// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include <algorithm> #include <array> #include <cinttypes> #include <cstring> #include <boost/optional.hpp> #include "common/assert.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/swap.h" #include "core/arm/arm_interface.h" #include "core/core.h" #include "core/hle/kernel/memory.h" #include "core/hle/kernel/process.h" #include "core/hle/lock.h" #include "core/memory.h" #include "core/memory_setup.h" #include "video_core/renderer_base.h" #include "video_core/video_core.h" namespace Memory { static std::array<u8, Memory::VRAM_SIZE> vram; static PageTable* current_page_table = nullptr; void SetCurrentPageTable(PageTable* page_table) { current_page_table = page_table; if (Core::System::GetInstance().IsPoweredOn()) { Core::CPU().PageTableChanged(); } } PageTable* GetCurrentPageTable() { return current_page_table; } static void MapPages(PageTable& page_table, VAddr base, u64 size, u8* memory, PageType type) { LOG_DEBUG(HW_Memory, "Mapping %p onto %016" PRIX64 "-%016" PRIX64, memory, base * PAGE_SIZE, (base + size) * PAGE_SIZE); RasterizerFlushVirtualRegion(base << PAGE_BITS, size * PAGE_SIZE, FlushMode::FlushAndInvalidate); VAddr end = base + size; while (base != end) { ASSERT_MSG(base < PAGE_TABLE_NUM_ENTRIES, "out of range mapping at %016" PRIX64, base); page_table.attributes[base] = type; page_table.pointers[base] = memory; base += 1; if (memory != nullptr) memory += PAGE_SIZE; } } void MapMemoryRegion(PageTable& page_table, VAddr base, u64 size, u8* target) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %016" PRIX64, size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %016" PRIX64, base); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory); } void MapIoRegion(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer mmio_handler) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %016" PRIX64, size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %016" PRIX64, base); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special); auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1); SpecialRegion region{SpecialRegion::Type::IODevice, mmio_handler}; page_table.special_regions.add(std::make_pair(interval, std::set<SpecialRegion>{region})); } void UnmapRegion(PageTable& page_table, VAddr base, u64 size) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %016" PRIX64, size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %016" PRIX64, base); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped); auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1); page_table.special_regions.erase(interval); } void AddDebugHook(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer hook) { auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1); SpecialRegion region{SpecialRegion::Type::DebugHook, hook}; page_table.special_regions.add(std::make_pair(interval, std::set<SpecialRegion>{region})); } void RemoveDebugHook(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer hook) { auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1); SpecialRegion region{SpecialRegion::Type::DebugHook, hook}; page_table.special_regions.subtract(std::make_pair(interval, std::set<SpecialRegion>{region})); } /** * This function should only be called for virtual addreses with attribute `PageType::Special`. */ static std::set<MemoryHookPointer> GetSpecialHandlers(const PageTable& page_table, VAddr vaddr, u64 size) { std::set<MemoryHookPointer> result; auto interval = boost::icl::discrete_interval<VAddr>::closed(vaddr, vaddr + size - 1); auto interval_list = page_table.special_regions.equal_range(interval); for (auto it = interval_list.first; it != interval_list.second; ++it) { for (const auto& region : it->second) { result.insert(region.handler); } } return result; } static std::set<MemoryHookPointer> GetSpecialHandlers(VAddr vaddr, u64 size) { const PageTable& page_table = Core::CurrentProcess()->vm_manager.page_table; return GetSpecialHandlers(page_table, vaddr, size); } /** * Gets a pointer to the exact memory at the virtual address (i.e. not page aligned) * using a VMA from the current process */ static u8* GetPointerFromVMA(const Kernel::Process& process, VAddr vaddr) { u8* direct_pointer = nullptr; auto& vm_manager = process.vm_manager; auto it = vm_manager.FindVMA(vaddr); ASSERT(it != vm_manager.vma_map.end()); auto& vma = it->second; switch (vma.type) { case Kernel::VMAType::AllocatedMemoryBlock: direct_pointer = vma.backing_block->data() + vma.offset; break; case Kernel::VMAType::BackingMemory: direct_pointer = vma.backing_memory; break; case Kernel::VMAType::Free: return nullptr; default: UNREACHABLE(); } return direct_pointer + (vaddr - vma.base); } /** * Gets a pointer to the exact memory at the virtual address (i.e. not page aligned) * using a VMA from the current process. */ static u8* GetPointerFromVMA(VAddr vaddr) { return GetPointerFromVMA(*Core::CurrentProcess(), vaddr); } template <typename T> T Read(const VAddr vaddr) { const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer) { // NOTE: Avoid adding any extra logic to this fast-path block T value; std::memcpy(&value, &page_pointer[vaddr & PAGE_MASK], sizeof(T)); return value; } // The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock); PageType type = current_page_table->attributes[vaddr >> PAGE_BITS]; switch (type) { case PageType::Unmapped: LOG_ERROR(HW_Memory, "unmapped Read%lu @ 0x%08X", sizeof(T) * 8, vaddr); return 0; case PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr); break; case PageType::RasterizerCachedMemory: { RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Flush); T value; std::memcpy(&value, GetPointerFromVMA(vaddr), sizeof(T)); return value; } default: UNREACHABLE(); } } template <typename T> void Write(const VAddr vaddr, const T data) { u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer) { // NOTE: Avoid adding any extra logic to this fast-path block std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T)); return; } // The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock); PageType type = current_page_table->attributes[vaddr >> PAGE_BITS]; switch (type) { case PageType::Unmapped: LOG_ERROR(HW_Memory, "unmapped Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, vaddr); return; case PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ %08X", vaddr); break; case PageType::RasterizerCachedMemory: { RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Invalidate); std::memcpy(GetPointerFromVMA(vaddr), &data, sizeof(T)); break; } default: UNREACHABLE(); } } bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) { auto& page_table = process.vm_manager.page_table; const u8* page_pointer = page_table.pointers[vaddr >> PAGE_BITS]; if (page_pointer) return true; if (page_table.attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory) return true; if (page_table.attributes[vaddr >> PAGE_BITS] != PageType::Special) return false; return false; } bool IsValidVirtualAddress(const VAddr vaddr) { return IsValidVirtualAddress(*Core::CurrentProcess(), vaddr); } bool IsValidPhysicalAddress(const PAddr paddr) { return GetPhysicalPointer(paddr) != nullptr; } u8* GetPointer(const VAddr vaddr) { u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer) { return page_pointer + (vaddr & PAGE_MASK); } if (current_page_table->attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory) { return GetPointerFromVMA(vaddr); } LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr); return nullptr; } std::string ReadCString(VAddr vaddr, std::size_t max_length) { std::string string; string.reserve(max_length); for (std::size_t i = 0; i < max_length; ++i) { char c = Read8(vaddr); if (c == '\0') break; string.push_back(c); ++vaddr; } string.shrink_to_fit(); return string; } u8* GetPhysicalPointer(PAddr address) { struct MemoryArea { PAddr paddr_base; u32 size; }; static constexpr MemoryArea memory_areas[] = { {VRAM_PADDR, VRAM_SIZE}, {IO_AREA_PADDR, IO_AREA_SIZE}, {DSP_RAM_PADDR, DSP_RAM_SIZE}, {FCRAM_PADDR, FCRAM_N3DS_SIZE}, }; const auto area = std::find_if(std::begin(memory_areas), std::end(memory_areas), [&](const auto& area) { return address >= area.paddr_base && address < area.paddr_base + area.size; }); if (area == std::end(memory_areas)) { LOG_ERROR(HW_Memory, "unknown GetPhysicalPointer @ 0x%016" PRIX64, address); return nullptr; } if (area->paddr_base == IO_AREA_PADDR) { LOG_ERROR(HW_Memory, "MMIO mappings are not supported yet. phys_addr=0x%016" PRIX64, address); return nullptr; } u64 offset_into_region = address - area->paddr_base; u8* target_pointer = nullptr; switch (area->paddr_base) { case VRAM_PADDR: target_pointer = vram.data() + offset_into_region; break; case DSP_RAM_PADDR: break; case FCRAM_PADDR: for (const auto& region : Kernel::memory_regions) { if (offset_into_region >= region.base && offset_into_region < region.base + region.size) { target_pointer = region.linear_heap_memory->data() + offset_into_region - region.base; break; } } ASSERT_MSG(target_pointer != nullptr, "Invalid FCRAM address"); break; default: UNREACHABLE(); } return target_pointer; } void RasterizerMarkRegionCached(VAddr start, u64 size, bool cached) { if (start == 0) { return; } u64 num_pages = ((start + size - 1) >> PAGE_BITS) - (start >> PAGE_BITS) + 1; VAddr vaddr = start; for (unsigned i = 0; i < num_pages; ++i, vaddr += PAGE_SIZE) { PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS]; if (cached) { // Switch page type to cached if now cached switch (page_type) { case PageType::Unmapped: // It is not necessary for a process to have this region mapped into its address // space, for example, a system module need not have a VRAM mapping. break; case PageType::Memory: page_type = PageType::RasterizerCachedMemory; current_page_table->pointers[vaddr >> PAGE_BITS] = nullptr; break; default: UNREACHABLE(); } } else { // Switch page type to uncached if now uncached switch (page_type) { case PageType::Unmapped: // It is not necessary for a process to have this region mapped into its address // space, for example, a system module need not have a VRAM mapping. break; case PageType::RasterizerCachedMemory: { u8* pointer = GetPointerFromVMA(vaddr & ~PAGE_MASK); if (pointer == nullptr) { // It's possible that this function has been called while updating the pagetable // after unmapping a VMA. In that case the underlying VMA will no longer exist, // and we should just leave the pagetable entry blank. page_type = PageType::Unmapped; } else { page_type = PageType::Memory; current_page_table->pointers[vaddr >> PAGE_BITS] = pointer; } break; } default: UNREACHABLE(); } } } } void RasterizerFlushVirtualRegion(VAddr start, u64 size, FlushMode mode) { // Since pages are unmapped on shutdown after video core is shutdown, the renderer may be // null here if (VideoCore::g_renderer == nullptr) { return; } VAddr end = start + size; auto CheckRegion = [&](VAddr region_start, VAddr region_end) { if (start >= region_end || end <= region_start) { // No overlap with region return; } VAddr overlap_start = std::max(start, region_start); VAddr overlap_end = std::min(end, region_end); u64 overlap_size = overlap_end - overlap_start; auto* rasterizer = VideoCore::g_renderer->Rasterizer(); switch (mode) { case FlushMode::Flush: rasterizer->FlushRegion(overlap_start, overlap_size); break; case FlushMode::Invalidate: rasterizer->InvalidateRegion(overlap_start, overlap_size); break; case FlushMode::FlushAndInvalidate: rasterizer->FlushAndInvalidateRegion(overlap_start, overlap_size); break; } }; CheckRegion(PROCESS_IMAGE_VADDR, PROCESS_IMAGE_VADDR_END); CheckRegion(HEAP_VADDR, HEAP_VADDR_END); } u8 Read8(const VAddr addr) { return Read<u8>(addr); } u16 Read16(const VAddr addr) { return Read<u16_le>(addr); } u32 Read32(const VAddr addr) { return Read<u32_le>(addr); } u64 Read64(const VAddr addr) { return Read<u64_le>(addr); } void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer, const size_t size) { auto& page_table = process.vm_manager.page_table; size_t remaining_size = size; size_t page_index = src_addr >> PAGE_BITS; size_t page_offset = src_addr & PAGE_MASK; while (remaining_size > 0) { const size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case PageType::Unmapped: { LOG_ERROR(HW_Memory, "unmapped ReadBlock @ 0x%08X (start address = 0x%08X, size = %zu)", current_vaddr, src_addr, size); std::memset(dest_buffer, 0, copy_amount); break; } case PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); const u8* src_ptr = page_table.pointers[page_index] + page_offset; std::memcpy(dest_buffer, src_ptr, copy_amount); break; } case PageType::RasterizerCachedMemory: { RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount), FlushMode::Flush); std::memcpy(dest_buffer, GetPointerFromVMA(process, current_vaddr), copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount; remaining_size -= copy_amount; } } void ReadBlock(const VAddr src_addr, void* dest_buffer, const size_t size) { ReadBlock(*Core::CurrentProcess(), src_addr, dest_buffer, size); } void Write8(const VAddr addr, const u8 data) { Write<u8>(addr, data); } void Write16(const VAddr addr, const u16 data) { Write<u16_le>(addr, data); } void Write32(const VAddr addr, const u32 data) { Write<u32_le>(addr, data); } void Write64(const VAddr addr, const u64 data) { Write<u64_le>(addr, data); } void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer, const size_t size) { auto& page_table = process.vm_manager.page_table; size_t remaining_size = size; size_t page_index = dest_addr >> PAGE_BITS; size_t page_offset = dest_addr & PAGE_MASK; while (remaining_size > 0) { const size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case PageType::Unmapped: { LOG_ERROR(HW_Memory, "unmapped WriteBlock @ 0x%08X (start address = 0x%08X, size = %zu)", current_vaddr, dest_addr, size); break; } case PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); u8* dest_ptr = page_table.pointers[page_index] + page_offset; std::memcpy(dest_ptr, src_buffer, copy_amount); break; } case PageType::RasterizerCachedMemory: { RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount), FlushMode::Invalidate); std::memcpy(GetPointerFromVMA(process, current_vaddr), src_buffer, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; src_buffer = static_cast<const u8*>(src_buffer) + copy_amount; remaining_size -= copy_amount; } } void WriteBlock(const VAddr dest_addr, const void* src_buffer, const size_t size) { WriteBlock(*Core::CurrentProcess(), dest_addr, src_buffer, size); } void ZeroBlock(const Kernel::Process& process, const VAddr dest_addr, const size_t size) { auto& page_table = process.vm_manager.page_table; size_t remaining_size = size; size_t page_index = dest_addr >> PAGE_BITS; size_t page_offset = dest_addr & PAGE_MASK; static const std::array<u8, PAGE_SIZE> zeros = {}; while (remaining_size > 0) { const size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case PageType::Unmapped: { LOG_ERROR(HW_Memory, "unmapped ZeroBlock @ 0x%08X (start address = 0x%08X, size = %zu)", current_vaddr, dest_addr, size); break; } case PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); u8* dest_ptr = page_table.pointers[page_index] + page_offset; std::memset(dest_ptr, 0, copy_amount); break; } case PageType::RasterizerCachedMemory: { RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount), FlushMode::Invalidate); std::memset(GetPointerFromVMA(process, current_vaddr), 0, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; remaining_size -= copy_amount; } } void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr, const size_t size) { auto& page_table = process.vm_manager.page_table; size_t remaining_size = size; size_t page_index = src_addr >> PAGE_BITS; size_t page_offset = src_addr & PAGE_MASK; while (remaining_size > 0) { const size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size); const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case PageType::Unmapped: { LOG_ERROR(HW_Memory, "unmapped CopyBlock @ 0x%08X (start address = 0x%08X, size = %zu)", current_vaddr, src_addr, size); ZeroBlock(process, dest_addr, copy_amount); break; } case PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); const u8* src_ptr = page_table.pointers[page_index] + page_offset; WriteBlock(process, dest_addr, src_ptr, copy_amount); break; } case PageType::RasterizerCachedMemory: { RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount), FlushMode::Flush); WriteBlock(process, dest_addr, GetPointerFromVMA(process, current_vaddr), copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; dest_addr += static_cast<VAddr>(copy_amount); src_addr += static_cast<VAddr>(copy_amount); remaining_size -= copy_amount; } } boost::optional<PAddr> TryVirtualToPhysicalAddress(const VAddr addr) { if (addr == 0) { return 0; } else if (addr >= VRAM_VADDR && addr < VRAM_VADDR_END) { return addr - VRAM_VADDR + VRAM_PADDR; } else if (addr >= LINEAR_HEAP_VADDR && addr < LINEAR_HEAP_VADDR_END) { return addr - LINEAR_HEAP_VADDR + FCRAM_PADDR; } else if (addr >= NEW_LINEAR_HEAP_VADDR && addr < NEW_LINEAR_HEAP_VADDR_END) { return addr - NEW_LINEAR_HEAP_VADDR + FCRAM_PADDR; } else if (addr >= DSP_RAM_VADDR && addr < DSP_RAM_VADDR_END) { return addr - DSP_RAM_VADDR + DSP_RAM_PADDR; } else if (addr >= IO_AREA_VADDR && addr < IO_AREA_VADDR_END) { return addr - IO_AREA_VADDR + IO_AREA_PADDR; } return boost::none; } PAddr VirtualToPhysicalAddress(const VAddr addr) { auto paddr = TryVirtualToPhysicalAddress(addr); if (!paddr) { LOG_ERROR(HW_Memory, "Unknown virtual address @ 0x%016" PRIX64, addr); // To help with debugging, set bit on address so that it's obviously invalid. return addr | 0x80000000; } return *paddr; } boost::optional<VAddr> PhysicalToVirtualAddress(const PAddr addr) { if (addr == 0) { return 0; } else if (addr >= VRAM_PADDR && addr < VRAM_PADDR_END) { return addr - VRAM_PADDR + VRAM_VADDR; } else if (addr >= FCRAM_PADDR && addr < FCRAM_PADDR_END) { return addr - FCRAM_PADDR + Core::CurrentProcess()->GetLinearHeapAreaAddress(); } else if (addr >= DSP_RAM_PADDR && addr < DSP_RAM_PADDR_END) { return addr - DSP_RAM_PADDR + DSP_RAM_VADDR; } else if (addr >= IO_AREA_PADDR && addr < IO_AREA_PADDR_END) { return addr - IO_AREA_PADDR + IO_AREA_VADDR; } return boost::none; } } // namespace Memory