//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: A collection of utility classes to simplify thread handling, and // as much as possible contain portability problems. Here avoiding // including windows.h. // //============================================================================= #ifndef THREADTOOLS_H #define THREADTOOLS_H #include "tier0/type_traits.h" #include #include "tier0/platform.h" #include "tier0/dbg.h" #include "tier0/vcrmode.h" #include "tier0/vprof_telemetry.h" #ifdef PLATFORM_WINDOWS_PC #include #endif #ifdef POSIX #include #include #define WAIT_OBJECT_0 0 #define WAIT_TIMEOUT 0x00000102 #define WAIT_FAILED -1 #define THREAD_PRIORITY_HIGHEST 2 #endif #if defined( _WIN32 ) #pragma once #pragma warning(push) #pragma warning(disable:4251) #endif // #define THREAD_PROFILER 1 #ifndef _RETAIL #define THREAD_MUTEX_TRACING_SUPPORTED #if defined(_WIN32) && defined(_DEBUG) #define THREAD_MUTEX_TRACING_ENABLED #endif #endif #ifdef _WIN32 typedef void *HANDLE; #endif // Start thread running - error if already running enum ThreadPriorityEnum_t { #if defined( PLATFORM_PS3 ) TP_PRIORITY_NORMAL = 1001, TP_PRIORITY_HIGH = 100, TP_PRIORITY_LOW = 2001, TP_PRIORITY_DEFAULT = 1001 #error "Need PRIORITY_LOWEST/HIGHEST" #elif defined( PLATFORM_LINUX ) // We can use nice on Linux threads to change scheduling. // pthreads on Linux only allows priority setting on // real-time threads. // NOTE: Lower numbers are higher priority, thus the need // for TP_IS_PRIORITY_HIGHER. TP_PRIORITY_DEFAULT = 0, TP_PRIORITY_NORMAL = 0, TP_PRIORITY_HIGH = -10, TP_PRIORITY_LOW = 10, TP_PRIORITY_HIGHEST = -20, TP_PRIORITY_LOWEST = 19, #else // PLATFORM_PS3 TP_PRIORITY_DEFAULT = 0, // THREAD_PRIORITY_NORMAL TP_PRIORITY_NORMAL = 0, // THREAD_PRIORITY_NORMAL TP_PRIORITY_HIGH = 1, // THREAD_PRIORITY_ABOVE_NORMAL TP_PRIORITY_LOW = -1, // THREAD_PRIORITY_BELOW_NORMAL TP_PRIORITY_HIGHEST = 2, // THREAD_PRIORITY_HIGHEST TP_PRIORITY_LOWEST = -2, // THREAD_PRIORITY_LOWEST #endif // PLATFORM_PS3 }; //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- const unsigned TT_INFINITE = 0xffffffff; #ifndef NO_THREAD_LOCAL #ifndef THREAD_LOCAL #ifdef _WIN32 #define THREAD_LOCAL __declspec(thread) #elif POSIX #define THREAD_LOCAL __thread #endif #endif #endif // NO_THREAD_LOCAL typedef unsigned long ThreadId_t; //----------------------------------------------------------------------------- // // Simple thread creation. Differs from VCR mode/CreateThread/_beginthreadex // in that it accepts a standard C function rather than compiler specific one. // //----------------------------------------------------------------------------- FORWARD_DECLARE_HANDLE( ThreadHandle_t ); typedef unsigned (*ThreadFunc_t)( void *pParam ); PLATFORM_OVERLOAD ThreadHandle_t CreateSimpleThread( ThreadFunc_t, void *pParam, ThreadId_t *pID, unsigned stackSize = 0 ); PLATFORM_INTERFACE ThreadHandle_t CreateSimpleThread( ThreadFunc_t, void *pParam, unsigned stackSize = 0 ); PLATFORM_INTERFACE bool ReleaseThreadHandle( ThreadHandle_t ); //----------------------------------------------------------------------------- PLATFORM_INTERFACE void ThreadSleep(unsigned duration = 0); PLATFORM_INTERFACE uint ThreadGetCurrentId(); PLATFORM_INTERFACE ThreadHandle_t ThreadGetCurrentHandle(); PLATFORM_INTERFACE int ThreadGetPriority( ThreadHandle_t hThread = NULL ); PLATFORM_INTERFACE bool ThreadSetPriority( ThreadHandle_t hThread, int priority ); inline bool ThreadSetPriority( int priority ) { return ThreadSetPriority( NULL, priority ); } PLATFORM_INTERFACE bool ThreadInMainThread(); PLATFORM_INTERFACE void DeclareCurrentThreadIsMainThread(); // NOTE: ThreadedLoadLibraryFunc_t needs to return the sleep time in milliseconds or TT_INFINITE typedef int (*ThreadedLoadLibraryFunc_t)(); PLATFORM_INTERFACE void SetThreadedLoadLibraryFunc( ThreadedLoadLibraryFunc_t func ); PLATFORM_INTERFACE ThreadedLoadLibraryFunc_t GetThreadedLoadLibraryFunc(); #if defined( _WIN32 ) && !defined( _WIN64 ) && !defined( _X360 ) extern "C" unsigned long __declspec(dllimport) __stdcall GetCurrentThreadId(); #define ThreadGetCurrentId GetCurrentThreadId #endif inline void ThreadPause() { #if defined( PLATFORM_WINDOWS_PC ) // Intrinsic for __asm pause; from _mm_pause(); #elif defined( __i386__ ) && defined(POSIX) __asm __volatile( "pause" ); #elif defined(__arm__) sched_yield(); // maybe work. Maybe not. Who knows? #elif defined( _X360 ) #else #error "implement me" #endif } PLATFORM_INTERFACE bool ThreadJoin( ThreadHandle_t, unsigned timeout = TT_INFINITE ); // If you're not calling ThreadJoin, you need to call ThreadDetach so pthreads on Linux knows it can // free the memory for this thread. Otherwise you wind up leaking threads until you run out and // CreateSimpleThread() will fail. PLATFORM_INTERFACE void ThreadDetach( ThreadHandle_t ); PLATFORM_INTERFACE void ThreadSetDebugName( ThreadId_t id, const char *pszName ); inline void ThreadSetDebugName( const char *pszName ) { ThreadSetDebugName( (ThreadId_t)-1, pszName ); } PLATFORM_INTERFACE void ThreadSetAffinity( ThreadHandle_t hThread, int nAffinityMask ); //----------------------------------------------------------------------------- enum ThreadWaitResult_t { TW_FAILED = 0xffffffff, // WAIT_FAILED TW_TIMEOUT = 0x00000102, // WAIT_TIMEOUT }; #ifdef _WIN32 PLATFORM_INTERFACE int ThreadWaitForObjects( int nEvents, const HANDLE *pHandles, bool bWaitAll = true, unsigned timeout = TT_INFINITE ); inline int ThreadWaitForObject( HANDLE handle, bool bWaitAll = true, unsigned timeout = TT_INFINITE ) { return ThreadWaitForObjects( 1, &handle, bWaitAll, timeout ); } #endif //----------------------------------------------------------------------------- // // Interlock methods. These perform very fast atomic thread // safe operations. These are especially relevant in a multi-core setting. // //----------------------------------------------------------------------------- #ifdef _WIN32 #define NOINLINE #elif POSIX #define NOINLINE __attribute__ ((noinline)) #endif // ThreadMemoryBarrier is a fence/barrier sufficient for most uses. It prevents reads // from moving past reads, and writes moving past writes. It is sufficient for // read-acquire and write-release barriers. It is not a full barrier and it does // not prevent reads from moving past writes -- that would require a full __sync() // on PPC and is significantly more expensive. #if defined( _X360 ) || defined( _PS3 ) #define ThreadMemoryBarrier() __lwsync() #elif defined(_MSC_VER) // Prevent compiler reordering across this barrier. This is // sufficient for most purposes on x86/x64. #if _MSC_VER < 1500 // !KLUDGE! For VC 2005 // http://connect.microsoft.com/VisualStudio/feedback/details/100051 #pragma intrinsic(_ReadWriteBarrier) #endif #define ThreadMemoryBarrier() _ReadWriteBarrier() #elif defined(GNUC) // Prevent compiler reordering across this barrier. This is // sufficient for most purposes on x86/x64. // http://preshing.com/20120625/memory-ordering-at-compile-time #define ThreadMemoryBarrier() asm volatile("" ::: "memory") #else #error Every platform needs to define ThreadMemoryBarrier to at least prevent compiler reordering #endif #if defined(_WIN32) && !defined(_X360) #if ( _MSC_VER >= 1310 ) #define USE_INTRINSIC_INTERLOCKED #endif #endif #ifdef USE_INTRINSIC_INTERLOCKED extern "C" { long __cdecl _InterlockedIncrement(volatile long*); long __cdecl _InterlockedDecrement(volatile long*); long __cdecl _InterlockedExchange(volatile long*, long); long __cdecl _InterlockedExchangeAdd(volatile long*, long); long __cdecl _InterlockedCompareExchange(volatile long*, long, long); } #pragma intrinsic( _InterlockedCompareExchange ) #pragma intrinsic( _InterlockedDecrement ) #pragma intrinsic( _InterlockedExchange ) #pragma intrinsic( _InterlockedExchangeAdd ) #pragma intrinsic( _InterlockedIncrement ) inline long ThreadInterlockedIncrement( long volatile *p ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedIncrement( p ); } inline long ThreadInterlockedDecrement( long volatile *p ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedDecrement( p ); } inline long ThreadInterlockedExchange( long volatile *p, long value ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedExchange( p, value ); } inline long ThreadInterlockedExchangeAdd( long volatile *p, long value ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedExchangeAdd( p, value ); } inline long ThreadInterlockedCompareExchange( long volatile *p, long value, long comperand ) { Assert( (size_t)p % 4 == 0 ); return _InterlockedCompareExchange( p, value, comperand ); } inline bool ThreadInterlockedAssignIf( long volatile *p, long value, long comperand ) { Assert( (size_t)p % 4 == 0 ); return ( _InterlockedCompareExchange( p, value, comperand ) == comperand ); } #else PLATFORM_INTERFACE long ThreadInterlockedIncrement( long volatile * ); PLATFORM_INTERFACE long ThreadInterlockedDecrement( long volatile * ); PLATFORM_INTERFACE long ThreadInterlockedExchange( long volatile *, long value ); PLATFORM_INTERFACE long ThreadInterlockedExchangeAdd( long volatile *, long value ); PLATFORM_INTERFACE long ThreadInterlockedCompareExchange( long volatile *, long value, long comperand ); PLATFORM_INTERFACE bool ThreadInterlockedAssignIf( long volatile *, long value, long comperand ); #endif inline unsigned ThreadInterlockedExchangeSubtract( long volatile *p, long value ) { return ThreadInterlockedExchangeAdd( (long volatile *)p, -value ); } #if defined( USE_INTRINSIC_INTERLOCKED ) && !defined( _WIN64 ) #define TIPTR() inline void *ThreadInterlockedExchangePointer( void * volatile *p, void *value ) { return (void *)_InterlockedExchange( reinterpret_cast(p), reinterpret_cast(value) ); } inline void *ThreadInterlockedCompareExchangePointer( void * volatile *p, void *value, void *comperand ) { return (void *)_InterlockedCompareExchange( reinterpret_cast(p), reinterpret_cast(value), reinterpret_cast(comperand) ); } inline bool ThreadInterlockedAssignPointerIf( void * volatile *p, void *value, void *comperand ) { return ( _InterlockedCompareExchange( reinterpret_cast(p), reinterpret_cast(value), reinterpret_cast(comperand) ) == reinterpret_cast(comperand) ); } #else PLATFORM_INTERFACE void *ThreadInterlockedExchangePointer( void * volatile *, void *value ) NOINLINE; PLATFORM_INTERFACE void *ThreadInterlockedCompareExchangePointer( void * volatile *, void *value, void *comperand ) NOINLINE; PLATFORM_INTERFACE bool ThreadInterlockedAssignPointerIf( void * volatile *, void *value, void *comperand ) NOINLINE; #endif inline void const *ThreadInterlockedExchangePointerToConst( void const * volatile *p, void const *value ) { return ThreadInterlockedExchangePointer( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ) ); } inline void const *ThreadInterlockedCompareExchangePointerToConst( void const * volatile *p, void const *value, void const *comperand ) { return ThreadInterlockedCompareExchangePointer( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ), const_cast < void * > ( comperand ) ); } inline bool ThreadInterlockedAssignPointerToConstIf( void const * volatile *p, void const *value, void const *comperand ) { return ThreadInterlockedAssignPointerIf( const_cast < void * volatile * > ( p ), const_cast < void * > ( value ), const_cast < void * > ( comperand ) ); } #if defined( PLATFORM_64BITS ) #if defined (_WIN32) typedef __m128i int128; inline int128 int128_zero() { return _mm_setzero_si128(); } #else typedef __int128_t int128; #define int128_zero() 0 #endif PLATFORM_INTERFACE bool ThreadInterlockedAssignIf128( volatile int128 *pDest, const int128 &value, const int128 &comperand ) NOINLINE; #endif PLATFORM_INTERFACE int64 ThreadInterlockedIncrement64( int64 volatile * ) NOINLINE; PLATFORM_INTERFACE int64 ThreadInterlockedDecrement64( int64 volatile * ) NOINLINE; PLATFORM_INTERFACE int64 ThreadInterlockedCompareExchange64( int64 volatile *, int64 value, int64 comperand ) NOINLINE; PLATFORM_INTERFACE int64 ThreadInterlockedExchange64( int64 volatile *, int64 value ) NOINLINE; PLATFORM_INTERFACE int64 ThreadInterlockedExchangeAdd64( int64 volatile *, int64 value ) NOINLINE; PLATFORM_INTERFACE bool ThreadInterlockedAssignIf64(volatile int64 *pDest, int64 value, int64 comperand ) NOINLINE; inline unsigned ThreadInterlockedExchangeSubtract( unsigned volatile *p, unsigned value ) { return ThreadInterlockedExchangeAdd( (long volatile *)p, value ); } inline unsigned ThreadInterlockedIncrement( unsigned volatile *p ) { return ThreadInterlockedIncrement( (long volatile *)p ); } inline unsigned ThreadInterlockedDecrement( unsigned volatile *p ) { return ThreadInterlockedDecrement( (long volatile *)p ); } inline unsigned ThreadInterlockedExchange( unsigned volatile *p, unsigned value ) { return ThreadInterlockedExchange( (long volatile *)p, value ); } inline unsigned ThreadInterlockedExchangeAdd( unsigned volatile *p, unsigned value ) { return ThreadInterlockedExchangeAdd( (long volatile *)p, value ); } inline unsigned ThreadInterlockedCompareExchange( unsigned volatile *p, unsigned value, unsigned comperand ) { return ThreadInterlockedCompareExchange( (long volatile *)p, value, comperand ); } inline bool ThreadInterlockedAssignIf( unsigned volatile *p, unsigned value, unsigned comperand ) { return ThreadInterlockedAssignIf( (long volatile *)p, value, comperand ); } inline int ThreadInterlockedExchangeSubtract( int volatile *p, int value ) { return ThreadInterlockedExchangeAdd( (long volatile *)p, value ); } inline int ThreadInterlockedIncrement( int volatile *p ) { return ThreadInterlockedIncrement( (long volatile *)p ); } inline int ThreadInterlockedDecrement( int volatile *p ) { return ThreadInterlockedDecrement( (long volatile *)p ); } inline int ThreadInterlockedExchange( int volatile *p, int value ) { return ThreadInterlockedExchange( (long volatile *)p, value ); } inline int ThreadInterlockedExchangeAdd( int volatile *p, int value ) { return ThreadInterlockedExchangeAdd( (long volatile *)p, value ); } inline int ThreadInterlockedCompareExchange( int volatile *p, int value, int comperand ) { return ThreadInterlockedCompareExchange( (long volatile *)p, value, comperand ); } inline bool ThreadInterlockedAssignIf( int volatile *p, int value, int comperand ) { return ThreadInterlockedAssignIf( (long volatile *)p, value, comperand ); } //----------------------------------------------------------------------------- // Access to VTune thread profiling //----------------------------------------------------------------------------- #if defined(_WIN32) && defined(THREAD_PROFILER) PLATFORM_INTERFACE void ThreadNotifySyncPrepare(void *p); PLATFORM_INTERFACE void ThreadNotifySyncCancel(void *p); PLATFORM_INTERFACE void ThreadNotifySyncAcquired(void *p); PLATFORM_INTERFACE void ThreadNotifySyncReleasing(void *p); #else #define ThreadNotifySyncPrepare(p) ((void)0) #define ThreadNotifySyncCancel(p) ((void)0) #define ThreadNotifySyncAcquired(p) ((void)0) #define ThreadNotifySyncReleasing(p) ((void)0) #endif //----------------------------------------------------------------------------- // Encapsulation of a thread local datum (needed because THREAD_LOCAL doesn't // work in a DLL loaded with LoadLibrary() //----------------------------------------------------------------------------- #ifndef NO_THREAD_LOCAL #if defined(_LINUX) && !defined(OSX) // linux totally supports compiler thread locals, even across dll's. #define PLAT_COMPILER_SUPPORTED_THREADLOCALS 1 #define CTHREADLOCALINTEGER( typ ) __thread int #define CTHREADLOCALINT __thread int #define CTHREADLOCALPTR( typ ) __thread typ * #define CTHREADLOCAL( typ ) __thread typ #define GETLOCAL( x ) ( x ) #endif // _LINUX && !OSX #if defined(WIN32) || defined(OSX) #ifndef __AFXTLS_H__ // not compatible with some Windows headers #define CTHREADLOCALINT CThreadLocalInt #define CTHREADLOCALINTEGER( typ ) CThreadLocalInt #define CTHREADLOCALPTR( typ ) CThreadLocalPtr #define CTHREADLOCAL( typ ) CThreadLocal #define GETLOCAL( x ) ( x.Get() ) #endif #endif // WIN32 || OSX #endif // NO_THREAD_LOCALS #ifndef __AFXTLS_H__ // not compatible with some Windows headers #ifndef NO_THREAD_LOCAL class PLATFORM_CLASS CThreadLocalBase { public: CThreadLocalBase(); ~CThreadLocalBase(); void * Get() const; void Set(void *); private: #ifdef _WIN32 uint32 m_index; #elif POSIX pthread_key_t m_index; #endif }; //--------------------------------------------------------- #ifndef __AFXTLS_H__ template class CThreadLocal : public CThreadLocalBase { public: CThreadLocal() { COMPILE_TIME_ASSERT( sizeof(T) == sizeof(void *) ); } T Get() const { return reinterpret_cast( CThreadLocalBase::Get() ); } void Set(T val) { CThreadLocalBase::Set( reinterpret_cast(val) ); } }; #endif //--------------------------------------------------------- template class CThreadLocalInt : public CThreadLocal { public: CThreadLocalInt() { COMPILE_TIME_ASSERT( sizeof(T) >= sizeof(int) ); } operator int() const { return (int)this->Get(); } int operator=( int i ) { this->Set( (intp)i ); return i; } int operator++() { T i = this->Get(); this->Set( ++i ); return (int)i; } int operator++(int) { T i = this->Get(); this->Set( i + 1 ); return (int)i; } int operator--() { T i = this->Get(); this->Set( --i ); return (int)i; } int operator--(int) { T i = this->Get(); this->Set( i - 1 ); return (int)i; } }; //--------------------------------------------------------- template class CThreadLocalPtr : private CThreadLocalBase { public: CThreadLocalPtr() {} operator const void *() const { return (T *)Get(); } operator void *() { return (T *)Get(); } operator const T *() const { return (T *)Get(); } operator const T *() { return (T *)Get(); } operator T *() { return (T *)Get(); } int operator=( int i ) { AssertMsg( i == 0, "Only NULL allowed on integer assign" ); Set( NULL ); return 0; } T * operator=( T *p ) { Set( p ); return p; } bool operator !() const { return (!Get()); } bool operator!=( int i ) const { AssertMsg( i == 0, "Only NULL allowed on integer compare" ); return (Get() != NULL); } bool operator==( int i ) const { AssertMsg( i == 0, "Only NULL allowed on integer compare" ); return (Get() == NULL); } bool operator==( const void *p ) const { return (Get() == p); } bool operator!=( const void *p ) const { return (Get() != p); } bool operator==( const T *p ) const { return operator==((void*)p); } bool operator!=( const T *p ) const { return operator!=((void*)p); } T * operator->() { return (T *)Get(); } T & operator *() { return *((T *)Get()); } const T * operator->() const { return (T *)Get(); } const T & operator *() const { return *((T *)Get()); } const T & operator[]( int i ) const { return *((T *)Get() + i); } T & operator[]( int i ) { return *((T *)Get() + i); } private: // Disallowed operations CThreadLocalPtr( T *pFrom ); CThreadLocalPtr( const CThreadLocalPtr &from ); T **operator &(); T * const *operator &() const; void operator=( const CThreadLocalPtr &from ); bool operator==( const CThreadLocalPtr &p ) const; bool operator!=( const CThreadLocalPtr &p ) const; }; #endif // NO_THREAD_LOCAL #endif // !__AFXTLS_H__ //----------------------------------------------------------------------------- // // A super-fast thread-safe integer A simple class encapsulating the notion of an // atomic integer used across threads that uses the built in and faster // "interlocked" functionality rather than a full-blown mutex. Useful for simple // things like reference counts, etc. // //----------------------------------------------------------------------------- template class CInterlockedIntT { public: CInterlockedIntT() : m_value( 0 ) { COMPILE_TIME_ASSERT( sizeof(T) == sizeof(long) ); } CInterlockedIntT( T value ) : m_value( value ) {} T GetRaw() const { return m_value; } operator T() const { return m_value; } bool operator!() const { return ( m_value == 0 ); } bool operator==( T rhs ) const { return ( m_value == rhs ); } bool operator!=( T rhs ) const { return ( m_value != rhs ); } T operator++() { return (T)ThreadInterlockedIncrement( (long *)&m_value ); } T operator++(int) { return operator++() - 1; } T operator--() { return (T)ThreadInterlockedDecrement( (long *)&m_value ); } T operator--(int) { return operator--() + 1; } bool AssignIf( T conditionValue, T newValue ) { return ThreadInterlockedAssignIf( (long *)&m_value, (long)newValue, (long)conditionValue ); } T operator=( T newValue ) { ThreadInterlockedExchange((long *)&m_value, newValue); return m_value; } void operator+=( T add ) { ThreadInterlockedExchangeAdd( (long *)&m_value, (long)add ); } void operator-=( T subtract ) { operator+=( -subtract ); } void operator*=( T multiplier ) { T original, result; do { original = m_value; result = original * multiplier; } while ( !AssignIf( original, result ) ); } void operator/=( T divisor ) { T original, result; do { original = m_value; result = original / divisor; } while ( !AssignIf( original, result ) ); } T operator+( T rhs ) const { return m_value + rhs; } T operator-( T rhs ) const { return m_value - rhs; } private: volatile T m_value; }; typedef CInterlockedIntT CInterlockedInt; typedef CInterlockedIntT CInterlockedUInt; //----------------------------------------------------------------------------- template class CInterlockedPtr { public: CInterlockedPtr() : m_value( 0 ) {} CInterlockedPtr( T *value ) : m_value( value ) {} operator T *() const { return m_value; } bool operator!() const { return ( m_value == 0 ); } bool operator==( T *rhs ) const { return ( m_value == rhs ); } bool operator!=( T *rhs ) const { return ( m_value != rhs ); } #if defined( PLATFORM_64BITS ) T *operator++() { return ((T *)ThreadInterlockedExchangeAdd64( (int64 *)&m_value, sizeof(T) )) + 1; } T *operator++(int) { return (T *)ThreadInterlockedExchangeAdd64( (int64 *)&m_value, sizeof(T) ); } T *operator--() { return ((T *)ThreadInterlockedExchangeAdd64( (int64 *)&m_value, -sizeof(T) )) - 1; } T *operator--(int) { return (T *)ThreadInterlockedExchangeAdd64( (int64 *)&m_value, -sizeof(T) ); } bool AssignIf( T *conditionValue, T *newValue ) { return ThreadInterlockedAssignPointerToConstIf( (void const **) &m_value, (void const *) newValue, (void const *) conditionValue ); } T *operator=( T *newValue ) { ThreadInterlockedExchangePointerToConst( (void const **) &m_value, (void const *) newValue ); return newValue; } void operator+=( int add ) { ThreadInterlockedExchangeAdd64( (int64 *)&m_value, add * sizeof(T) ); } #else T *operator++() { return ((T *)ThreadInterlockedExchangeAdd( (long *)&m_value, sizeof(T) )) + 1; } T *operator++(int) { return (T *)ThreadInterlockedExchangeAdd( (long *)&m_value, sizeof(T) ); } T *operator--() { return ((T *)ThreadInterlockedExchangeAdd( (long *)&m_value, -sizeof(T) )) - 1; } T *operator--(int) { return (T *)ThreadInterlockedExchangeAdd( (long *)&m_value, -sizeof(T) ); } bool AssignIf( T *conditionValue, T *newValue ) { return ThreadInterlockedAssignPointerToConstIf( (void const **) &m_value, (void const *) newValue, (void const *) conditionValue ); } T *operator=( T *newValue ) { ThreadInterlockedExchangePointerToConst( (void const **) &m_value, (void const *) newValue ); return newValue; } void operator+=( int add ) { ThreadInterlockedExchangeAdd( (long *)&m_value, add * sizeof(T) ); } #endif void operator-=( int subtract ) { operator+=( -subtract ); } T *operator+( int rhs ) const { return m_value + rhs; } T *operator-( int rhs ) const { return m_value - rhs; } T *operator+( unsigned rhs ) const { return m_value + rhs; } T *operator-( unsigned rhs ) const { return m_value - rhs; } size_t operator-( T *p ) const { return m_value - p; } size_t operator-( const CInterlockedPtr &p ) const { return m_value - p.m_value; } private: T * volatile m_value; }; //----------------------------------------------------------------------------- // // Platform independent verification that multiple threads aren't getting into the same code at the same time. // Note: This is intended for use to identify problems, it doesn't provide any sort of thread safety. // //----------------------------------------------------------------------------- class ReentrancyVerifier { public: inline ReentrancyVerifier(CInterlockedInt* counter, int sleepTimeMS) : mCounter(counter) { Assert(mCounter != NULL); if (++(*mCounter) != 1) { DebuggerBreakIfDebugging_StagingOnly(); } if (sleepTimeMS > 0) { ThreadSleep(sleepTimeMS); } } inline ~ReentrancyVerifier() { if (--(*mCounter) != 0) { DebuggerBreakIfDebugging_StagingOnly(); } } private: CInterlockedInt* mCounter; }; //----------------------------------------------------------------------------- // // Platform independent for critical sections management // //----------------------------------------------------------------------------- class PLATFORM_CLASS CThreadMutex { public: CThreadMutex(); ~CThreadMutex(); //------------------------------------------------------ // Mutex acquisition/release. Const intentionally defeated. //------------------------------------------------------ void Lock(); void Lock() const { (const_cast(this))->Lock(); } void Unlock(); void Unlock() const { (const_cast(this))->Unlock(); } bool TryLock(); bool TryLock() const { return (const_cast(this))->TryLock(); } //------------------------------------------------------ // Use this to make deadlocks easier to track by asserting // when it is expected that the current thread owns the mutex //------------------------------------------------------ bool AssertOwnedByCurrentThread(); //------------------------------------------------------ // Enable tracing to track deadlock problems //------------------------------------------------------ void SetTrace( bool ); private: // Disallow copying CThreadMutex( const CThreadMutex & ); CThreadMutex &operator=( const CThreadMutex & ); #if defined( _WIN32 ) // Efficient solution to breaking the windows.h dependency, invariant is tested. #ifdef _WIN64 #define TT_SIZEOF_CRITICALSECTION 40 #else #ifndef _X360 #define TT_SIZEOF_CRITICALSECTION 24 #else #define TT_SIZEOF_CRITICALSECTION 28 #endif // !_XBOX #endif // _WIN64 byte m_CriticalSection[TT_SIZEOF_CRITICALSECTION]; #elif defined(POSIX) pthread_mutex_t m_Mutex; pthread_mutexattr_t m_Attr; #else #error #endif #ifdef THREAD_MUTEX_TRACING_SUPPORTED // Debugging (always here to allow mixed debug/release builds w/o changing size) uint m_currentOwnerID; uint16 m_lockCount; bool m_bTrace; #endif }; //----------------------------------------------------------------------------- // // An alternative mutex that is useful for cases when thread contention is // rare, but a mutex is required. Instances should be declared volatile. // Sleep of 0 may not be sufficient to keep high priority threads from starving // lesser threads. This class is not a suitable replacement for a critical // section if the resource contention is high. // //----------------------------------------------------------------------------- #if !defined(THREAD_PROFILER) class CThreadFastMutex { public: CThreadFastMutex() : m_ownerID( 0 ), m_depth( 0 ) { } private: FORCEINLINE bool TryLockInline( const uint32 threadId ) volatile { if ( threadId != m_ownerID && !ThreadInterlockedAssignIf( (volatile long *)&m_ownerID, (long)threadId, 0 ) ) return false; ThreadMemoryBarrier(); ++m_depth; return true; } bool TryLock( const uint32 threadId ) volatile { return TryLockInline( threadId ); } PLATFORM_CLASS void Lock( const uint32 threadId, unsigned nSpinSleepTime ) volatile; public: bool TryLock() volatile { #ifdef _DEBUG if ( m_depth == INT_MAX ) DebuggerBreak(); if ( m_depth < 0 ) DebuggerBreak(); #endif return TryLockInline( ThreadGetCurrentId() ); } #ifndef _DEBUG FORCEINLINE #endif void Lock( unsigned int nSpinSleepTime = 0 ) volatile { const uint32 threadId = ThreadGetCurrentId(); if ( !TryLockInline( threadId ) ) { ThreadPause(); Lock( threadId, nSpinSleepTime ); } #ifdef _DEBUG if ( m_ownerID != ThreadGetCurrentId() ) DebuggerBreak(); if ( m_depth == INT_MAX ) DebuggerBreak(); if ( m_depth < 0 ) DebuggerBreak(); #endif } #ifndef _DEBUG FORCEINLINE #endif void Unlock() volatile { #ifdef _DEBUG if ( m_ownerID != ThreadGetCurrentId() ) DebuggerBreak(); if ( m_depth <= 0 ) DebuggerBreak(); #endif --m_depth; if ( !m_depth ) { ThreadMemoryBarrier(); ThreadInterlockedExchange( &m_ownerID, 0 ); } } #ifdef WIN32 bool TryLock() const volatile { return (const_cast(this))->TryLock(); } void Lock(unsigned nSpinSleepTime = 1 ) const volatile { (const_cast(this))->Lock( nSpinSleepTime ); } void Unlock() const volatile { (const_cast(this))->Unlock(); } #endif // To match regular CThreadMutex: bool AssertOwnedByCurrentThread() { return true; } void SetTrace( bool ) {} uint32 GetOwnerId() const { return m_ownerID; } int GetDepth() const { return m_depth; } private: volatile uint32 m_ownerID; int m_depth; }; #ifdef COMPILER_CLANG # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wunused-private-field" #endif // Q_CC_CLANG class ALIGN128 CAlignedThreadFastMutex : public CThreadFastMutex { public: CAlignedThreadFastMutex() { Assert( (size_t)this % 128 == 0 && sizeof(*this) == 128 ); } private: uint8 pad[128-sizeof(CThreadFastMutex)]; } ALIGN128_POST; #ifdef COMPILER_CLANG # pragma clang diagnostic pop #endif #else typedef CThreadMutex CThreadFastMutex; #endif //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- class CThreadNullMutex { public: static void Lock() {} static void Unlock() {} static bool TryLock() { return true; } static bool AssertOwnedByCurrentThread() { return true; } static void SetTrace( bool b ) {} static uint32 GetOwnerId() { return 0; } static int GetDepth() { return 0; } }; //----------------------------------------------------------------------------- // // A mutex decorator class used to control the use of a mutex, to make it // less expensive when not multithreading // //----------------------------------------------------------------------------- template class CThreadConditionalMutex : public BaseClass { public: void Lock() { if ( *pCondition ) BaseClass::Lock(); } void Lock() const { if ( *pCondition ) BaseClass::Lock(); } void Unlock() { if ( *pCondition ) BaseClass::Unlock(); } void Unlock() const { if ( *pCondition ) BaseClass::Unlock(); } bool TryLock() { if ( *pCondition ) return BaseClass::TryLock(); else return true; } bool TryLock() const { if ( *pCondition ) return BaseClass::TryLock(); else return true; } bool AssertOwnedByCurrentThread() { if ( *pCondition ) return BaseClass::AssertOwnedByCurrentThread(); else return true; } void SetTrace( bool b ) { if ( *pCondition ) BaseClass::SetTrace( b ); } }; //----------------------------------------------------------------------------- // Mutex decorator that blows up if another thread enters //----------------------------------------------------------------------------- template class CThreadTerminalMutex : public BaseClass { public: bool TryLock() { if ( !BaseClass::TryLock() ) { DebuggerBreak(); return false; } return true; } bool TryLock() const { if ( !BaseClass::TryLock() ) { DebuggerBreak(); return false; } return true; } void Lock() { if ( !TryLock() ) BaseClass::Lock(); } void Lock() const { if ( !TryLock() ) BaseClass::Lock(); } }; //----------------------------------------------------------------------------- // // Class to Lock a critical section, and unlock it automatically // when the lock goes out of scope // //----------------------------------------------------------------------------- template class CAutoLockT { public: FORCEINLINE CAutoLockT( MUTEX_TYPE &lock, const char* pMutexName, const char* pFilename, int nLineNum, uint64 minReportDurationUs ) : m_lock( const_cast< typename V_remove_const< MUTEX_TYPE >::type & >( lock ) ) , m_pMutexName( pMutexName ) , m_pFilename( pFilename ) , m_nLineNum( nLineNum ) , m_bOwned( true ) { tmTryLockEx( TELEMETRY_LEVEL0, &m_uLockMatcher, minReportDurationUs, pFilename, nLineNum, &m_lock, pMutexName ); m_lock.Lock(); tmEndTryLockEx( TELEMETRY_LEVEL0, m_uLockMatcher, pFilename, nLineNum, &m_lock, TMLR_SUCCESS ); tmSetLockStateEx( TELEMETRY_LEVEL0, pFilename, nLineNum, &m_lock, TMLS_LOCKED, pMutexName ); } FORCEINLINE CAutoLockT( CAutoLockT && rhs ) : m_lock( const_cast< typename V_remove_const< MUTEX_TYPE >::type &>( rhs.m_lock ) ) { m_pMutexName = rhs.m_pMutexName; m_pFilename = rhs.m_pFilename; m_nLineNum = rhs.m_nLineNum; #ifdef RAD_TELEMETRY_ENABLED m_uLockMatcher = rhs.m_uLockMatcher; #endif m_bOwned = true; rhs.m_bOwned = false; } FORCEINLINE ~CAutoLockT() { if ( m_bOwned ) { m_lock.Unlock(); tmSetLockStateEx( TELEMETRY_LEVEL0, m_pFilename, m_nLineNum, &m_lock, TMLS_RELEASED, m_pMutexName ); } } private: typename V_remove_const< MUTEX_TYPE >::type &m_lock; const char* m_pMutexName; const char* m_pFilename; int m_nLineNum; bool m_bOwned; // Did owenership of the lock pass to another instance? #ifdef RAD_TELEMETRY_ENABLED TmU64 m_uLockMatcher; #endif // Disallow copying CAutoLockT( const CAutoLockT & ); CAutoLockT &operator=( const CAutoLockT & ); // No move assignment because no default construction. CAutoLockT &operator=( CAutoLockT && ); }; typedef CAutoLockT CAutoLock; template < typename MUTEX_TYPE > inline CAutoLockT make_auto_lock( MUTEX_TYPE& lock, const char* pMutexname, const char* pFilename, int nLineNum, int nMinReportDurationUs = 1 ) { return CAutoLockT( lock, pMutexname, pFilename, nLineNum, nMinReportDurationUs ); } //--------------------------------------------------------- #define AUTO_LOCK( mutex ) \ auto UNIQUE_ID = make_auto_lock( mutex, #mutex, __FILE__, __LINE__ ); #define AUTO_LOCK_D( mutex, minDurationUs ) \ auto UNIQUE_ID = make_auto_lock( mutex, #mutex, __FILE__, __LINE__, minDurationUs ); #define LOCAL_THREAD_LOCK_( tag ) \ ; \ static CThreadFastMutex autoMutex_##tag; \ AUTO_LOCK( autoMutex_##tag ) #define LOCAL_THREAD_LOCK() \ LOCAL_THREAD_LOCK_(_) //----------------------------------------------------------------------------- // // Base class for event, semaphore and mutex objects. // //----------------------------------------------------------------------------- class PLATFORM_CLASS CThreadSyncObject { public: ~CThreadSyncObject(); //----------------------------------------------------- // Query if object is useful //----------------------------------------------------- bool operator!() const; //----------------------------------------------------- // Access handle //----------------------------------------------------- #ifdef _WIN32 operator HANDLE() { return GetHandle(); } const HANDLE GetHandle() const { return m_hSyncObject; } #endif //----------------------------------------------------- // Wait for a signal from the object //----------------------------------------------------- bool Wait( uint32 dwTimeout = TT_INFINITE ); protected: CThreadSyncObject(); void AssertUseable(); #ifdef _WIN32 HANDLE m_hSyncObject; bool m_bCreatedHandle; #elif defined(POSIX) pthread_mutex_t m_Mutex; pthread_cond_t m_Condition; bool m_bInitalized; int m_cSet; bool m_bManualReset; bool m_bWakeForEvent; #else #error "Implement me" #endif private: CThreadSyncObject( const CThreadSyncObject & ); CThreadSyncObject &operator=( const CThreadSyncObject & ); }; //----------------------------------------------------------------------------- // // Wrapper for unnamed event objects // //----------------------------------------------------------------------------- #if defined( _WIN32 ) //----------------------------------------------------------------------------- // // CThreadSemaphore // //----------------------------------------------------------------------------- class PLATFORM_CLASS CThreadSemaphore : public CThreadSyncObject { public: CThreadSemaphore(long initialValue, long maxValue); //----------------------------------------------------- // Increases the count of the semaphore object by a specified // amount. Wait() decreases the count by one on return. //----------------------------------------------------- bool Release(long releaseCount = 1, long * pPreviousCount = NULL ); private: CThreadSemaphore(const CThreadSemaphore &); CThreadSemaphore &operator=(const CThreadSemaphore &); }; //----------------------------------------------------------------------------- // // A mutex suitable for out-of-process, multi-processor usage // //----------------------------------------------------------------------------- class PLATFORM_CLASS CThreadFullMutex : public CThreadSyncObject { public: CThreadFullMutex( bool bEstablishInitialOwnership = false, const char * pszName = NULL ); //----------------------------------------------------- // Release ownership of the mutex //----------------------------------------------------- bool Release(); // To match regular CThreadMutex: void Lock() { Wait(); } void Lock( unsigned timeout ) { Wait( timeout ); } void Unlock() { Release(); } bool AssertOwnedByCurrentThread() { return true; } void SetTrace( bool ) {} private: CThreadFullMutex( const CThreadFullMutex & ); CThreadFullMutex &operator=( const CThreadFullMutex & ); }; #endif class PLATFORM_CLASS CThreadEvent : public CThreadSyncObject { public: CThreadEvent( bool fManualReset = false ); #ifdef WIN32 CThreadEvent( HANDLE hHandle ); #endif //----------------------------------------------------- // Set the state to signaled //----------------------------------------------------- bool Set(); //----------------------------------------------------- // Set the state to nonsignaled //----------------------------------------------------- bool Reset(); //----------------------------------------------------- // Check if the event is signaled //----------------------------------------------------- bool Check(); bool Wait( uint32 dwTimeout = TT_INFINITE ); private: CThreadEvent( const CThreadEvent & ); CThreadEvent &operator=( const CThreadEvent & ); }; // Hard-wired manual event for use in array declarations class CThreadManualEvent : public CThreadEvent { public: CThreadManualEvent() : CThreadEvent( true ) { } }; inline int ThreadWaitForEvents( int nEvents, CThreadEvent * const *pEvents, bool bWaitAll = true, unsigned timeout = TT_INFINITE ) { #ifdef POSIX Assert( nEvents == 1); if ( pEvents[0]->Wait( timeout ) ) return WAIT_OBJECT_0; else return WAIT_TIMEOUT; #else HANDLE handles[64]; for ( int i = 0; i < min( nEvents, (int)ARRAYSIZE(handles) ); i++ ) handles[i] = pEvents[i]->GetHandle(); return ThreadWaitForObjects( nEvents, handles, bWaitAll, timeout ); #endif } //----------------------------------------------------------------------------- // // CThreadRWLock // //----------------------------------------------------------------------------- class PLATFORM_CLASS CThreadRWLock { public: CThreadRWLock(); void LockForRead(); void UnlockRead(); void LockForWrite(); void UnlockWrite(); void LockForRead() const { const_cast(this)->LockForRead(); } void UnlockRead() const { const_cast(this)->UnlockRead(); } void LockForWrite() const { const_cast(this)->LockForWrite(); } void UnlockWrite() const { const_cast(this)->UnlockWrite(); } private: void WaitForRead(); #ifdef WIN32 CThreadFastMutex m_mutex; #else CThreadMutex m_mutex; #endif CThreadEvent m_CanWrite; CThreadEvent m_CanRead; int m_nWriters; int m_nActiveReaders; int m_nPendingReaders; }; //----------------------------------------------------------------------------- // // CThreadSpinRWLock // //----------------------------------------------------------------------------- class ALIGN8 PLATFORM_CLASS CThreadSpinRWLock { public: CThreadSpinRWLock() { COMPILE_TIME_ASSERT( sizeof( LockInfo_t ) == sizeof( int64 ) ); Assert( (intp)this % 8 == 0 ); memset( this, 0, sizeof( *this ) ); } bool TryLockForWrite(); bool TryLockForRead(); void LockForRead(); void UnlockRead(); void LockForWrite(); void UnlockWrite(); bool TryLockForWrite() const { return const_cast(this)->TryLockForWrite(); } bool TryLockForRead() const { return const_cast(this)->TryLockForRead(); } void LockForRead() const { const_cast(this)->LockForRead(); } void UnlockRead() const { const_cast(this)->UnlockRead(); } void LockForWrite() const { const_cast(this)->LockForWrite(); } void UnlockWrite() const { const_cast(this)->UnlockWrite(); } private: struct LockInfo_t { uint32 m_writerId; int m_nReaders; }; bool AssignIf( const LockInfo_t &newValue, const LockInfo_t &comperand ); bool TryLockForWrite( const uint32 threadId ); void SpinLockForWrite( const uint32 threadId ); volatile LockInfo_t m_lockInfo; CInterlockedInt m_nWriters; } ALIGN8_POST; //----------------------------------------------------------------------------- // // A thread wrapper similar to a Java thread. // //----------------------------------------------------------------------------- class PLATFORM_CLASS CThread { public: CThread(); virtual ~CThread(); //----------------------------------------------------- const char *GetName(); void SetName( const char * ); size_t CalcStackDepth( void *pStackVariable ) { return ((byte *)m_pStackBase - (byte *)pStackVariable); } //----------------------------------------------------- // Functions for the other threads //----------------------------------------------------- // Start thread running - error if already running virtual bool Start( unsigned nBytesStack = 0 ); // Returns true if thread has been created and hasn't yet exited bool IsAlive(); // This method causes the current thread to wait until this thread // is no longer alive. bool Join( unsigned timeout = TT_INFINITE ); #ifdef _WIN32 // Access the thread handle directly HANDLE GetThreadHandle(); uint GetThreadId(); #elif defined( LINUX ) uint GetThreadId(); #endif //----------------------------------------------------- int GetResult(); //----------------------------------------------------- // Functions for both this, and maybe, and other threads //----------------------------------------------------- // Forcibly, abnormally, but relatively cleanly stop the thread void Stop( int exitCode = 0 ); // Get the priority int GetPriority() const; // Set the priority bool SetPriority( int ); // Request a thread to suspend, this must ONLY be called from the thread itself, not the main thread // This suspend variant causes the thread in question to suspend at a known point in its execution // which means you don't risk the global deadlocks/hangs potentially caused by the raw Suspend() call void SuspendCooperative(); // Resume a previously suspended thread from the Cooperative call void ResumeCooperative(); // wait for a thread to execute its SuspendCooperative call void BWaitForThreadSuspendCooperative(); #ifndef LINUX // forcefully Suspend a thread unsigned int Suspend(); // forcefully Resume a previously suspended thread unsigned int Resume(); #endif // Force hard-termination of thread. Used for critical failures. bool Terminate( int exitCode = 0 ); //----------------------------------------------------- // Global methods //----------------------------------------------------- // Get the Thread object that represents the current thread, if any. // Can return NULL if the current thread was not created using // CThread static CThread *GetCurrentCThread(); // Offer a context switch. Under Win32, equivalent to Sleep(0) #ifdef Yield #undef Yield #endif static void Yield(); // This method causes the current thread to yield and not to be // scheduled for further execution until a certain amount of real // time has elapsed, more or less. static void Sleep( unsigned duration ); protected: // Optional pre-run call, with ability to fail-create. Note Init() // is forced synchronous with Start() virtual bool Init(); // Thread will run this function on startup, must be supplied by // derived class, performs the intended action of the thread. virtual int Run() = 0; // Called when the thread is about to exit, by the about-to-exit thread. virtual void OnExit(); // Called after OnExit when a thread finishes or is killed. Not virtual because no inherited classes // override it and we don't want to change the vtable from the published SDK version. void Cleanup(); bool WaitForCreateComplete( CThreadEvent *pEvent ); // "Virtual static" facility typedef unsigned (__stdcall *ThreadProc_t)( void * ); virtual ThreadProc_t GetThreadProc(); virtual bool IsThreadRunning(); CThreadMutex m_Lock; #ifdef WIN32 ThreadHandle_t GetThreadID() const { return (ThreadHandle_t)m_hThread; } #else ThreadId_t GetThreadID() const { return (ThreadId_t)m_threadId; } #endif private: enum Flags { SUPPORT_STOP_PROTOCOL = 1 << 0 }; // Thread initially runs this. param is actually 'this'. function // just gets this and calls ThreadProc struct ThreadInit_t { CThread * pThread; CThreadEvent *pInitCompleteEvent; bool * pfInitSuccess; }; static unsigned __stdcall ThreadProc( void * pv ); // make copy constructor and assignment operator inaccessible CThread( const CThread & ); CThread &operator=( const CThread & ); #ifdef _WIN32 HANDLE m_hThread; ThreadId_t m_threadId; #elif defined(POSIX) pthread_t m_threadId; #endif CInterlockedInt m_nSuspendCount; CThreadEvent m_SuspendEvent; CThreadEvent m_SuspendEventSignal; int m_result; char m_szName[32]; void * m_pStackBase; unsigned m_flags; }; //----------------------------------------------------------------------------- // // A helper class to let you sleep a thread for memory validation, you need to handle // m_bSleepForValidate in your ::Run() call and set m_bSleepingForValidate when sleeping // //----------------------------------------------------------------------------- class PLATFORM_CLASS CValidatableThread : public CThread { public: CValidatableThread() { m_bSleepForValidate = false; m_bSleepingForValidate = false; } #ifdef DBGFLAG_VALIDATE virtual void SleepForValidate() { m_bSleepForValidate = true; } bool BSleepingForValidate() { return m_bSleepingForValidate; } virtual void WakeFromValidate() { m_bSleepForValidate = false; } #endif protected: bool m_bSleepForValidate; bool m_bSleepingForValidate; }; //----------------------------------------------------------------------------- // Simple thread class encompasses the notion of a worker thread, handing // synchronized communication. //----------------------------------------------------------------------------- // These are internal reserved error results from a call attempt enum WTCallResult_t { WTCR_FAIL = -1, WTCR_TIMEOUT = -2, WTCR_THREAD_GONE = -3, }; class CFunctor; class PLATFORM_CLASS CWorkerThread : public CThread { public: CWorkerThread(); //----------------------------------------------------- // // Inter-thread communication // // Calls in either direction take place on the same "channel." // Seperate functions are specified to make identities obvious // //----------------------------------------------------- // Master: Signal the thread, and block for a response int CallWorker( unsigned, unsigned timeout = TT_INFINITE, bool fBoostWorkerPriorityToMaster = true, CFunctor *pParamFunctor = NULL ); // Worker: Signal the thread, and block for a response int CallMaster( unsigned, unsigned timeout = TT_INFINITE ); // Wait for the next request bool WaitForCall( unsigned dwTimeout, unsigned *pResult = NULL ); bool WaitForCall( unsigned *pResult = NULL ); // Is there a request? bool PeekCall( unsigned *pParam = NULL, CFunctor **ppParamFunctor = NULL ); // Reply to the request void Reply( unsigned ); // Wait for a reply in the case when CallWorker() with timeout != TT_INFINITE int WaitForReply( unsigned timeout = TT_INFINITE ); // If you want to do WaitForMultipleObjects you'll need to include // this handle in your wait list or you won't be responsive CThreadEvent &GetCallHandle(); // Find out what the request was unsigned GetCallParam( CFunctor **ppParamFunctor = NULL ) const; // Boost the worker thread to the master thread, if worker thread is lesser, return old priority int BoostPriority(); protected: #ifndef _WIN32 #define __stdcall #endif typedef uint32 (__stdcall *WaitFunc_t)( int nEvents, CThreadEvent * const *pEvents, int bWaitAll, uint32 timeout ); int Call( unsigned, unsigned timeout, bool fBoost, WaitFunc_t = NULL, CFunctor *pParamFunctor = NULL ); int WaitForReply( unsigned timeout, WaitFunc_t ); private: CWorkerThread( const CWorkerThread & ); CWorkerThread &operator=( const CWorkerThread & ); CThreadEvent m_EventSend; CThreadEvent m_EventComplete; unsigned m_Param; CFunctor *m_pParamFunctor; int m_ReturnVal; }; // a unidirectional message queue. A queue of type T. Not especially high speed since each message // is malloced/freed. Note that if your message class has destructors/constructors, they MUST be // thread safe! template class CMessageQueue { CThreadEvent SignalEvent; // signals presence of data CThreadMutex QueueAccessMutex; // the parts protected by the mutex struct MsgNode { MsgNode *Next; T Data; }; MsgNode *Head; MsgNode *Tail; public: CMessageQueue( void ) { Head = Tail = NULL; } // check for a message. not 100% reliable - someone could grab the message first bool MessageWaiting( void ) { return ( Head != NULL ); } void WaitMessage( T *pMsg ) { for(;;) { while( ! MessageWaiting() ) SignalEvent.Wait(); QueueAccessMutex.Lock(); if (! Head ) { // multiple readers could make this null QueueAccessMutex.Unlock(); continue; } *( pMsg ) = Head->Data; MsgNode *remove_this = Head; Head = Head->Next; if (! Head) // if empty, fix tail ptr Tail = NULL; QueueAccessMutex.Unlock(); delete remove_this; break; } } void QueueMessage( T const &Msg) { MsgNode *new1=new MsgNode; new1->Data=Msg; new1->Next=NULL; QueueAccessMutex.Lock(); if ( Tail ) { Tail->Next=new1; Tail = new1; } else { Head = new1; Tail = new1; } SignalEvent.Set(); QueueAccessMutex.Unlock(); } }; //----------------------------------------------------------------------------- // // CThreadMutex. Inlining to reduce overhead and to allow client code // to decide debug status (tracing) // //----------------------------------------------------------------------------- #ifdef _WIN32 typedef struct _RTL_CRITICAL_SECTION RTL_CRITICAL_SECTION; typedef RTL_CRITICAL_SECTION CRITICAL_SECTION; #ifndef _X360 extern "C" { void __declspec(dllimport) __stdcall InitializeCriticalSection(CRITICAL_SECTION *); void __declspec(dllimport) __stdcall EnterCriticalSection(CRITICAL_SECTION *); void __declspec(dllimport) __stdcall LeaveCriticalSection(CRITICAL_SECTION *); void __declspec(dllimport) __stdcall DeleteCriticalSection(CRITICAL_SECTION *); }; #endif //--------------------------------------------------------- inline void CThreadMutex::Lock() { #ifdef THREAD_MUTEX_TRACING_ENABLED uint thisThreadID = ThreadGetCurrentId(); if ( m_bTrace && m_currentOwnerID && ( m_currentOwnerID != thisThreadID ) ) Msg( "Thread %u about to wait for lock %p owned by %u\n", ThreadGetCurrentId(), (CRITICAL_SECTION *)&m_CriticalSection, m_currentOwnerID ); #endif VCRHook_EnterCriticalSection((CRITICAL_SECTION *)&m_CriticalSection); #ifdef THREAD_MUTEX_TRACING_ENABLED if (m_lockCount == 0) { // we now own it for the first time. Set owner information m_currentOwnerID = thisThreadID; if ( m_bTrace ) Msg( "Thread %u now owns lock %p\n", m_currentOwnerID, (CRITICAL_SECTION *)&m_CriticalSection ); } m_lockCount++; #endif } //--------------------------------------------------------- inline void CThreadMutex::Unlock() { #ifdef THREAD_MUTEX_TRACING_ENABLED AssertMsg( m_lockCount >= 1, "Invalid unlock of thread lock" ); m_lockCount--; if (m_lockCount == 0) { if ( m_bTrace ) Msg( "Thread %u releasing lock %p\n", m_currentOwnerID, (CRITICAL_SECTION *)&m_CriticalSection ); m_currentOwnerID = 0; } #endif LeaveCriticalSection((CRITICAL_SECTION *)&m_CriticalSection); } //--------------------------------------------------------- inline bool CThreadMutex::AssertOwnedByCurrentThread() { #ifdef THREAD_MUTEX_TRACING_ENABLED if (ThreadGetCurrentId() == m_currentOwnerID) return true; AssertMsg3( 0, "Expected thread %u as owner of lock %p, but %u owns", ThreadGetCurrentId(), (CRITICAL_SECTION *)&m_CriticalSection, m_currentOwnerID ); return false; #else return true; #endif } //--------------------------------------------------------- inline void CThreadMutex::SetTrace( bool bTrace ) { #ifdef THREAD_MUTEX_TRACING_ENABLED m_bTrace = bTrace; #endif } //--------------------------------------------------------- #elif defined(POSIX) inline CThreadMutex::CThreadMutex() { // enable recursive locks as we need them pthread_mutexattr_init( &m_Attr ); pthread_mutexattr_settype( &m_Attr, PTHREAD_MUTEX_RECURSIVE ); pthread_mutex_init( &m_Mutex, &m_Attr ); } //--------------------------------------------------------- inline CThreadMutex::~CThreadMutex() { pthread_mutex_destroy( &m_Mutex ); } //--------------------------------------------------------- inline void CThreadMutex::Lock() { pthread_mutex_lock( &m_Mutex ); } //--------------------------------------------------------- inline void CThreadMutex::Unlock() { pthread_mutex_unlock( &m_Mutex ); } //--------------------------------------------------------- inline bool CThreadMutex::AssertOwnedByCurrentThread() { return true; } //--------------------------------------------------------- inline void CThreadMutex::SetTrace(bool fTrace) { } #endif // POSIX //----------------------------------------------------------------------------- // // CThreadRWLock inline functions // //----------------------------------------------------------------------------- inline CThreadRWLock::CThreadRWLock() : m_CanRead( true ), m_nWriters( 0 ), m_nActiveReaders( 0 ), m_nPendingReaders( 0 ) { } inline void CThreadRWLock::LockForRead() { m_mutex.Lock(); if ( m_nWriters) { WaitForRead(); } m_nActiveReaders++; m_mutex.Unlock(); } inline void CThreadRWLock::UnlockRead() { m_mutex.Lock(); m_nActiveReaders--; if ( m_nActiveReaders == 0 && m_nWriters != 0 ) { m_CanWrite.Set(); } m_mutex.Unlock(); } //----------------------------------------------------------------------------- // // CThreadSpinRWLock inline functions // //----------------------------------------------------------------------------- inline bool CThreadSpinRWLock::AssignIf( const LockInfo_t &newValue, const LockInfo_t &comperand ) { return ThreadInterlockedAssignIf64( (int64 *)&m_lockInfo, *((int64 *)&newValue), *((int64 *)&comperand) ); } inline bool CThreadSpinRWLock::TryLockForWrite( const uint32 threadId ) { // In order to grab a write lock, there can be no readers and no owners of the write lock if ( m_lockInfo.m_nReaders > 0 || ( m_lockInfo.m_writerId && m_lockInfo.m_writerId != threadId ) ) { return false; } static const LockInfo_t oldValue = { 0, 0 }; LockInfo_t newValue = { threadId, 0 }; const bool bSuccess = AssignIf( newValue, oldValue ); #if defined(_X360) if ( bSuccess ) { // X360TBD: Serious perf implications. Not Yet. __sync(); } #endif return bSuccess; } inline bool CThreadSpinRWLock::TryLockForWrite() { m_nWriters++; if ( !TryLockForWrite( ThreadGetCurrentId() ) ) { m_nWriters--; return false; } return true; } inline bool CThreadSpinRWLock::TryLockForRead() { if ( m_nWriters != 0 ) { return false; } // In order to grab a write lock, the number of readers must not change and no thread can own the write LockInfo_t oldValue; LockInfo_t newValue; oldValue.m_nReaders = m_lockInfo.m_nReaders; oldValue.m_writerId = 0; newValue.m_nReaders = oldValue.m_nReaders + 1; newValue.m_writerId = 0; const bool bSuccess = AssignIf( newValue, oldValue ); #if defined(_X360) if ( bSuccess ) { // X360TBD: Serious perf implications. Not Yet. __sync(); } #endif return bSuccess; } inline void CThreadSpinRWLock::LockForWrite() { const uint32 threadId = ThreadGetCurrentId(); m_nWriters++; if ( !TryLockForWrite( threadId ) ) { ThreadPause(); SpinLockForWrite( threadId ); } } // read data from a memory address template FORCEINLINE T ReadVolatileMemory( T const *pPtr ) { volatile const T * pVolatilePtr = ( volatile const T * ) pPtr; return *pVolatilePtr; } //----------------------------------------------------------------------------- #if defined( _WIN32 ) #pragma warning(pop) #endif #endif // THREADTOOLS_H