VADDR) && (vaddr < HARDWARE_IO_VADDR_END)) {
|
|
HW::Read<T>(var, vaddr);
|
|
|
|
// FCRAM - GSP heap
|
|
} else if ((vaddr >= HEAP_GSP_VADDR) && (vaddr < HEAP_GSP_VADDR_END)) {
|
|
var = *((const T*)&g_heap_gsp[vaddr & HEAP_GSP_MASK]);
|
|
|
|
// FCRAM - application heap
|
|
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
|
|
var = *((const T*)&g_heap[vaddr & HEAP_MASK]);
|
|
|
|
// Shared memory
|
|
} else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
|
|
var = *((const T*)&g_shared_mem[vaddr & SHARED_MEMORY_MASK]);
|
|
|
|
} else {
|
|
_assert_msg_(MEMMAP, false, "unknown Read%d @ 0x%08X", sizeof(var) * 8, vaddr);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
inline void _Write(u32 addr, const T data) {
|
|
u32 vaddr = _AddressPhysicalToVirtual(addr);
|
|
|
|
// Memory allocated for HLE use that can be addressed from the emulated application
|
|
// The primary use of this is sharing a commandbuffer between the HLE OS (syscore) and the LLE
|
|
// core running the user application (appcore)
|
|
if (vaddr >= HLE::CMD_BUFFER_ADDR && vaddr < HLE::CMD_BUFFER_ADDR_END) {
|
|
HLE::Write<T>(vaddr, data);
|
|
|
|
// Hardware I/O register writes
|
|
// 0x10XXXXXX- is physical address space, 0x1EXXXXXX is virtual address space
|
|
} else if ((vaddr >= HARDWARE_IO_VADDR) && (vaddr < HARDWARE_IO_VADDR_END)) {
|
|
HW::Write<T>(vaddr, data);
|
|
|
|
// FCRAM - GSP heap
|
|
} else if ((vaddr >= HEAP_GSP_VADDR) && (vaddr < HEAP_GSP_VADDR_END)) {
|
|
*(T*)&g_heap_gsp[vaddr & HEAP_GSP_MASK] = data;
|
|
|
|
// FCRAM - application heap
|
|
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
|
|
*(T*)&g_heap[vaddr & HEAP_MASK] = data;
|
|
|
|
// Shared memory
|
|
} else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
|
|
*(T*)&g_shared_mem[vaddr & SHARED_MEMORY_MASK] = data;
|
|
|
|
} else if ((vaddr & 0xFF000000) == 0x14000000) {
|
|
_assert_msg_(MEMMAP, false, "umimplemented write to GSP heap");
|
|
} else if ((vaddr & 0xFFF00000) == 0x1EC00000) {
|
|
_assert_msg_(MEMMAP, false, "umimplemented write to IO registers");
|
|
} else if ((vaddr & 0xFF000000) == 0x1F000000) {
|
|
_assert_msg_(MEMMAP, false, "umimplemented write to VRAM");
|
|
} else if ((vaddr & 0xFFF00000) == 0x1FF00000) {
|
|
_assert_msg_(MEMMAP, false, "umimplemented write to DSP memory");
|
|
} else if ((vaddr & 0xFFFF0000) == 0x1FF80000) {
|
|
_assert_msg_(MEMMAP, false, "umimplemented write to Configuration Memory");
|
|
} else if ((vaddr & 0xFFFFF000) == 0x1FF81000) {
|
|
_assert_msg_(MEMMAP, false, "umimplemented write to shared page");
|
|
|
|
// Error out...
|
|
} else {
|
|
_assert_msg_(MEMMAP, false, "unknown Write%d 0x%08X @ 0x%08X", sizeof(data) * 8,
|
|
data, vaddr);
|
|
}
|
|
}
|
|
|
|
u8 *GetPointer(const u32 addr) {
|
|
const u32 vaddr = _AddressPhysicalToVirtual(addr);
|
|
|
|
// FCRAM - GSP heap
|
|
if ((vaddr >= HEAP_GSP_VADDR) && (vaddr < HEAP_GSP_VADDR_END)) {
|
|
return g_heap_gsp + (vaddr & HEAP_GSP_MASK);
|
|
|
|
// FCRAM - application heap
|
|
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
|
|
return g_heap + (vaddr & HEAP_MASK);
|
|
|
|
// Shared memory
|
|
} else if ((vaddr > SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
|
|
return g_shared_mem + (vaddr & SHARED_MEMORY_MASK);
|
|
|
|
} else {
|
|
ERROR_LOG(MEMMAP, "Unknown GetPointer @ 0x%08x", vaddr);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Maps a block of memory in shared memory
|
|
* @param handle Handle to map memory block for
|
|
* @param addr Address to map memory block to
|
|
* @param permissions Memory map permissions
|
|
*/
|
|
u32 MapBlock_Shared(u32 handle, u32 addr,u32 permissions) {
|
|
MemoryBlock block;
|
|
|
|
block.handle = handle;
|
|
block.base_address = addr;
|
|
block.permissions = permissions;
|
|
|
|
if (g_shared_map.size() > 0) {
|
|
const MemoryBlock last_block = g_shared_map.rbegin()->second;
|
|
block.address = last_block.address + last_block.size;
|
|
}
|
|
g_shared_map[block.GetVirtualAddress()] = block;
|
|
|
|
return block.GetVirtualAddress();
|
|
}
|
|
|
|
/**
|
|
* Maps a block of memory on the heap
|
|
* @param size Size of block in bytes
|
|
* @param operation Memory map operation type
|
|
* @param flags Memory allocation flags
|
|
*/
|
|
u32 MapBlock_Heap(u32 size, u32 operation, u32 permissions) {
|
|
MemoryBlock block;
|
|
|
|
block.base_address = HEAP_VADDR;
|
|
block.size = size;
|
|
block.operation = operation;
|
|
block.permissions = permissions;
|
|
|
|
if (g_heap_map.size() > 0) {
|
|
const MemoryBlock last_block = g_heap_map.rbegin()->second;
|
|
block.address = last_block.address + last_block.size;
|
|
}
|
|
g_heap_map[block.GetVirtualAddress()] = block;
|
|
|
|
return block.GetVirtualAddress();
|
|
}
|
|
|
|
/**
|
|
* Maps a block of memory on the GSP heap
|
|
* @param size Size of block in bytes
|
|
* @param operation Memory map operation type
|
|
* @param flags Memory allocation flags
|
|
*/
|
|
u32 MapBlock_HeapGSP(u32 size, u32 operation, u32 permissions) {
|
|
MemoryBlock block;
|
|
|
|
block.base_address = HEAP_GSP_VADDR;
|
|
block.size = size;
|
|
block.operation = operation;
|
|
block.permissions = permissions;
|
|
|
|
if (g_heap_gsp_map.size() > 0) {
|
|
const MemoryBlock last_block = g_heap_gsp_map.rbegin()->second;
|
|
block.address = last_block.address + last_block.size;
|
|
}
|
|
g_heap_gsp_map[block.GetVirtualAddress()] = block;
|
|
|
|
return block.GetVirtualAddress();
|
|
}
|
|
|
|
u8 Read8(const u32 addr) {
|
|
u8 _var = 0;
|
|
_Read<u8>(_var, addr);
|
|
return (u8)_var;
|
|
}
|
|
|
|
u16 Read16(const u32 addr) {
|
|
u16_le _var = 0;
|
|
_Read<u16_le>(_var, addr);
|
|
return (u16)_var;
|
|
}
|
|
|
|
u32 Read32(const u32 addr) {
|
|
u32_le _var = 0;
|
|
_Read<u32_le>(_var, addr);
|
|
return _var;
|
|
}
|
|
|
|
u64 Read64(const u32 addr) {
|
|
u64_le _var = 0;
|
|
_Read<u64_le>(_var, addr);
|
|
return _var;
|
|
}
|
|
|
|
u32 Read8_ZX(const u32 addr) {
|
|
return (u32)Read8(addr);
|
|
}
|
|
|
|
u32 Read16_ZX(const u32 addr) {
|
|
return (u32)Read16(addr);
|
|
}
|
|
|
|
void Write8(const u32 addr, const u8 data) {
|
|
_Write<u8>(addr, data);
|
|
}
|
|
|
|
void Write16(const u32 addr, const u16 data) {
|
|
_Write<u16_le>(addr, data);
|
|
}
|
|
|
|
void Write32(const u32 addr, const u32 data) {
|
|
_Write<u32_le>(addr, data);
|
|
}
|
|
|
|
void Write64(const u32 addr, const u64 data) {
|
|
_Write<u64_le>(addr, data);
|
|
}
|
|
|
|
} // namespace
|