//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ // //=============================================================================// #include "bitbuf.h" #include "coordsize.h" #include "mathlib/vector.h" #include "mathlib/mathlib.h" #include "tier1/strtools.h" #include "bitvec.h" // FIXME: Can't use this until we get multithreaded allocations in tier0 working for tools // This is used by VVIS and fails to link // NOTE: This must be the last file included!!! //#include "tier0/memdbgon.h" #ifdef _X360 // mandatory ... wary of above comment and isolating, tier0 is built as MT though #include "tier0/memdbgon.h" #endif #if _WIN32 #define FAST_BIT_SCAN 1 #if _X360 #define CountLeadingZeros(x) _CountLeadingZeros(x) inline unsigned int CountTrailingZeros( unsigned int elem ) { // this implements CountTrailingZeros() / BitScanForward() unsigned int mask = elem-1; unsigned int comp = ~elem; elem = mask & comp; return (32 - _CountLeadingZeros(elem)); } #else #include <intrin.h> #pragma intrinsic(_BitScanReverse) #pragma intrinsic(_BitScanForward) inline unsigned int CountLeadingZeros(unsigned int x) { uint32 firstBit; if ( _BitScanReverse(&firstBit,x) ) return 31 - firstBit; return 32; } inline unsigned int CountTrailingZeros(unsigned int elem) { uint32 out; if ( _BitScanForward(&out, elem) ) return out; return 32; } #endif #else #define FAST_BIT_SCAN 0 #endif static BitBufErrorHandler g_BitBufErrorHandler = 0; inline unsigned int BitForBitnum(int bitnum) { return GetBitForBitnum(bitnum); } void InternalBitBufErrorHandler( BitBufErrorType errorType, const char *pDebugName ) { if ( g_BitBufErrorHandler ) g_BitBufErrorHandler( errorType, pDebugName ); } void SetBitBufErrorHandler( BitBufErrorHandler fn ) { g_BitBufErrorHandler = fn; } // #define BB_PROFILING uint32 g_LittleBits[32]; // Precalculated bit masks for WriteUBitLong. Using these tables instead of // doing the calculations gives a 33% speedup in WriteUBitLong. uint32 g_BitWriteMasks[32][33]; // (1 << i) - 1 uint32 g_ExtraMasks[33]; class CBitWriteMasksInit { public: CBitWriteMasksInit() { for( unsigned int startbit=0; startbit < 32; startbit++ ) { for( unsigned int nBitsLeft=0; nBitsLeft < 33; nBitsLeft++ ) { unsigned int endbit = startbit + nBitsLeft; g_BitWriteMasks[startbit][nBitsLeft] = BitForBitnum(startbit) - 1; if(endbit < 32) g_BitWriteMasks[startbit][nBitsLeft] |= ~(BitForBitnum(endbit) - 1); } } for ( unsigned int maskBit=0; maskBit < 32; maskBit++ ) g_ExtraMasks[maskBit] = BitForBitnum(maskBit) - 1; g_ExtraMasks[32] = ~0u; for ( unsigned int littleBit=0; littleBit < 32; littleBit++ ) StoreLittleDWord( &g_LittleBits[littleBit], 0, 1u<<littleBit ); } }; static CBitWriteMasksInit g_BitWriteMasksInit; // ---------------------------------------------------------------------------------------- // // bf_write // ---------------------------------------------------------------------------------------- // bf_write::bf_write() { m_pData = NULL; m_nDataBytes = 0; m_nDataBits = -1; // set to -1 so we generate overflow on any operation m_iCurBit = 0; m_bOverflow = false; m_bAssertOnOverflow = true; m_pDebugName = NULL; } bf_write::bf_write( const char *pDebugName, void *pData, int nBytes, int nBits ) { m_bAssertOnOverflow = true; m_pDebugName = pDebugName; StartWriting( pData, nBytes, 0, nBits ); } bf_write::bf_write( void *pData, int nBytes, int nBits ) { m_bAssertOnOverflow = true; m_pDebugName = NULL; StartWriting( pData, nBytes, 0, nBits ); } void bf_write::StartWriting( void *pData, int nBytes, int iStartBit, int nBits ) { // Make sure it's dword aligned and padded. Assert( (nBytes % 4) == 0 ); Assert(((uintp)pData & 3) == 0); // The writing code will overrun the end of the buffer if it isn't dword aligned, so truncate to force alignment nBytes &= ~3; m_pData = (uint32*)pData; m_nDataBytes = nBytes; if ( nBits == -1 ) { m_nDataBits = nBytes << 3; } else { Assert( nBits <= nBytes*8 ); m_nDataBits = nBits; } m_iCurBit = iStartBit; m_bOverflow = false; } void bf_write::Reset() { m_iCurBit = 0; m_bOverflow = false; } void bf_write::SetAssertOnOverflow( bool bAssert ) { m_bAssertOnOverflow = bAssert; } const char* bf_write::GetDebugName() { return m_pDebugName; } void bf_write::SetDebugName( const char *pDebugName ) { m_pDebugName = pDebugName; } void bf_write::SeekToBit( int bitPos ) { m_iCurBit = bitPos; } // Sign bit comes first void bf_write::WriteSBitLong( int data, int numbits ) { // Force the sign-extension bit to be correct even in the case of overflow. int nValue = data; int nPreserveBits = ( 0x7FFFFFFF >> ( 32 - numbits ) ); int nSignExtension = ( nValue >> 31 ) & ~nPreserveBits; nValue &= nPreserveBits; nValue |= nSignExtension; AssertMsg2( nValue == data, "WriteSBitLong: 0x%08x does not fit in %d bits", data, numbits ); WriteUBitLong( nValue, numbits, false ); } void bf_write::WriteVarInt32( uint32 data ) { // Check if align and we have room, slow path if not if ( (m_iCurBit & 7) == 0 && (m_iCurBit + bitbuf::kMaxVarint32Bytes * 8 ) <= m_nDataBits) { uint8 *target = ((uint8*)m_pData) + (m_iCurBit>>3); target[0] = static_cast<uint8>(data | 0x80); if ( data >= (1 << 7) ) { target[1] = static_cast<uint8>((data >> 7) | 0x80); if ( data >= (1 << 14) ) { target[2] = static_cast<uint8>((data >> 14) | 0x80); if ( data >= (1 << 21) ) { target[3] = static_cast<uint8>((data >> 21) | 0x80); if ( data >= (1 << 28) ) { target[4] = static_cast<uint8>(data >> 28); m_iCurBit += 5 * 8; return; } else { target[3] &= 0x7F; m_iCurBit += 4 * 8; return; } } else { target[2] &= 0x7F; m_iCurBit += 3 * 8; return; } } else { target[1] &= 0x7F; m_iCurBit += 2 * 8; return; } } else { target[0] &= 0x7F; m_iCurBit += 1 * 8; return; } } else // Slow path { while ( data > 0x7F ) { WriteUBitLong( (data & 0x7F) | 0x80, 8 ); data >>= 7; } WriteUBitLong( data & 0x7F, 8 ); } } void bf_write::WriteVarInt64( uint64 data ) { // Check if align and we have room, slow path if not if ( (m_iCurBit & 7) == 0 && (m_iCurBit + bitbuf::kMaxVarintBytes * 8 ) <= m_nDataBits ) { uint8 *target = ((uint8*)m_pData) + (m_iCurBit>>3); // Splitting into 32-bit pieces gives better performance on 32-bit // processors. uint32 part0 = static_cast<uint32>(data ); uint32 part1 = static_cast<uint32>(data >> 28); uint32 part2 = static_cast<uint32>(data >> 56); int size; // Here we can't really optimize for small numbers, since the data is // split into three parts. Cheking for numbers < 128, for instance, // would require three comparisons, since you'd have to make sure part1 // and part2 are zero. However, if the caller is using 64-bit integers, // it is likely that they expect the numbers to often be very large, so // we probably don't want to optimize for small numbers anyway. Thus, // we end up with a hardcoded binary search tree... if ( part2 == 0 ) { if ( part1 == 0 ) { if ( part0 < (1 << 14) ) { if ( part0 < (1 << 7) ) { size = 1; goto size1; } else { size = 2; goto size2; } } else { if ( part0 < (1 << 21) ) { size = 3; goto size3; } else { size = 4; goto size4; } } } else { if ( part1 < (1 << 14) ) { if ( part1 < (1 << 7) ) { size = 5; goto size5; } else { size = 6; goto size6; } } else { if ( part1 < (1 << 21) ) { size = 7; goto size7; } else { size = 8; goto size8; } } } } else { if ( part2 < (1 << 7) ) { size = 9; goto size9; } else { size = 10; goto size10; } } AssertFatalMsg( false, "Can't get here." ); size10: target[9] = static_cast<uint8>((part2 >> 7) | 0x80); size9 : target[8] = static_cast<uint8>((part2 ) | 0x80); size8 : target[7] = static_cast<uint8>((part1 >> 21) | 0x80); size7 : target[6] = static_cast<uint8>((part1 >> 14) | 0x80); size6 : target[5] = static_cast<uint8>((part1 >> 7) | 0x80); size5 : target[4] = static_cast<uint8>((part1 ) | 0x80); size4 : target[3] = static_cast<uint8>((part0 >> 21) | 0x80); size3 : target[2] = static_cast<uint8>((part0 >> 14) | 0x80); size2 : target[1] = static_cast<uint8>((part0 >> 7) | 0x80); size1 : target[0] = static_cast<uint8>((part0 ) | 0x80); target[size-1] &= 0x7F; m_iCurBit += size * 8; } else // slow path { while ( data > 0x7F ) { WriteUBitLong( (data & 0x7F) | 0x80, 8 ); data >>= 7; } WriteUBitLong( data & 0x7F, 8 ); } } void bf_write::WriteSignedVarInt32( int32 data ) { WriteVarInt32( bitbuf::ZigZagEncode32( data ) ); } void bf_write::WriteSignedVarInt64( int64 data ) { WriteVarInt64( bitbuf::ZigZagEncode64( data ) ); } int bf_write::ByteSizeVarInt32( uint32 data ) { int size = 1; while ( data > 0x7F ) { size++; data >>= 7; } return size; } int bf_write::ByteSizeVarInt64( uint64 data ) { int size = 1; while ( data > 0x7F ) { size++; data >>= 7; } return size; } int bf_write::ByteSizeSignedVarInt32( int32 data ) { return ByteSizeVarInt32( bitbuf::ZigZagEncode32( data ) ); } int bf_write::ByteSizeSignedVarInt64( int64 data ) { return ByteSizeVarInt64( bitbuf::ZigZagEncode64( data ) ); } void bf_write::WriteBitLong(unsigned int data, int numbits, bool bSigned) { if(bSigned) WriteSBitLong((int)data, numbits); else WriteUBitLong(data, numbits); } bool bf_write::WriteBits(const void *pInData, int nBits) { #if defined( BB_PROFILING ) VPROF( "bf_write::WriteBits" ); #endif unsigned char *pOut = (unsigned char*)pInData; int nBitsLeft = nBits; // Bounds checking.. if ( (m_iCurBit+nBits) > m_nDataBits ) { SetOverflowFlag(); CallErrorHandler( BITBUFERROR_BUFFER_OVERRUN, GetDebugName() ); return false; } // Align output to dword boundary while (((uintp)pOut & 3) != 0 && nBitsLeft >= 8) { WriteUBitLong( *pOut, 8, false ); ++pOut; nBitsLeft -= 8; } if ( IsPC() && (nBitsLeft >= 32) && (m_iCurBit & 7) == 0 ) { // current bit is byte aligned, do block copy int numbytes = nBitsLeft >> 3; int numbits = numbytes << 3; Q_memcpy( (char*)m_pData+(m_iCurBit>>3), pOut, numbytes ); pOut += numbytes; nBitsLeft -= numbits; m_iCurBit += numbits; } // X360TBD: Can't write dwords in WriteBits because they'll get swapped if ( IsPC() && nBitsLeft >= 32 ) { uint32 iBitsRight = (m_iCurBit & 31); uint32 iBitsLeft = 32 - iBitsRight; uint32 bitMaskLeft = g_BitWriteMasks[iBitsRight][32]; uint32 bitMaskRight = g_BitWriteMasks[0][iBitsRight]; uint32 *pData = &m_pData[m_iCurBit>>5]; // Read dwords. while(nBitsLeft >= 32) { uint32 curData = *(uint32*)pOut; pOut += sizeof(uint32); *pData &= bitMaskLeft; *pData |= curData << iBitsRight; pData++; if ( iBitsLeft < 32 ) { curData >>= iBitsLeft; *pData &= bitMaskRight; *pData |= curData; } nBitsLeft -= 32; m_iCurBit += 32; } } // write remaining bytes while ( nBitsLeft >= 8 ) { WriteUBitLong( *pOut, 8, false ); ++pOut; nBitsLeft -= 8; } // write remaining bits if ( nBitsLeft ) { WriteUBitLong( *pOut, nBitsLeft, false ); } return !IsOverflowed(); } bool bf_write::WriteBitsFromBuffer( bf_read *pIn, int nBits ) { // This could be optimized a little by while ( nBits > 32 ) { WriteUBitLong( pIn->ReadUBitLong( 32 ), 32 ); nBits -= 32; } WriteUBitLong( pIn->ReadUBitLong( nBits ), nBits ); return !IsOverflowed() && !pIn->IsOverflowed(); } void bf_write::WriteBitAngle( float fAngle, int numbits ) { int d; unsigned int mask; unsigned int shift; shift = BitForBitnum(numbits); mask = shift - 1; d = (int)( (fAngle / 360.0) * shift ); d &= mask; WriteUBitLong((unsigned int)d, numbits); } void bf_write::WriteBitCoordMP( const float f, bool bIntegral, bool bLowPrecision ) { #if defined( BB_PROFILING ) VPROF( "bf_write::WriteBitCoordMP" ); #endif int signbit = (f <= -( bLowPrecision ? COORD_RESOLUTION_LOWPRECISION : COORD_RESOLUTION )); int intval = (int)abs(f); int fractval = bLowPrecision ? ( abs((int)(f*COORD_DENOMINATOR_LOWPRECISION)) & (COORD_DENOMINATOR_LOWPRECISION-1) ) : ( abs((int)(f*COORD_DENOMINATOR)) & (COORD_DENOMINATOR-1) ); bool bInBounds = intval < (1 << COORD_INTEGER_BITS_MP ); unsigned int bits, numbits; if ( bIntegral ) { // Integer encoding: in-bounds bit, nonzero bit, optional sign bit + integer value bits if ( intval ) { // Adjust the integers from [1..MAX_COORD_VALUE] to [0..MAX_COORD_VALUE-1] --intval; bits = intval * 8 + signbit * 4 + 2 + bInBounds; numbits = 3 + (bInBounds ? COORD_INTEGER_BITS_MP : COORD_INTEGER_BITS); } else { bits = bInBounds; numbits = 2; } } else { // Float encoding: in-bounds bit, integer bit, sign bit, fraction value bits, optional integer value bits if ( intval ) { // Adjust the integers from [1..MAX_COORD_VALUE] to [0..MAX_COORD_VALUE-1] --intval; bits = intval * 8 + signbit * 4 + 2 + bInBounds; bits += bInBounds ? (fractval << (3+COORD_INTEGER_BITS_MP)) : (fractval << (3+COORD_INTEGER_BITS)); numbits = 3 + (bInBounds ? COORD_INTEGER_BITS_MP : COORD_INTEGER_BITS) + (bLowPrecision ? COORD_FRACTIONAL_BITS_MP_LOWPRECISION : COORD_FRACTIONAL_BITS); } else { bits = fractval * 8 + signbit * 4 + 0 + bInBounds; numbits = 3 + (bLowPrecision ? COORD_FRACTIONAL_BITS_MP_LOWPRECISION : COORD_FRACTIONAL_BITS); } } WriteUBitLong( bits, numbits ); } void bf_write::WriteBitCoord (const float f) { #if defined( BB_PROFILING ) VPROF( "bf_write::WriteBitCoord" ); #endif int signbit = (f <= -COORD_RESOLUTION); int intval = (int)abs(f); int fractval = abs((int)(f*COORD_DENOMINATOR)) & (COORD_DENOMINATOR-1); // Send the bit flags that indicate whether we have an integer part and/or a fraction part. WriteOneBit( intval ); WriteOneBit( fractval ); if ( intval || fractval ) { // Send the sign bit WriteOneBit( signbit ); // Send the integer if we have one. if ( intval ) { // Adjust the integers from [1..MAX_COORD_VALUE] to [0..MAX_COORD_VALUE-1] intval--; WriteUBitLong( (unsigned int)intval, COORD_INTEGER_BITS ); } // Send the fraction if we have one if ( fractval ) { WriteUBitLong( (unsigned int)fractval, COORD_FRACTIONAL_BITS ); } } } void bf_write::WriteBitVec3Coord( const Vector& fa ) { int xflag, yflag, zflag; xflag = (fa[0] >= COORD_RESOLUTION) || (fa[0] <= -COORD_RESOLUTION); yflag = (fa[1] >= COORD_RESOLUTION) || (fa[1] <= -COORD_RESOLUTION); zflag = (fa[2] >= COORD_RESOLUTION) || (fa[2] <= -COORD_RESOLUTION); WriteOneBit( xflag ); WriteOneBit( yflag ); WriteOneBit( zflag ); if ( xflag ) WriteBitCoord( fa[0] ); if ( yflag ) WriteBitCoord( fa[1] ); if ( zflag ) WriteBitCoord( fa[2] ); } void bf_write::WriteBitNormal( float f ) { int signbit = (f <= -NORMAL_RESOLUTION); // NOTE: Since +/-1 are valid values for a normal, I'm going to encode that as all ones unsigned int fractval = abs( (int)(f*NORMAL_DENOMINATOR) ); // clamp.. if (fractval > NORMAL_DENOMINATOR) fractval = NORMAL_DENOMINATOR; // Send the sign bit WriteOneBit( signbit ); // Send the fractional component WriteUBitLong( fractval, NORMAL_FRACTIONAL_BITS ); } void bf_write::WriteBitVec3Normal( const Vector& fa ) { int xflag, yflag; xflag = (fa[0] >= NORMAL_RESOLUTION) || (fa[0] <= -NORMAL_RESOLUTION); yflag = (fa[1] >= NORMAL_RESOLUTION) || (fa[1] <= -NORMAL_RESOLUTION); WriteOneBit( xflag ); WriteOneBit( yflag ); if ( xflag ) WriteBitNormal( fa[0] ); if ( yflag ) WriteBitNormal( fa[1] ); // Write z sign bit int signbit = (fa[2] <= -NORMAL_RESOLUTION); WriteOneBit( signbit ); } void bf_write::WriteBitAngles( const QAngle& fa ) { // FIXME: Vector tmp( fa.x, fa.y, fa.z ); WriteBitVec3Coord( tmp ); } void bf_write::WriteChar(int val) { WriteSBitLong(val, sizeof(char) << 3); } void bf_write::WriteByte(int val) { WriteUBitLong(val, sizeof(unsigned char) << 3); } void bf_write::WriteShort(int val) { WriteSBitLong(val, sizeof(short) << 3); } void bf_write::WriteWord(int val) { WriteUBitLong(val, sizeof(unsigned short) << 3); } void bf_write::WriteLong(int32 val) { WriteSBitLong(val, sizeof(int32) << 3); } void bf_write::WriteLongLong(int64 val) { uint *pLongs = (uint*)&val; // Insert the two DWORDS according to network endian const short endianIndex = 0x0100; byte *idx = (byte*)&endianIndex; WriteUBitLong(pLongs[*idx++], sizeof(int32) << 3); WriteUBitLong(pLongs[*idx], sizeof(int32) << 3); } void bf_write::WriteFloat(float val) { // Pre-swap the float, since WriteBits writes raw data LittleFloat( &val, &val ); WriteBits(&val, sizeof(val) << 3); } bool bf_write::WriteBytes( const void *pBuf, int nBytes ) { return WriteBits(pBuf, nBytes << 3); } bool bf_write::WriteString(const char *pStr) { if(pStr) { do { WriteChar( *pStr ); ++pStr; } while( *(pStr-1) != 0 ); } else { WriteChar( 0 ); } return !IsOverflowed(); } // ---------------------------------------------------------------------------------------- // // bf_read // ---------------------------------------------------------------------------------------- // bf_read::bf_read() { m_pData = NULL; m_nDataBytes = 0; m_nDataBits = -1; // set to -1 so we overflow on any operation m_iCurBit = 0; m_bOverflow = false; m_bAssertOnOverflow = true; m_pDebugName = NULL; } bf_read::bf_read( const void *pData, int nBytes, int nBits ) { m_bAssertOnOverflow = true; StartReading( pData, nBytes, 0, nBits ); } bf_read::bf_read( const char *pDebugName, const void *pData, int nBytes, int nBits ) { m_bAssertOnOverflow = true; m_pDebugName = pDebugName; StartReading( pData, nBytes, 0, nBits ); } void bf_read::StartReading( const void *pData, int nBytes, int iStartBit, int nBits ) { // Make sure we're dword aligned. Assert(((size_t)pData & 3) == 0); m_pData = (unsigned char*)pData; m_nDataBytes = nBytes; if ( nBits == -1 ) { m_nDataBits = m_nDataBytes << 3; } else { Assert( nBits <= nBytes*8 ); m_nDataBits = nBits; } m_iCurBit = iStartBit; m_bOverflow = false; } void bf_read::Reset() { m_iCurBit = 0; m_bOverflow = false; } void bf_read::SetAssertOnOverflow( bool bAssert ) { m_bAssertOnOverflow = bAssert; } void bf_read::SetDebugName( const char *pName ) { m_pDebugName = pName; } void bf_read::SetOverflowFlag() RESTRICT { if ( m_bAssertOnOverflow ) { Assert( false ); } m_bOverflow = true; } unsigned int bf_read::CheckReadUBitLong(int numbits) { // Ok, just read bits out. int i, nBitValue; unsigned int r = 0; for(i=0; i < numbits; i++) { nBitValue = ReadOneBitNoCheck(); r |= nBitValue << i; } m_iCurBit -= numbits; return r; } void bf_read::ReadBits(void *pOutData, int nBits) { #if defined( BB_PROFILING ) VPROF( "bf_read::ReadBits" ); #endif unsigned char *pOut = (unsigned char*)pOutData; int nBitsLeft = nBits; // align output to dword boundary while( ((size_t)pOut & 3) != 0 && nBitsLeft >= 8 ) { *pOut = (unsigned char)ReadUBitLong(8); ++pOut; nBitsLeft -= 8; } // X360TBD: Can't read dwords in ReadBits because they'll get swapped if ( IsPC() ) { // read dwords while ( nBitsLeft >= 32 ) { *((uint32*)pOut) = ReadUBitLong(32); pOut += sizeof(uint32); nBitsLeft -= 32; } } // read remaining bytes while ( nBitsLeft >= 8 ) { *pOut = ReadUBitLong(8); ++pOut; nBitsLeft -= 8; } // read remaining bits if ( nBitsLeft ) { *pOut = ReadUBitLong(nBitsLeft); } } int bf_read::ReadBitsClamped_ptr(void *pOutData, size_t outSizeBytes, size_t nBits) { size_t outSizeBits = outSizeBytes * 8; size_t readSizeBits = nBits; int skippedBits = 0; if ( readSizeBits > outSizeBits ) { // Should we print a message when we clamp the data being read? Only // in debug builds I think. AssertMsg( 0, "Oversized network packet received, and clamped." ); readSizeBits = outSizeBits; skippedBits = (int)( nBits - outSizeBits ); // What should we do in this case, which should only happen if nBits // is negative for some reason? //if ( skippedBits < 0 ) // return 0; } ReadBits( pOutData, readSizeBits ); SeekRelative( skippedBits ); // Return the number of bits actually read. return (int)readSizeBits; } float bf_read::ReadBitAngle( int numbits ) { float fReturn; int i; float shift; shift = (float)( BitForBitnum(numbits) ); i = ReadUBitLong( numbits ); fReturn = (float)i * (360.0 / shift); return fReturn; } unsigned int bf_read::PeekUBitLong( int numbits ) { unsigned int r; int i, nBitValue; #ifdef BIT_VERBOSE int nShifts = numbits; #endif bf_read savebf; savebf = *this; // Save current state info r = 0; for(i=0; i < numbits; i++) { nBitValue = ReadOneBit(); // Append to current stream if ( nBitValue ) { r |= BitForBitnum(i); } } *this = savebf; #ifdef BIT_VERBOSE Con_Printf( "PeekBitLong: %i %i\n", nShifts, (unsigned int)r ); #endif return r; } unsigned int bf_read::ReadUBitLongNoInline( int numbits ) RESTRICT { return ReadUBitLong( numbits ); } unsigned int bf_read::ReadUBitVarInternal( int encodingType ) { m_iCurBit -= 4; // int bits = { 4, 8, 12, 32 }[ encodingType ]; int bits = 4 + encodingType*4 + (((2 - encodingType) >> 31) & 16); return ReadUBitLong( bits ); } // Append numbits least significant bits from data to the current bit stream int bf_read::ReadSBitLong( int numbits ) { unsigned int r = ReadUBitLong(numbits); unsigned int s = 1 << (numbits-1); if (r >= s) { // sign-extend by removing sign bit and then subtracting sign bit again r = r - s - s; } return r; } uint32 bf_read::ReadVarInt32() { uint32 result = 0; int count = 0; uint32 b; do { if ( count == bitbuf::kMaxVarint32Bytes ) { return result; } b = ReadUBitLong( 8 ); result |= (b & 0x7F) << (7 * count); ++count; } while (b & 0x80); return result; } uint64 bf_read::ReadVarInt64() { uint64 result = 0; int count = 0; uint64 b; do { if ( count == bitbuf::kMaxVarintBytes ) { return result; } b = ReadUBitLong( 8 ); result |= static_cast<uint64>(b & 0x7F) << (7 * count); ++count; } while (b & 0x80); return result; } int32 bf_read::ReadSignedVarInt32() { uint32 value = ReadVarInt32(); return bitbuf::ZigZagDecode32( value ); } int64 bf_read::ReadSignedVarInt64() { uint32 value = ReadVarInt64(); return bitbuf::ZigZagDecode64( value ); } unsigned int bf_read::ReadBitLong(int numbits, bool bSigned) { if(bSigned) return (unsigned int)ReadSBitLong(numbits); else return ReadUBitLong(numbits); } // Basic Coordinate Routines (these contain bit-field size AND fixed point scaling constants) float bf_read::ReadBitCoord (void) { #if defined( BB_PROFILING ) VPROF( "bf_read::ReadBitCoord" ); #endif int intval=0,fractval=0,signbit=0; float value = 0.0; // Read the required integer and fraction flags intval = ReadOneBit(); fractval = ReadOneBit(); // If we got either parse them, otherwise it's a zero. if ( intval || fractval ) { // Read the sign bit signbit = ReadOneBit(); // If there's an integer, read it in if ( intval ) { // Adjust the integers from [0..MAX_COORD_VALUE-1] to [1..MAX_COORD_VALUE] intval = ReadUBitLong( COORD_INTEGER_BITS ) + 1; } // If there's a fraction, read it in if ( fractval ) { fractval = ReadUBitLong( COORD_FRACTIONAL_BITS ); } // Calculate the correct floating point value value = intval + ((float)fractval * COORD_RESOLUTION); // Fixup the sign if negative. if ( signbit ) value = -value; } return value; } float bf_read::ReadBitCoordMP( bool bIntegral, bool bLowPrecision ) { #if defined( BB_PROFILING ) VPROF( "bf_read::ReadBitCoordMP" ); #endif // BitCoordMP float encoding: inbounds bit, integer bit, sign bit, optional int bits, float bits // BitCoordMP integer encoding: inbounds bit, integer bit, optional sign bit, optional int bits. // int bits are always encoded as (value - 1) since zero is handled by the integer bit // With integer-only encoding, the presence of the third bit depends on the second int flags = ReadUBitLong(3 - bIntegral); enum { INBOUNDS=1, INTVAL=2, SIGN=4 }; if ( bIntegral ) { if ( flags & INTVAL ) { // Read the third bit and the integer portion together at once unsigned int bits = ReadUBitLong( (flags & INBOUNDS) ? COORD_INTEGER_BITS_MP+1 : COORD_INTEGER_BITS+1 ); // Remap from [0,N] to [1,N+1] int intval = (bits >> 1) + 1; return (bits & 1) ? -intval : intval; } return 0.f; } static const float mul_table[4] = { 1.f/(1<<COORD_FRACTIONAL_BITS), -1.f/(1<<COORD_FRACTIONAL_BITS), 1.f/(1<<COORD_FRACTIONAL_BITS_MP_LOWPRECISION), -1.f/(1<<COORD_FRACTIONAL_BITS_MP_LOWPRECISION) }; //equivalent to: float multiply = mul_table[ ((flags & SIGN) ? 1 : 0) + bLowPrecision*2 ]; float multiply = *(float*)((uintptr_t)&mul_table[0] + (flags & 4) + bLowPrecision*8); static const unsigned char numbits_table[8] = { COORD_FRACTIONAL_BITS, COORD_FRACTIONAL_BITS, COORD_FRACTIONAL_BITS + COORD_INTEGER_BITS, COORD_FRACTIONAL_BITS + COORD_INTEGER_BITS_MP, COORD_FRACTIONAL_BITS_MP_LOWPRECISION, COORD_FRACTIONAL_BITS_MP_LOWPRECISION, COORD_FRACTIONAL_BITS_MP_LOWPRECISION + COORD_INTEGER_BITS, COORD_FRACTIONAL_BITS_MP_LOWPRECISION + COORD_INTEGER_BITS_MP }; unsigned int bits = ReadUBitLong( numbits_table[ (flags & (INBOUNDS|INTVAL)) + bLowPrecision*4 ] ); if ( flags & INTVAL ) { // Shuffle the bits to remap the integer portion from [0,N] to [1,N+1] // and then paste in front of the fractional parts so we only need one // int-to-float conversion. uint fracbitsMP = bits >> COORD_INTEGER_BITS_MP; uint fracbits = bits >> COORD_INTEGER_BITS; uint intmaskMP = ((1<<COORD_INTEGER_BITS_MP)-1); uint intmask = ((1<<COORD_INTEGER_BITS)-1); uint selectNotMP = (flags & INBOUNDS) - 1; fracbits -= fracbitsMP; fracbits &= selectNotMP; fracbits += fracbitsMP; intmask -= intmaskMP; intmask &= selectNotMP; intmask += intmaskMP; uint intpart = (bits & intmask) + 1; uint intbitsLow = intpart << COORD_FRACTIONAL_BITS_MP_LOWPRECISION; uint intbits = intpart << COORD_FRACTIONAL_BITS; uint selectNotLow = (uint)bLowPrecision - 1; intbits -= intbitsLow; intbits &= selectNotLow; intbits += intbitsLow; bits = fracbits | intbits; } return (int)bits * multiply; } unsigned int bf_read::ReadBitCoordBits (void) { #if defined( BB_PROFILING ) VPROF( "bf_read::ReadBitCoordBits" ); #endif unsigned int flags = ReadUBitLong(2); if ( flags == 0 ) return 0; static const int numbits_table[3] = { COORD_INTEGER_BITS + 1, COORD_FRACTIONAL_BITS + 1, COORD_INTEGER_BITS + COORD_FRACTIONAL_BITS + 1 }; return ReadUBitLong( numbits_table[ flags-1 ] ) * 4 + flags; } unsigned int bf_read::ReadBitCoordMPBits( bool bIntegral, bool bLowPrecision ) { #if defined( BB_PROFILING ) VPROF( "bf_read::ReadBitCoordMPBits" ); #endif unsigned int flags = ReadUBitLong(2); enum { INBOUNDS=1, INTVAL=2 }; int numbits = 0; if ( bIntegral ) { if ( flags & INTVAL ) { numbits = (flags & INBOUNDS) ? (1 + COORD_INTEGER_BITS_MP) : (1 + COORD_INTEGER_BITS); } else { return flags; // no extra bits } } else { static const unsigned char numbits_table[8] = { 1 + COORD_FRACTIONAL_BITS, 1 + COORD_FRACTIONAL_BITS, 1 + COORD_FRACTIONAL_BITS + COORD_INTEGER_BITS, 1 + COORD_FRACTIONAL_BITS + COORD_INTEGER_BITS_MP, 1 + COORD_FRACTIONAL_BITS_MP_LOWPRECISION, 1 + COORD_FRACTIONAL_BITS_MP_LOWPRECISION, 1 + COORD_FRACTIONAL_BITS_MP_LOWPRECISION + COORD_INTEGER_BITS, 1 + COORD_FRACTIONAL_BITS_MP_LOWPRECISION + COORD_INTEGER_BITS_MP }; numbits = numbits_table[ flags + bLowPrecision*4 ]; } return flags + ReadUBitLong(numbits)*4; } void bf_read::ReadBitVec3Coord( Vector& fa ) { int xflag, yflag, zflag; // This vector must be initialized! Otherwise, If any of the flags aren't set, // the corresponding component will not be read and will be stack garbage. fa.Init( 0, 0, 0 ); xflag = ReadOneBit(); yflag = ReadOneBit(); zflag = ReadOneBit(); if ( xflag ) fa[0] = ReadBitCoord(); if ( yflag ) fa[1] = ReadBitCoord(); if ( zflag ) fa[2] = ReadBitCoord(); } float bf_read::ReadBitNormal (void) { // Read the sign bit int signbit = ReadOneBit(); // Read the fractional part unsigned int fractval = ReadUBitLong( NORMAL_FRACTIONAL_BITS ); // Calculate the correct floating point value float value = (float)fractval * NORMAL_RESOLUTION; // Fixup the sign if negative. if ( signbit ) value = -value; return value; } void bf_read::ReadBitVec3Normal( Vector& fa ) { int xflag = ReadOneBit(); int yflag = ReadOneBit(); if (xflag) fa[0] = ReadBitNormal(); else fa[0] = 0.0f; if (yflag) fa[1] = ReadBitNormal(); else fa[1] = 0.0f; // The first two imply the third (but not its sign) int znegative = ReadOneBit(); float fafafbfb = fa[0] * fa[0] + fa[1] * fa[1]; if (fafafbfb < 1.0f) fa[2] = sqrt( 1.0f - fafafbfb ); else fa[2] = 0.0f; if (znegative) fa[2] = -fa[2]; } void bf_read::ReadBitAngles( QAngle& fa ) { Vector tmp; ReadBitVec3Coord( tmp ); fa.Init( tmp.x, tmp.y, tmp.z ); } int64 bf_read::ReadLongLong() { int64 retval; uint *pLongs = (uint*)&retval; // Read the two DWORDs according to network endian const short endianIndex = 0x0100; byte *idx = (byte*)&endianIndex; pLongs[*idx++] = ReadUBitLong(sizeof(int32) << 3); pLongs[*idx] = ReadUBitLong(sizeof(int32) << 3); return retval; } float bf_read::ReadFloat() { float ret; Assert( sizeof(ret) == 4 ); ReadBits(&ret, 32); // Swap the float, since ReadBits reads raw data LittleFloat( &ret, &ret ); return ret; } bool bf_read::ReadBytes(void *pOut, int nBytes) { ReadBits(pOut, nBytes << 3); return !IsOverflowed(); } bool bf_read::ReadString( char *pStr, int maxLen, bool bLine, int *pOutNumChars ) { Assert( maxLen != 0 ); bool bTooSmall = false; int iChar = 0; while(1) { char val = ReadChar(); if ( val == 0 ) break; else if ( bLine && val == '\n' ) break; if ( iChar < (maxLen-1) ) { pStr[iChar] = val; ++iChar; } else { bTooSmall = true; } } // Make sure it's null-terminated. Assert( iChar < maxLen ); pStr[iChar] = 0; if ( pOutNumChars ) *pOutNumChars = iChar; return !IsOverflowed() && !bTooSmall; } char* bf_read::ReadAndAllocateString( bool *pOverflow ) { char str[2048]; int nChars; bool bOverflow = !ReadString( str, sizeof( str ), false, &nChars ); if ( pOverflow ) *pOverflow = bOverflow; // Now copy into the output and return it; char *pRet = new char[ nChars + 1 ]; for ( int i=0; i <= nChars; i++ ) pRet[i] = str[i]; return pRet; } void bf_read::ExciseBits( int startbit, int bitstoremove ) { int endbit = startbit + bitstoremove; int remaining_to_end = m_nDataBits - endbit; bf_write temp; temp.StartWriting( (void *)m_pData, m_nDataBits << 3, startbit ); Seek( endbit ); for ( int i = 0; i < remaining_to_end; i++ ) { temp.WriteOneBit( ReadOneBit() ); } Seek( startbit ); m_nDataBits -= bitstoremove; m_nDataBytes = m_nDataBits >> 3; } int bf_read::CompareBitsAt( int offset, bf_read * RESTRICT other, int otherOffset, int numbits ) RESTRICT { extern uint32 g_ExtraMasks[33]; if ( numbits == 0 ) return 0; int overflow1 = offset + numbits > m_nDataBits; int overflow2 = otherOffset + numbits > other->m_nDataBits; int x = overflow1 | overflow2; if ( x != 0 ) return x; unsigned int iStartBit1 = offset & 31u; unsigned int iStartBit2 = otherOffset & 31u; uint32 *pData1 = (uint32*)m_pData + (offset >> 5); uint32 *pData2 = (uint32*)other->m_pData + (otherOffset >> 5); uint32 *pData1End = pData1 + ((offset + numbits - 1) >> 5); uint32 *pData2End = pData2 + ((otherOffset + numbits - 1) >> 5); while ( numbits > 32 ) { x = LoadLittleDWord( (uint32*)pData1, 0 ) >> iStartBit1; x ^= LoadLittleDWord( (uint32*)pData1, 1 ) << (32 - iStartBit1); x ^= LoadLittleDWord( (uint32*)pData2, 0 ) >> iStartBit2; x ^= LoadLittleDWord( (uint32*)pData2, 1 ) << (32 - iStartBit2); if ( x != 0 ) { return x; } ++pData1; ++pData2; numbits -= 32; } x = LoadLittleDWord( (uint32*)pData1, 0 ) >> iStartBit1; x ^= LoadLittleDWord( (uint32*)pData1End, 0 ) << (32 - iStartBit1); x ^= LoadLittleDWord( (uint32*)pData2, 0 ) >> iStartBit2; x ^= LoadLittleDWord( (uint32*)pData2End, 0 ) << (32 - iStartBit2); return x & g_ExtraMasks[ numbits ]; }