//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // //=============================================================================// #ifdef IS_WINDOWS_PC #include #endif #include "bitmap/imageformat.h" #include "basetypes.h" #include "tier0/dbg.h" #include #include #include "mathlib/mathlib.h" #include "mathlib/vector.h" #include "tier1/utlmemory.h" #include "tier1/strtools.h" #include "mathlib/compressed_vector.h" #include "nvtc.h" #ifdef POSIX typedef int32 *DWORD_PTR; #endif #include "ATI_Compress.h" #include "bitmap/float_bm.h" #define STB_DXT_IMPLEMENTATION #include "stb_dxt.h" // Should be last include #include "tier0/memdbgon.h" //----------------------------------------------------------------------------- // Various important function types for each color format //----------------------------------------------------------------------------- typedef void (*UserFormatToRGBA8888Func_t )( const uint8 *src, uint8 *dst, int numPixels ); typedef void (*RGBA8888ToUserFormatFunc_t )( const uint8 *src, uint8 *dst, int numPixels ); namespace ImageLoader { // Color Conversion functions static void RGBA8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToABGR8888( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToRGB888( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToBGR888( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToRGB565( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToI8( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToIA88( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToP8( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToA8( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToRGB888_BLUESCREEN( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToBGR888_BLUESCREEN( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToARGB8888( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToBGRA8888( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToBGRX8888( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToBGR565( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToBGRX5551( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToBGRA5551( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToBGRA4444( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToUV88( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToUVWQ8888( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA8888ToUVLX8888( const uint8 *src, uint8 *dst, int numPixels ); //static void RGBA8888ToRGBA16161616F( const uint8 *src, uint8 *dst, int numPixels ); static void ABGR8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void RGB888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void BGR888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void RGB565ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void I8ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void IA88ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void P8ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void A8ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void RGB888_BLUESCREENToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void BGR888_BLUESCREENToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void ARGB8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void BGRA8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void BGRX8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void BGR565ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void BGRX5551ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void BGRA5551ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void BGRA4444ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void UV88ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void UVWQ8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void UVLX8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static void RGBA16161616ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); //static void RGBA16161616FToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ); static UserFormatToRGBA8888Func_t GetUserFormatToRGBA8888Func_t( ImageFormat srcImageFormat ) { switch( srcImageFormat ) { case IMAGE_FORMAT_RGBA8888: return RGBA8888ToRGBA8888; case IMAGE_FORMAT_ABGR8888: return ABGR8888ToRGBA8888; case IMAGE_FORMAT_RGB888: return RGB888ToRGBA8888; case IMAGE_FORMAT_BGR888: return BGR888ToRGBA8888; case IMAGE_FORMAT_RGB565: return NULL; case IMAGE_FORMAT_I8: return I8ToRGBA8888; case IMAGE_FORMAT_IA88: return IA88ToRGBA8888; case IMAGE_FORMAT_A8: return A8ToRGBA8888; case IMAGE_FORMAT_RGB888_BLUESCREEN: return RGB888_BLUESCREENToRGBA8888; case IMAGE_FORMAT_BGR888_BLUESCREEN: return BGR888_BLUESCREENToRGBA8888; case IMAGE_FORMAT_ARGB8888: return ARGB8888ToRGBA8888; case IMAGE_FORMAT_BGRA8888: return BGRA8888ToRGBA8888; case IMAGE_FORMAT_BGRX8888: return BGRX8888ToRGBA8888; case IMAGE_FORMAT_BGR565: return BGR565ToRGBA8888; case IMAGE_FORMAT_BGRX5551: return BGRX5551ToRGBA8888; case IMAGE_FORMAT_BGRA5551: return BGRA5551ToRGBA8888; case IMAGE_FORMAT_BGRA4444: return BGRA4444ToRGBA8888; case IMAGE_FORMAT_UV88: return UV88ToRGBA8888; case IMAGE_FORMAT_UVWQ8888: return UVWQ8888ToRGBA8888; case IMAGE_FORMAT_UVLX8888: return UVLX8888ToRGBA8888; case IMAGE_FORMAT_RGBA16161616: return RGBA16161616ToRGBA8888; case IMAGE_FORMAT_RGBA16161616F: return NULL; #if defined( _X360 ) case IMAGE_FORMAT_LINEAR_RGBA8888: return RGBA8888ToRGBA8888; case IMAGE_FORMAT_LINEAR_ABGR8888: return ABGR8888ToRGBA8888; case IMAGE_FORMAT_LINEAR_RGB888: return RGB888ToRGBA8888; case IMAGE_FORMAT_LINEAR_BGR888: return BGR888ToRGBA8888; case IMAGE_FORMAT_LINEAR_I8: return I8ToRGBA8888; case IMAGE_FORMAT_LINEAR_ARGB8888: return ARGB8888ToRGBA8888; case IMAGE_FORMAT_LINEAR_BGRA8888: return BGRA8888ToRGBA8888; case IMAGE_FORMAT_LINEAR_BGRX8888: return BGRX8888ToRGBA8888; case IMAGE_FORMAT_LINEAR_BGRX5551: return BGRX5551ToRGBA8888; case IMAGE_FORMAT_LINEAR_RGBA16161616: return RGBA16161616ToRGBA8888; #endif default: return NULL; } } static RGBA8888ToUserFormatFunc_t GetRGBA8888ToUserFormatFunc_t( ImageFormat dstImageFormat ) { switch( dstImageFormat ) { case IMAGE_FORMAT_RGBA8888: return RGBA8888ToRGBA8888; case IMAGE_FORMAT_ABGR8888: return RGBA8888ToABGR8888; case IMAGE_FORMAT_RGB888: return RGBA8888ToRGB888; case IMAGE_FORMAT_BGR888: return RGBA8888ToBGR888; case IMAGE_FORMAT_RGB565: return NULL; case IMAGE_FORMAT_I8: return RGBA8888ToI8; case IMAGE_FORMAT_IA88: return RGBA8888ToIA88; case IMAGE_FORMAT_A8: return RGBA8888ToA8; case IMAGE_FORMAT_RGB888_BLUESCREEN: return RGBA8888ToRGB888_BLUESCREEN; case IMAGE_FORMAT_BGR888_BLUESCREEN: return RGBA8888ToBGR888_BLUESCREEN; case IMAGE_FORMAT_ARGB8888: return RGBA8888ToARGB8888; case IMAGE_FORMAT_BGRA8888: return RGBA8888ToBGRA8888; case IMAGE_FORMAT_BGRX8888: return RGBA8888ToBGRX8888; case IMAGE_FORMAT_BGR565: return RGBA8888ToBGR565; case IMAGE_FORMAT_BGRX5551: return RGBA8888ToBGRX5551; case IMAGE_FORMAT_BGRA5551: return RGBA8888ToBGRA5551; case IMAGE_FORMAT_BGRA4444: return RGBA8888ToBGRA4444; case IMAGE_FORMAT_UV88: return RGBA8888ToUV88; case IMAGE_FORMAT_UVWQ8888: return RGBA8888ToUVWQ8888; case IMAGE_FORMAT_UVLX8888: return RGBA8888ToUVLX8888; case IMAGE_FORMAT_RGBA16161616F: return NULL; #if defined( _X360 ) case IMAGE_FORMAT_LINEAR_RGBA8888: return RGBA8888ToRGBA8888; case IMAGE_FORMAT_LINEAR_ABGR8888: return RGBA8888ToABGR8888; case IMAGE_FORMAT_LINEAR_RGB888: return RGBA8888ToRGB888; case IMAGE_FORMAT_LINEAR_BGR888: return RGBA8888ToBGR888; case IMAGE_FORMAT_LINEAR_I8: return RGBA8888ToI8; case IMAGE_FORMAT_LINEAR_ARGB8888: return RGBA8888ToARGB8888; case IMAGE_FORMAT_LINEAR_BGRA8888: return RGBA8888ToBGRA8888; case IMAGE_FORMAT_LINEAR_BGRX8888: return RGBA8888ToBGRX8888; case IMAGE_FORMAT_LINEAR_BGRX5551: return RGBA8888ToBGRX5551; #endif default: return NULL; } } #pragma pack(1) struct DXTColBlock { WORD col0; WORD col1; // no bit fields - use bytes BYTE row[4]; }; struct DXTAlphaBlock3BitLinear { BYTE alpha0; BYTE alpha1; BYTE stuff[6]; }; #pragma pack() static inline void GetColorBlockColorsBGRA8888( DXTColBlock *pBlock, BGRA8888_t *col_0, BGRA8888_t *col_1, BGRA8888_t *col_2, BGRA8888_t *col_3, WORD & wrd ) { // input data is assumed to be x86 order // swap to target platform for proper dxt decoding WORD color0 = LittleShort( pBlock->col0 ); WORD color1 = LittleShort( pBlock->col1 ); // convert to full precision correctly. // If this was a perf problem, we could optimize it. But this isn't used in any hotpaths // (now) so let's just do the correct but slow fp math. col_0->a = 0xff; col_0->r = ( uint8 ) round( ( ( BGR565_t* ) &color0 )->r * 255.0f / 31.0f ); col_0->g = ( uint8 ) round( ( ( BGR565_t* ) &color0 )->g * 255.0f / 63.0f ); col_0->b = ( uint8 ) round( ( ( BGR565_t* ) &color0 )->b * 255.0f / 31.0f ); col_1->a = 0xff; col_1->r = ( uint8 ) round( ( ( BGR565_t* ) &color1 )->r * 255.0f / 31.0f ); col_1->g = ( uint8 ) round( ( ( BGR565_t* ) &color1 )->g * 255.0f / 63.0f ); col_1->b = ( uint8 ) round( ( ( BGR565_t* ) &color1 )->b * 255.0f / 31.0f ); if ( color0 > color1 ) { // Four-color block: derive the other two colors. // 00 = color_0, 01 = color_1, 10 = color_2, 11 = color_3 // These two bit codes correspond to the 2-bit fields // stored in the 64-bit block. wrd = ((WORD)col_0->r * 2 + (WORD)col_1->r )/3; // no +1 for rounding // as bits have been shifted to 888 col_2->r = (BYTE)wrd; wrd = ((WORD)col_0->g * 2 + (WORD)col_1->g )/3; col_2->g = (BYTE)wrd; wrd = ((WORD)col_0->b * 2 + (WORD)col_1->b )/3; col_2->b = (BYTE)wrd; col_2->a = 0xff; wrd = ((WORD)col_0->r + (WORD)col_1->r *2 )/3; col_3->r = (BYTE)wrd; wrd = ((WORD)col_0->g + (WORD)col_1->g *2 )/3; col_3->g = (BYTE)wrd; wrd = ((WORD)col_0->b + (WORD)col_1->b *2 )/3; col_3->b = (BYTE)wrd; col_3->a = 0xff; } else { // Three-color block: derive the other color. // 00 = color_0, 01 = color_1, 10 = color_2, // 11 = transparent. // These two bit codes correspond to the 2-bit fields // stored in the 64-bit block. // explicit for each component, unlike some refrasts...???? wrd = ((WORD)col_0->r + (WORD)col_1->r )/2; col_2->r = (BYTE)wrd; wrd = ((WORD)col_0->g + (WORD)col_1->g )/2; col_2->g = (BYTE)wrd; wrd = ((WORD)col_0->b + (WORD)col_1->b )/2; col_2->b = (BYTE)wrd; col_2->a = 0xff; col_3->r = 0x00; // random color to indicate alpha col_3->g = 0xff; col_3->b = 0xff; col_3->a = 0x00; } } template static inline void DecodeColorBlock( CDestPixel *pOutputImage, DXTColBlock *pColorBlock, int width, BGRA8888_t *col_0, BGRA8888_t *col_1, BGRA8888_t *col_2, BGRA8888_t *col_3 ) { // width is width of image in pixels DWORD bits; int r,n; // bit masks = 00000011, 00001100, 00110000, 11000000 const DWORD masks[] = { 3 << 0, 3 << 2, 3 << 4, 3 << 6 }; const int shift[] = { 0, 2, 4, 6 }; // r steps through lines in y for ( r=0; r < 4; r++, pOutputImage += width-4 ) // no width*4 as DWORD ptr inc will *4 { // width * 4 bytes per pixel per line // each j dxtc row is 4 lines of pixels // n steps through pixels for ( n=0; n < 4; n++ ) { bits = pColorBlock->row[r] & masks[n]; bits >>= shift[n]; switch( bits ) { case 0: *pOutputImage = *col_0; pOutputImage++; // increment to next output pixel break; case 1: *pOutputImage = *col_1; pOutputImage++; break; case 2: *pOutputImage = *col_2; pOutputImage++; break; case 3: *pOutputImage = *col_3; pOutputImage++; break; default: Assert( 0 ); pOutputImage++; break; } } } } template static inline void DecodeAlpha3BitLinear( CDestPixel *pImPos, DXTAlphaBlock3BitLinear *pAlphaBlock, int width, int nChannelSelect = 3 ) { static BYTE gBits[4][4]; static WORD gAlphas[8]; static BGRA8888_t gACol[4][4]; gAlphas[0] = pAlphaBlock->alpha0; gAlphas[1] = pAlphaBlock->alpha1; // 8-alpha or 6-alpha block? if( gAlphas[0] > gAlphas[1] ) { // 8-alpha block: derive the other 6 alphas. // 000 = alpha_0, 001 = alpha_1, others are interpolated gAlphas[2] = ( 6 * gAlphas[0] + gAlphas[1]) / 7; // bit code 010 gAlphas[3] = ( 5 * gAlphas[0] + 2 * gAlphas[1]) / 7; // Bit code 011 gAlphas[4] = ( 4 * gAlphas[0] + 3 * gAlphas[1]) / 7; // Bit code 100 gAlphas[5] = ( 3 * gAlphas[0] + 4 * gAlphas[1]) / 7; // Bit code 101 gAlphas[6] = ( 2 * gAlphas[0] + 5 * gAlphas[1]) / 7; // Bit code 110 gAlphas[7] = ( gAlphas[0] + 6 * gAlphas[1]) / 7; // Bit code 111 } else { // 6-alpha block: derive the other alphas. // 000 = alpha_0, 001 = alpha_1, others are interpolated gAlphas[2] = (4 * gAlphas[0] + gAlphas[1]) / 5; // Bit code 010 gAlphas[3] = (3 * gAlphas[0] + 2 * gAlphas[1]) / 5; // Bit code 011 gAlphas[4] = (2 * gAlphas[0] + 3 * gAlphas[1]) / 5; // Bit code 100 gAlphas[5] = ( gAlphas[0] + 4 * gAlphas[1]) / 5; // Bit code 101 gAlphas[6] = 0; // Bit code 110 gAlphas[7] = 255; // Bit code 111 } // Decode 3-bit fields into array of 16 BYTES with same value // first two rows of 4 pixels each: // pRows = (Alpha3BitRows*) & ( pAlphaBlock->stuff[0] ); const DWORD mask = 0x00000007; // bits = 00 00 01 11 DWORD bits; memcpy( &bits, &(pAlphaBlock->stuff[0]), sizeof(DWORD) ); gBits[0][0] = (BYTE)( bits & mask ); bits >>= 3; gBits[0][1] = (BYTE)( bits & mask ); bits >>= 3; gBits[0][2] = (BYTE)( bits & mask ); bits >>= 3; gBits[0][3] = (BYTE)( bits & mask ); bits >>= 3; gBits[1][0] = (BYTE)( bits & mask ); bits >>= 3; gBits[1][1] = (BYTE)( bits & mask ); bits >>= 3; gBits[1][2] = (BYTE)( bits & mask ); bits >>= 3; gBits[1][3] = (BYTE)( bits & mask ); // now for last two rows: memcpy( &bits, &(pAlphaBlock->stuff[3]), sizeof(DWORD) ); gBits[2][0] = (BYTE)( bits & mask ); bits >>= 3; gBits[2][1] = (BYTE)( bits & mask ); bits >>= 3; gBits[2][2] = (BYTE)( bits & mask ); bits >>= 3; gBits[2][3] = (BYTE)( bits & mask ); bits >>= 3; gBits[3][0] = (BYTE)( bits & mask ); bits >>= 3; gBits[3][1] = (BYTE)( bits & mask ); bits >>= 3; gBits[3][2] = (BYTE)( bits & mask ); bits >>= 3; gBits[3][3] = (BYTE)( bits & mask ); // decode the codes into alpha values int row, pix; for ( row = 0; row < 4; row++ ) { for ( pix=0; pix < 4; pix++ ) { gACol[row][pix].a = (BYTE) gAlphas[ gBits[row][pix] ]; Assert( gACol[row][pix].r == 0 ); Assert( gACol[row][pix].g == 0 ); Assert( gACol[row][pix].b == 0 ); } } // Write out alpha values to the image bits for ( row=0; row < 4; row++, pImPos += width-4 ) { for ( pix = 0; pix < 4; pix++ ) { // zero the alpha bits of image pixel switch ( nChannelSelect ) { case 0: pImPos->r = ( *(( BGRA8888_t *) &(gACol[row][pix])) ).a; pImPos->g = 0; // Danger...stepping on the other color channels pImPos->b = 0; pImPos->a = 0; break; case 1: pImPos->g = ( *(( BGRA8888_t *) &(gACol[row][pix])) ).a; break; case 2: pImPos->b = ( *(( BGRA8888_t *) &(gACol[row][pix])) ).a; break; default: case 3: pImPos->a = ( *(( BGRA8888_t *) &(gACol[row][pix])) ).a; break; } pImPos++; } } } template static void ConvertFromDXT1( const uint8 *src, CDestPixel *dst, int width, int height ) { Assert( sizeof( BGRA8888_t ) == 4 ); Assert( sizeof( RGBA8888_t ) == 4 ); Assert( sizeof( RGB888_t ) == 3 ); Assert( sizeof( BGR888_t ) == 3 ); Assert( sizeof( BGR565_t ) == 2 ); Assert( sizeof( BGRA5551_t ) == 2 ); Assert( sizeof( BGRA4444_t ) == 2 ); int realWidth = 0; int realHeight = 0; CDestPixel *realDst = NULL; // Deal with the case where we have a dimension smaller than 4. if ( width < 4 || height < 4 ) { realWidth = width; realHeight = height; // round up to the nearest four width = ( width + 3 ) & ~3; height = ( height + 3 ) & ~3; realDst = dst; dst = ( CDestPixel * )_alloca( width * height * sizeof( CDestPixel ) ); Assert( dst ); } Assert( !( width % 4 ) ); Assert( !( height % 4 ) ); int xblocks, yblocks; xblocks = width >> 2; yblocks = height >> 2; CDestPixel *pDstScan = dst; DWORD *pSrcScan = ( DWORD * )src; DXTColBlock *pBlock; BGRA8888_t col_0, col_1, col_2, col_3; WORD wrdDummy; int i, j; for ( j = 0; j < yblocks; j++ ) { // 8 bytes per block pBlock = ( DXTColBlock * )( ( uint8 * )pSrcScan + j * xblocks * 8 ); for ( i=0; i < xblocks; i++, pBlock++ ) { GetColorBlockColorsBGRA8888( pBlock, &col_0, &col_1, &col_2, &col_3, wrdDummy ); // now decode the color block into the bitmap bits // inline func: pDstScan = dst + i*4 + j*4*width; DecodeColorBlock( pDstScan, pBlock, width, &col_0, &col_1, &col_2, &col_3 ); } } // Deal with the case where we have a dimension smaller than 4. if ( realDst ) { int x, y; for ( y = 0; y < realHeight; y++ ) { for ( x = 0; x < realWidth; x++ ) { realDst[x+(y*realWidth)] = dst[x+(y*width)]; } } } } template static void ConvertFromDXT5( const uint8 *src, CDestPixel *dst, int width, int height ) { int realWidth = 0; int realHeight = 0; CDestPixel *realDst = NULL; // Deal with the case where we have a dimension smaller than 4. if ( width < 4 || height < 4 ) { realWidth = width; realHeight = height; // round up to the nearest four width = ( width + 3 ) & ~3; height = ( height + 3 ) & ~3; realDst = dst; dst = ( CDestPixel * )_alloca( width * height * sizeof( CDestPixel ) ); Assert( dst ); } Assert( !( width % 4 ) ); Assert( !( height % 4 ) ); int xblocks, yblocks; xblocks = width >> 2; yblocks = height >> 2; CDestPixel *pDstScan = dst; DWORD *pSrcScan = ( DWORD * )src; DXTColBlock *pBlock; DXTAlphaBlock3BitLinear *pAlphaBlock; BGRA8888_t col_0, col_1, col_2, col_3; WORD wrd; int i,j; for ( j=0; j < yblocks; j++ ) { // 8 bytes per block // 1 block for alpha, 1 block for color pBlock = (DXTColBlock*) ( (uint8 *)pSrcScan + j * xblocks * 16 ); for ( i=0; i < xblocks; i++, pBlock ++ ) { // inline // Get alpha block pAlphaBlock = (DXTAlphaBlock3BitLinear*) pBlock; // inline func: // Get color block & colors pBlock++; GetColorBlockColorsBGRA8888( pBlock, &col_0, &col_1, &col_2, &col_3, wrd ); pDstScan = dst + i*4 + j*4*width; // Decode the color block into the bitmap bits // inline func: DecodeColorBlock( pDstScan, pBlock, width, &col_0, &col_1, &col_2, &col_3 ); // Overwrite the previous alpha bits with the alpha block // info DecodeAlpha3BitLinear( pDstScan, pAlphaBlock, width ); } } // Deal with the case where we have a dimension smaller than 4. if ( realDst ) { int x, y; for( y = 0; y < realHeight; y++ ) { for( x = 0; x < realWidth; x++ ) { realDst[x+(y*realWidth)] = dst[x+(y*width)]; } } } } template static void ConvertFromDXT5IgnoreAlpha( const uint8 *src, CDestPixel *dst, int width, int height ) { int realWidth = 0; int realHeight = 0; CDestPixel *realDst = NULL; // Deal with the case where we have a dimension smaller than 4. if ( width < 4 || height < 4 ) { realWidth = width; realHeight = height; // round up to the nearest four width = ( width + 3 ) & ~3; height = ( height + 3 ) & ~3; realDst = dst; dst = ( CDestPixel * )_alloca( width * height * sizeof( CDestPixel ) ); Assert( dst ); } Assert( !( width % 4 ) ); Assert( !( height % 4 ) ); int xblocks, yblocks; xblocks = width >> 2; yblocks = height >> 2; CDestPixel *pDstScan = dst; DWORD *pSrcScan = ( DWORD * )src; DXTColBlock *pBlock; BGRA8888_t col_0, col_1, col_2, col_3; WORD wrd; int i,j; for ( j=0; j < yblocks; j++ ) { // 8 bytes per block // 1 block for alpha, 1 block for color pBlock = (DXTColBlock*) ( (uint8 *)pSrcScan + j * xblocks * 16 ); for( i=0; i < xblocks; i++, pBlock ++ ) { // inline func: // Get color block & colors pBlock++; GetColorBlockColorsBGRA8888( pBlock, &col_0, &col_1, &col_2, &col_3, wrd ); pDstScan = dst + i*4 + j*4*width; // Decode the color block into the bitmap bits // inline func: DecodeColorBlock( pDstScan, pBlock, width, &col_0, &col_1, &col_2, &col_3 ); } } // Deal with the case where we have a dimension smaller than 4. if( realDst ) { int x, y; for( y = 0; y < realHeight; y++ ) { for( x = 0; x < realWidth; x++ ) { realDst[x+(y*realWidth)] = dst[x+(y*width)]; } } } } template static void ConvertFromATIxN( const uint8 *src, CDestPixel *dst, int width, int height, bool bATI2N ) { int realWidth = 0; int realHeight = 0; CDestPixel *realDst = NULL; // Deal with the case where we have a dimension smaller than 4. if ( width < 4 || height < 4 ) { realWidth = width; realHeight = height; // round up to the nearest four width = ( width + 3 ) & ~3; height = ( height + 3 ) & ~3; realDst = dst; dst = ( CDestPixel * )_alloca( width * height * sizeof( CDestPixel ) ); Assert( dst ); } Assert( !( width % 4 ) ); Assert( !( height % 4 ) ); int xblocks, yblocks; xblocks = width >> 2; yblocks = height >> 2; CDestPixel *pDstScan = dst; DWORD *pSrcScan = ( DWORD * )src; DXTAlphaBlock3BitLinear *pBlock; int nBytesPerBlock = bATI2N ? 16 : 8; int i,j; for ( j=0; j < yblocks; j++ ) { // 8 bytes per block // 1 block for x, 1 block for y pBlock = (DXTAlphaBlock3BitLinear*) ( (uint8 *)pSrcScan + j * xblocks * nBytesPerBlock ); for ( i=0; i < xblocks; i++, pBlock++ ) { pDstScan = dst + i*4 + j*4*width; DecodeAlpha3BitLinear( pDstScan, pBlock, width, 0 ); if ( bATI2N ) { pBlock++; DecodeAlpha3BitLinear( pDstScan, pBlock, width, 1 ); } } } // Deal with the case where we have a dimension smaller than 4. if ( realDst ) { int x, y; for( y = 0; y < realHeight; y++ ) { for( x = 0; x < realWidth; x++ ) { realDst[x+(y*realWidth)] = dst[x+(y*width)]; } } } } static DWORD GetDXTCEncodeType( ImageFormat imageFormat ) { switch ( imageFormat ) { case IMAGE_FORMAT_DXT1: return S3TC_ENCODE_RGB_FULL; case IMAGE_FORMAT_DXT1_ONEBITALPHA: return S3TC_ENCODE_RGB_FULL | S3TC_ENCODE_RGB_ALPHA_COMPARE; case IMAGE_FORMAT_DXT3: return S3TC_ENCODE_RGB_FULL | S3TC_ENCODE_ALPHA_EXPLICIT; case IMAGE_FORMAT_DXT5: return S3TC_ENCODE_RGB_FULL | S3TC_ENCODE_ALPHA_INTERPOLATED; default: return 0; } } // Convert RGBA input to ATI1N or ATI2N format bool ConvertToATIxN( const uint8 *src, ImageFormat srcImageFormat, uint8 *dst, ImageFormat dstImageFormat, int width, int height, int srcStride, int dstStride ) { #if !defined( _X360 ) && !defined( POSIX ) // from rgb(a) to ATIxN if( srcStride != 0 || dstStride != 0 ) return false; // If we're not the right format for the ATI compressor, we bail if ( srcImageFormat != IMAGE_FORMAT_ARGB8888 ) return false; // Define source image parameters and copy the bits into buffer ATI_TC_Texture srcTexture; srcTexture.dwSize = sizeof( srcTexture ); srcTexture.dwWidth = width; srcTexture.dwHeight = height; srcTexture.dwPitch = srcStride; srcTexture.format = ATI_TC_FORMAT_ARGB_8888; srcTexture.dwDataSize = ATI_TC_CalculateBufferSize( &srcTexture ); srcTexture.pData = (ATI_TC_BYTE*) malloc( srcTexture.dwDataSize ); memcpy( srcTexture.pData, src, srcTexture.dwDataSize ); ATI_TC_Texture destTexture; destTexture.dwSize = sizeof( destTexture ); destTexture.dwWidth = width; destTexture.dwHeight = height; destTexture.dwPitch = 0; destTexture.format = dstImageFormat == IMAGE_FORMAT_ATI2N ? ATI_TC_FORMAT_ATI2N : ATI_TC_FORMAT_ATI1N; // Assume it can only be one of these two... destTexture.dwDataSize = ATI_TC_CalculateBufferSize( &destTexture ); destTexture.pData = (ATI_TC_BYTE*) dst; ATI_TC_ERROR errATI = ATI_TC_ConvertTexture( &srcTexture, &destTexture, NULL, NULL, NULL, NULL ); // Convert it! free( srcTexture.pData ); // Free temporary buffers if ( errATI != ATI_TC_OK ) return false; return true; #else Assert( 0 ); return false; #endif } bool ConvertToDXTLegacy( const uint8 *src, ImageFormat srcImageFormat, uint8 *dst, ImageFormat dstImageFormat, int width, int height, int srcStride, int dstStride ) { #if !defined( _X360 ) && !defined( POSIX ) // from rgb(a) to dxtN if( srcStride != 0 || dstStride != 0 ) return false; DDSURFACEDESC descIn; DDSURFACEDESC descOut; memset( &descIn, 0, sizeof(descIn) ); memset( &descOut, 0, sizeof(descOut) ); float weight[3] = {0.3086f, 0.6094f, 0.0820f}; DWORD dwEncodeType = GetDXTCEncodeType( dstImageFormat ); // Setup descIn descIn.dwSize = sizeof(descIn); descIn.dwFlags = DDSD_WIDTH | DDSD_HEIGHT | DDSD_LPSURFACE | /*DDSD_PITCH | */ DDSD_PIXELFORMAT; descIn.dwWidth = width; descIn.dwHeight = height; descIn.lPitch = width * ImageLoader::SizeInBytes( srcImageFormat ); descIn.lpSurface = ( LPVOID *) src; descIn.ddpfPixelFormat.dwSize = sizeof( DDPIXELFORMAT ); switch ( srcImageFormat ) { case IMAGE_FORMAT_RGBA8888: descIn.ddpfPixelFormat.dwFlags = DDPF_RGB | DDPF_ALPHAPIXELS; descIn.ddpfPixelFormat.dwRGBBitCount = 32; descIn.ddpfPixelFormat.dwRBitMask = 0x0000ff; descIn.ddpfPixelFormat.dwGBitMask = 0x00ff00; descIn.ddpfPixelFormat.dwBBitMask = 0xff0000; // must set this anyway or S3TC will lock up!!! descIn.ddpfPixelFormat.dwRGBAlphaBitMask = 0xff000000; break; case IMAGE_FORMAT_BGRA8888: descIn.ddpfPixelFormat.dwFlags = DDPF_RGB | DDPF_ALPHAPIXELS; descIn.ddpfPixelFormat.dwRGBBitCount = 32; descIn.ddpfPixelFormat.dwRBitMask = 0xFF0000; descIn.ddpfPixelFormat.dwGBitMask = 0x00ff00; descIn.ddpfPixelFormat.dwBBitMask = 0x0000FF; // must set this anyway or S3TC will lock up!!! descIn.ddpfPixelFormat.dwRGBAlphaBitMask = 0xff000000; break; case IMAGE_FORMAT_BGRX8888: descIn.ddpfPixelFormat.dwFlags = DDPF_RGB; descIn.ddpfPixelFormat.dwRGBBitCount = 32; descIn.ddpfPixelFormat.dwRBitMask = 0xFF0000; descIn.ddpfPixelFormat.dwGBitMask = 0x00ff00; descIn.ddpfPixelFormat.dwBBitMask = 0x0000FF; // must set this anyway or S3TC will lock up!!! descIn.ddpfPixelFormat.dwRGBAlphaBitMask = 0xff000000; break; case IMAGE_FORMAT_RGB888: descIn.ddpfPixelFormat.dwFlags = DDPF_RGB; descIn.ddpfPixelFormat.dwRGBBitCount = 24; descIn.ddpfPixelFormat.dwRBitMask = 0x0000ff; descIn.ddpfPixelFormat.dwGBitMask = 0x00ff00; descIn.ddpfPixelFormat.dwBBitMask = 0xff0000; descIn.ddpfPixelFormat.dwRGBAlphaBitMask = 0xff000000; break; default: return false; } // Setup descOut descOut.dwSize = sizeof( descOut ); // Encode the texture S3TCencode( &descIn, NULL, &descOut, dst, dwEncodeType, weight ); return true; #else Assert( 0 ); return false; #endif } template < typename SrcPixel_t > void CompressSTB( uint8 *pDstBytes, ImageFormat dstFmt, const uint8 *pSrcBytes, int nWidth, int nHeight ) { const bool cbWriteAlpha = ( dstFmt == IMAGE_FORMAT_DXT5 ); const uint32 cDstStride = ( dstFmt == IMAGE_FORMAT_DXT1 ) ? 8 : 16; const uint32 cPixX = (uint32) nWidth; const uint32 cPixY = (uint32) nHeight; const uint32 cSrcPitch = cPixX * sizeof( SrcPixel_t ); const uint32 cLastX = cPixX - 1; const uint32 cLastY = cPixY - 1; // STB always takes blocks as 4x4 of RGBA8888_t RGBA8888_t srcBlock[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; SrcPixel_t* pSrcs[4] = { 0, 0, 0, 0 }; for ( uint32 y = 0; y < cPixY; y += 4 ) { // This handles clamping for cPixY % 4 != 0 pSrcs[ 0 ] = ( SrcPixel_t* ) ( pSrcBytes + cSrcPitch * Min( y + 0, cLastY ) ); pSrcs[ 1 ] = ( SrcPixel_t* ) ( pSrcBytes + cSrcPitch * Min( y + 1, cLastY ) ); pSrcs[ 2 ] = ( SrcPixel_t* ) ( pSrcBytes + cSrcPitch * Min( y + 2, cLastY ) ); pSrcs[ 3 ] = ( SrcPixel_t* ) ( pSrcBytes + cSrcPitch * Min( y + 3, cLastY ) ); for ( uint x = 0; x < cPixX; x += 4 ) { for ( uint i = 0; i < 4; ++i ) { uint32 offsetX = Min( x + i, cLastX ); srcBlock[ 0 + i ] = pSrcs[ 0 ][ offsetX ]; srcBlock[ 4 + i ] = pSrcs[ 1 ][ offsetX ]; srcBlock[ 8 + i ] = pSrcs[ 2 ][ offsetX ]; srcBlock[ 12 + i ] = pSrcs[ 3 ][ offsetX ]; } stb_compress_dxt_block( pDstBytes, ( const uint8* ) srcBlock, cbWriteAlpha, STB_DXT_NORMAL ); pDstBytes += cDstStride; } } } inline ImageFormat GetTrueImageFormat( ImageFormat fmt ) { switch ( fmt ) { case IMAGE_FORMAT_DXT1_RUNTIME: return IMAGE_FORMAT_DXT1; case IMAGE_FORMAT_DXT5_RUNTIME: return IMAGE_FORMAT_DXT5; default: /* expected */ break; } return fmt; } bool ConvertToDXTRuntime( const uint8 *src, ImageFormat srcImageFormat, uint8 *dst, ImageFormat dstImageFormat, int width, int height, int srcStride, int dstStride ) { if ( srcStride != 0 || dstStride != 0 ) return false; dstImageFormat = GetTrueImageFormat( dstImageFormat ); switch ( srcImageFormat ) { case IMAGE_FORMAT_RGBA8888: CompressSTB( dst, dstImageFormat, src, width, height ); return true; case IMAGE_FORMAT_RGB888: CompressSTB ( dst, dstImageFormat, src, width, height ); return true; case IMAGE_FORMAT_BGRA8888: CompressSTB( dst, dstImageFormat, src, width, height ); return true; case IMAGE_FORMAT_BGRX8888: CompressSTB( dst, dstImageFormat, src, width, height ); return true; default: Assert( !"Unexpected format here, wtf." ); break; }; return false; } bool ConvertToDXT( const uint8 *src, ImageFormat srcImageFormat, uint8 *dst, ImageFormat dstImageFormat, int width, int height, int srcStride, int dstStride ) { // The STB compressor (the new compressor) is faster and higher quality in most cases, and has less error overall // than the S3TC compressor. So use it by default, unless we're working with a format that STB doesn't support. bool bUseNewCompressor = dstImageFormat != IMAGE_FORMAT_DXT1_ONEBITALPHA && dstImageFormat != IMAGE_FORMAT_DXT3; // bool bUseNewCompressor = dstImageFormat == IMAGE_FORMAT_DXT1_RUNTIME // || dstImageFormat == IMAGE_FORMAT_DXT5_RUNTIME; if ( bUseNewCompressor ) return ConvertToDXTRuntime( src, srcImageFormat, dst, dstImageFormat, width, height, srcStride, dstStride ); return ConvertToDXTLegacy( src, srcImageFormat, dst, dstImageFormat, width, height, srcStride, dstStride ); } // HDRFIXME: This assumes that the 16-bit integer values are 4.12 fixed-point. void ConvertImageFormat_RGBA16161616_To_RGB323232F( unsigned short *pSrcImage, float *pDstImage, int width, int height ) { int srcSize = width * height * 4; unsigned short *pSrcEnd = pSrcImage + srcSize; unsigned short *pSrcScan = pSrcImage; float *pDstScan = pDstImage; for ( ; pSrcScan < pSrcEnd; pSrcScan += 4, pDstScan += 3 ) { pDstScan[0] = ( ( float )pSrcScan[0] ) * ( 1.0f / ( ( float )( 1 << 12 ) ) ); pDstScan[1] = ( ( float )pSrcScan[1] ) * ( 1.0f / ( ( float )( 1 << 12 ) ) ); pDstScan[2] = ( ( float )pSrcScan[2] ) * ( 1.0f / ( ( float )( 1 << 12 ) ) ); } } // HDRFIXME: This assumes that the 16-bit integer values are 4.12 fixed-point. void ConvertImageFormat_RGB323232F_To_RGBA16161616( float *pSrcImage, unsigned short *pDstImage, int width, int height ) { int srcSize = width * height * 3; float *pSrcEnd = pSrcImage + srcSize; float *pSrcScan = pSrcImage; unsigned short *pDstScan = pDstImage; for ( ; pSrcScan < pSrcEnd; pSrcScan += 3, pDstScan += 4 ) { pDstScan[0] = ( unsigned short )min( 65535.0f, ( pSrcScan[0] * ( ( ( float )( 1 << 12 ) ) ) ) ); pDstScan[1] = ( unsigned short )min( 65535.0f, ( pSrcScan[1] * ( ( ( float )( 1 << 12 ) ) ) ) ); pDstScan[2] = ( unsigned short )min( 65535.0f, ( pSrcScan[2] * ( ( ( float )( 1 << 12 ) ) ) ) ); pDstScan[3] = 65535; } } void ConvertImageFormat_RGBA16161616F_To_RGB323232F( float16 *pSrcImage, float *pDstImage, int width, int height ) { int srcSize = width * height * 4; float16 *pSrcEnd = pSrcImage + srcSize; float16 *pSrcScan = pSrcImage; float *pDstScan = pDstImage; for( ; pSrcScan < pSrcEnd; pSrcScan += 4, pDstScan += 3 ) { pDstScan[0] = pSrcScan[0].GetFloat(); pDstScan[1] = pSrcScan[1].GetFloat(); pDstScan[2] = pSrcScan[2].GetFloat(); } } void ConvertImageFormat_RGBA16161616F_To_RGBA323232F( float16 *pSrcImage, float *pDstImage, int width, int height , size_t src_stride) { size_t s_stride=src_stride/2; for(int y=0; y height ) ? width : height; float ooMaxDim = 1.0f / maxDim; int s, t; for( t = 0; t < height; t++ ) { uint8 *dstPixel = &dst[t * width * 4]; for( s = 0; s < width; s++ ) { c = src[( t * width + s ) * 2]; cx = src[( t * width + ((s+1)%width) ) * 2]; cy = src[( ((t+1)%height) * width + s ) * 2]; /* // \Z (out of screen) // \ // \ // \ // \----------- X // | // | // | // | // | // Y */ Vector xVect, yVect, normal; xVect[0] = ooMaxDim; xVect[1] = 0.0f; xVect[2] = (cx - c) * heightScale; yVect[0] = 0.0f; yVect[1] = ooMaxDim; yVect[2] = (cy - c) * heightScale; CrossProduct( xVect, yVect, normal ); VectorNormalize( normal ); /* Repack the normalized vector into an RGB unsigned byte vector in the normal map image. */ dstPixel[0] = ( uint8 )( 128 + 127*normal[0] ); dstPixel[1] = ( uint8 )( 128 + 127*normal[1] ); dstPixel[2] = ( uint8 )( 128 + 127*normal[2] ); dstPixel[3] = src[( ( t * width + s ) * 2 ) + 1]; dstPixel += 4; } } } void ConvertNormalMapRGBA8888ToDUDVMapUVWQ8888( const uint8 *src, int width, int height, uint8 *dst_ ) { unsigned const char *lastPixel = src + width * height * 4; char *dst = ( char * )dst_; // NOTE: this is signed!!!! for( ; src < lastPixel; src += 4, dst += 4 ) { dst[0] = ( char )( ( ( int )src[0] ) - 127 ); dst[1] = ( char )( ( ( int )src[1] ) - 127 ); dst[2] = ( char )( ( ( int )src[2] ) - 127 ); dst[3] = ( char )( ( ( int )src[3] ) - 127 ); } } void ConvertNormalMapRGBA8888ToDUDVMapUVLX8888( const uint8 *src, int width, int height, uint8 *dst_ ) { unsigned const char *lastPixel = src + width * height * 4; char *dst = ( char * )dst_; // NOTE: this is signed!!!! for( ; src < lastPixel; src += 4, dst += 4 ) { dst[0] = ( char )( ( ( int )src[0] ) - 127 ); dst[1] = ( char )( ( ( int )src[1] ) - 127 ); uint8 *pUDst = (uint8 *)dst; pUDst[2] = src[3]; pUDst[3] = 0xFF; } } void ConvertNormalMapRGBA8888ToDUDVMapUV88( const uint8 *src, int width, int height, uint8 *dst_ ) { unsigned const char *lastPixel = src + width * height * 4; char *dst = ( char * )dst_; // NOTE: this is signed!!!! for( ; src < lastPixel; src += 4, dst += 2 ) { dst[0] = ( char )( ( ( int )src[0] ) - 127 ); dst[1] = ( char )( ( ( int )src[1] ) - 127 ); } } void NormalizeNormalMapRGBA8888( uint8 *src, int numTexels ) { uint8 *lastPixel = src + numTexels * 4; for( uint8 *pixel = src; pixel < lastPixel; pixel += 4 ) { Vector tmpVect; tmpVect[0] = ( ( float )pixel[0] - 128.0f ) * ( 1.0f / 127.0f ); tmpVect[1] = ( ( float )pixel[1] - 128.0f ) * ( 1.0f / 127.0f ); tmpVect[2] = ( ( float )pixel[2] - 128.0f ) * ( 1.0f / 127.0f ); VectorNormalize( tmpVect ); pixel[0] = ( uint8 )( 128 + 127 * tmpVect[0] ); pixel[1] = ( uint8 )( 128 + 127 * tmpVect[1] ); pixel[2] = ( uint8 )( 128 + 127 * tmpVect[2] ); } } //----------------------------------------------------------------------------- // Image rotation //----------------------------------------------------------------------------- bool RotateImageLeft( const uint8 *src, uint8 *dst, int widthHeight, ImageFormat imageFormat ) { #define SRC(x,y) src[((x)+(y)*widthHeight)*sizeInBytes] #define DST(x,y) dst[((x)+(y)*widthHeight)*sizeInBytes] if( IsCompressed( imageFormat ) ) { return false; } int x, y; uint8 tmp[4][16]; int halfWidthHeight = widthHeight >> 1; int sizeInBytes = SizeInBytes( imageFormat ); Assert( sizeInBytes <= 16 && sizeInBytes > 0 ); for( y = 0; y < halfWidthHeight; y++ ) { for( x = 0; x < halfWidthHeight; x++ ) { memcpy( tmp[0], &SRC( x, y ), sizeInBytes ); memcpy( tmp[1], &SRC( y, widthHeight-x-1 ), sizeInBytes ); memcpy( tmp[2], &SRC( widthHeight-x-1, widthHeight-y-1 ), sizeInBytes ); memcpy( tmp[3], &SRC( widthHeight-y-1, x ), sizeInBytes ); memcpy( &DST( x, y ), tmp[3], sizeInBytes ); memcpy( &DST( y, widthHeight-x-1 ), tmp[0], sizeInBytes ); memcpy( &DST( widthHeight-x-1, widthHeight-y-1 ), tmp[1], sizeInBytes ); memcpy( &DST( widthHeight-y-1, x ), tmp[2], sizeInBytes ); } } #undef SRC #undef DST return true; } bool RotateImage180( const uint8 *src, uint8 *dst, int widthHeight, ImageFormat imageFormat ) { // OPTIMIZE: do this transformation directly. if( RotateImageLeft( src, dst, widthHeight, imageFormat ) ) { return RotateImageLeft( dst, dst, widthHeight, imageFormat ); } return false; } bool FlipImageVertically( void *pSrc, void *pDst, int nWidth, int nHeight, ImageFormat imageFormat, int nDstStride ) { if( IsCompressed( imageFormat ) ) return false; int nSizeInBytes = SizeInBytes( imageFormat ); int nRowBytes = nSizeInBytes * nWidth; int nSrcStride = nRowBytes; if ( nDstStride == 0 ) { nDstStride = nRowBytes; } uint8 *pSrcRow = (uint8*)pSrc; uint8 *pDstRow = (uint8*)pDst + ((nHeight-1) * nDstStride); if ( pSrc == pDst ) { uint8* pTemp = (uint8*)_alloca( nRowBytes ); int nHalfHeight = nHeight >> 1; for ( int i = 0; i < nHalfHeight; i++ ) { memcpy( pTemp, pSrcRow, nRowBytes ); memcpy( pSrcRow, pDstRow, nRowBytes ); memcpy( pDstRow, pTemp, nRowBytes ); pSrcRow += nSrcStride; pDstRow -= nDstStride; } } else { for ( int i = 0; i < nHeight; i++ ) { memcpy( pDstRow, pSrcRow, nRowBytes ); pSrcRow += nSrcStride; pDstRow -= nDstStride; } } return true; } bool FlipImageHorizontally( void *pSrc, void *pDst, int nWidth, int nHeight, ImageFormat imageFormat, int nDstStride ) { if( IsCompressed( imageFormat ) ) return false; uint8 tmp[16]; int nSizeInBytes = SizeInBytes( imageFormat ); int nRowBytes = nSizeInBytes * nWidth; Assert( nSizeInBytes <= 16 && nSizeInBytes > 0 ); int nSrcStride = nRowBytes; if ( nDstStride == 0 ) { nDstStride = nRowBytes; } int x, y; uint8 *pSrcRow = (uint8*)pSrc; uint8 *pDstRow = (uint8*)pDst; if ( pSrc == pDst ) { int nHalfWidth = nWidth >> 1; for( y = 0; y < nHeight; y++ ) { uint8 *pSrcPixel = pSrcRow; uint8 *pDstPixel = pDstRow + nRowBytes - nSizeInBytes; for( x = 0; x < nHalfWidth; x++ ) { memcpy( tmp, pSrcPixel, nSizeInBytes ); memcpy( pSrcPixel, pDstPixel, nSizeInBytes ); memcpy( pDstPixel, tmp, nSizeInBytes ); pSrcPixel += nSizeInBytes; pDstPixel -= nSizeInBytes; } pSrcRow += nSrcStride; pDstRow += nDstStride; } } else { for( y = 0; y < nHeight; y++ ) { uint8 *pSrcPixel = pSrcRow; uint8 *pDstPixel = pDstRow + nRowBytes - nSizeInBytes; for( x = 0; x < nWidth; x++ ) { memcpy( pDstPixel, pSrcPixel, nSizeInBytes ); pSrcPixel += nSizeInBytes; pDstPixel -= nSizeInBytes; } pSrcRow += nSrcStride; pDstRow += nDstStride; } } return true; } //----------------------------------------------------------------------------- // Image rotation //----------------------------------------------------------------------------- bool SwapAxes( uint8 *src, int widthHeight, ImageFormat imageFormat ) { #define SRC(x,y) src[((x)+(y)*widthHeight)*sizeInBytes] if( IsCompressed( imageFormat ) ) { return false; } int x, y; uint8 tmp[4]; int sizeInBytes = SizeInBytes( imageFormat ); Assert( sizeInBytes <= 4 && sizeInBytes > 0 ); for( y = 0; y < widthHeight; y++ ) { for( x = 0; x < y; x++ ) { memcpy( tmp, &SRC( x, y ), sizeInBytes ); memcpy( &SRC( x, y ), &SRC( y, x ), sizeInBytes ); memcpy( &SRC( y, x ), tmp, sizeInBytes ); } } #undef SRC return true; } void RGBA8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { memcpy( dst, src, 4 * numPixels ); } void RGBA8888ToABGR8888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, dst += 4 ) { dst[0] = src[3]; dst[1] = src[2]; dst[2] = src[1]; dst[3] = src[0]; } } void RGBA8888ToRGB888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, dst += 3 ) { dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; } } void RGBA8888ToBGR888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, dst += 3 ) { dst[0] = src[2]; dst[1] = src[1]; dst[2] = src[0]; } } void RGBA8888ToRGB565( const uint8 *src, uint8 *dst, int numPixels ) { Assert( 0 ); const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, dst += 2 ) { } } void RGBA8888ToI8( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, dst += 1 ) { dst[0] = ( uint8 )( 0.299f * src[0] + 0.587f * src[1] + 0.114f * src[2] ); } } void RGBA8888ToIA88( const uint8 *src, uint8 *dst, int numPixels ) { // fixme: need to find the proper rgb weighting const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, dst += 2 ) { dst[0] = ( uint8 )( 0.299f * src[0] + 0.587f * src[1] + 0.114f * src[2] ); dst[1] = src[3]; } } void RGBA8888ToP8( const uint8 *src, uint8 *dst, int numPixels ) { Assert( 0 ); } void RGBA8888ToA8( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, dst += 1 ) { dst[0] = src[3]; } } void RGBA8888ToRGB888_BLUESCREEN( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, dst += 3 ) { if( src[3] == 0 ) { dst[0] = 0; dst[1] = 0; dst[2] = 255; } else { dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; } } } void RGBA8888ToBGR888_BLUESCREEN( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, dst += 3 ) { if( src[3] == 0 ) { dst[2] = 0; dst[1] = 0; dst[0] = 255; } else { dst[2] = src[0]; dst[1] = src[1]; dst[0] = src[2]; } } } void RGBA8888ToARGB8888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, dst += 4 ) { dst[0] = src[3]; dst[1] = src[0]; dst[2] = src[1]; dst[3] = src[2]; } } void RGBA8888ToBGRA8888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, dst += 4 ) { dst[0] = src[2]; dst[1] = src[1]; dst[2] = src[0]; dst[3] = src[3]; } } void RGBA8888ToBGRX8888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, dst += 4 ) { dst[0] = src[2]; dst[1] = src[1]; dst[2] = src[0]; } } void RGBA8888ToBGR565( const uint8 *src, uint8 *dst, int numPixels ) { unsigned short* pDstShort = (unsigned short*)dst; const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, pDstShort ++ ) { *pDstShort = ((src[0] >> 3) << 11) | ((src[1] >> 2) << 5) | (src[2] >> 3); } } void RGBA8888ToBGRX5551( const uint8 *src, uint8 *dst, int numPixels ) { unsigned short* pDstShort = (unsigned short*)dst; const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, pDstShort ++ ) { *pDstShort = ((src[0] >> 3) << 10) | ((src[1] >> 3) << 5) | (src[2] >> 3); } } void RGBA8888ToBGRA5551( const uint8 *src, uint8 *dst, int numPixels ) { unsigned short* pDstShort = (unsigned short*)dst; const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, pDstShort ++ ) { *pDstShort = ((src[0] >> 3) << 10) | ((src[1] >> 3) << 5) | (src[2] >> 3) | (src[3] >> 7) << 15; } } void RGBA8888ToBGRA4444( const uint8 *src, uint8 *dst, int numPixels ) { unsigned short* pDstShort = (unsigned short*)dst; const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, pDstShort ++ ) { *pDstShort = ((src[0] >> 4) << 8) | ((src[1] >> 4) << 4) | (src[2] >> 4) | ((src[3] >> 4) << 12); } } void RGBA8888ToUV88( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, dst += 2 ) { dst[0] = src[0]; dst[1] = src[1]; } } void RGBA8888ToUVWQ8888( const uint8 *src, uint8 *dst, int numPixels ) { RGBA8888ToRGBA8888( src, dst, numPixels ); } void RGBA8888ToUVLX8888( const uint8 *src, uint8 *dst, int numPixels ) { RGBA8888ToRGBA8888( src, dst, numPixels ); } void ABGR8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, dst += 4 ) { dst[0] = src[3]; dst[1] = src[2]; dst[2] = src[1]; dst[3] = src[0]; } } void RGB888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 3; for ( ; src < endSrc; src += 3, dst += 4 ) { dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = 255; } } void BGR888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 3; for ( ; src < endSrc; src += 3, dst += 4 ) { dst[0] = src[2]; dst[1] = src[1]; dst[2] = src[0]; dst[3] = 255; } } void RGB565ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { Assert( 0 ); const uint8 *endSrc = src + numPixels * 2; for ( ; src < endSrc; src += 2, dst += 4 ) { } } void I8ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels; for ( ; src < endSrc; src += 1, dst += 4 ) { dst[0] = src[0]; dst[1] = src[0]; dst[2] = src[0]; dst[3] = 255; } } void IA88ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 2; for ( ; src < endSrc; src += 2, dst += 4 ) { dst[0] = src[0]; dst[1] = src[0]; dst[2] = src[0]; dst[3] = src[1]; } } void P8ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { Assert( 0 ); } void A8ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels; for ( ; src < endSrc; src += 1, dst += 4 ) { dst[0] = src[0]; dst[1] = src[0]; dst[2] = src[0]; dst[3] = src[0]; } } void RGB888_BLUESCREENToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 3; for ( ; src < endSrc; src += 3, dst += 4 ) { if( src[0] == 0 && src[1] == 0 && src[2] == 255 ) { dst[0] = 0; dst[1] = 0; dst[2] = 0; dst[3] = 0; } else { dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = 255; } } } void BGR888_BLUESCREENToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 3; for ( ; src < endSrc; src += 3, dst += 4 ) { if( src[2] == 0 && src[1] == 0 && src[0] == 255 ) { dst[0] = 0; dst[1] = 0; dst[2] = 0; dst[3] = 0; } else { dst[2] = src[0]; dst[1] = src[1]; dst[0] = src[2]; dst[3] = 255; } } } void ARGB8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, dst += 4 ) { dst[0] = src[1]; dst[1] = src[2]; dst[2] = src[3]; dst[3] = src[0]; } } void BGRA8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, dst += 4 ) { dst[0] = src[2]; dst[1] = src[1]; dst[2] = src[0]; dst[3] = src[3]; } } void BGRX8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8 *endSrc = src + numPixels * 4; for ( ; src < endSrc; src += 4, dst += 4 ) { dst[0] = src[2]; dst[1] = src[1]; dst[2] = src[0]; dst[3] = 255; } } void BGR565ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { unsigned short* pSrcShort = (unsigned short*)src; unsigned short* pEndSrc = pSrcShort + numPixels; for ( ; pSrcShort < pEndSrc; pSrcShort++, dst += 4 ) { int blue = (*pSrcShort & 0x1F); int green = (*pSrcShort >> 5) & 0x3F; int red = (*pSrcShort >> 11) & 0x1F; // Expand to 8 bits dst[0] = (red << 3) | (red >> 2); dst[1] = (green << 2) | (green >> 4); dst[2] = (blue << 3) | (blue >> 2); dst[3] = 255; } } void BGRX5551ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { unsigned short* pSrcShort = (unsigned short*)src; unsigned short* pEndSrc = pSrcShort + numPixels; for ( ; pSrcShort < pEndSrc; pSrcShort++, dst += 4 ) { int blue = (*pSrcShort & 0x1F); int green = (*pSrcShort >> 5) & 0x1F; int red = (*pSrcShort >> 10) & 0x1F; // Expand to 8 bits dst[0] = (red << 3) | (red >> 2); dst[1] = (green << 3) | (green >> 2); dst[2] = (blue << 3) | (blue >> 2); dst[3] = 255; } } void BGRA5551ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { unsigned short* pSrcShort = (unsigned short*)src; unsigned short* pEndSrc = pSrcShort + numPixels; for ( ; pSrcShort < pEndSrc; pSrcShort++, dst += 4 ) { int blue = (*pSrcShort & 0x1F); int green = (*pSrcShort >> 5) & 0x1F; int red = (*pSrcShort >> 10) & 0x1F; int alpha = *pSrcShort & ( 1 << 15 ); // Expand to 8 bits dst[0] = (red << 3) | (red >> 2); dst[1] = (green << 3) | (green >> 2); dst[2] = (blue << 3) | (blue >> 2); // garymcthack if( alpha ) { dst[3] = 255; } else { dst[3] = 0; } } } void BGRA4444ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { unsigned short* pSrcShort = (unsigned short*)src; unsigned short* pEndSrc = pSrcShort + numPixels; for ( ; pSrcShort < pEndSrc; pSrcShort++, dst += 4 ) { int blue = (*pSrcShort & 0xF); int green = (*pSrcShort >> 4) & 0xF; int red = (*pSrcShort >> 8) & 0xF; int alpha = (*pSrcShort >> 12) & 0xF; // Expand to 8 bits // FIXME: shouldn't this be (red << 4) | red? dst[0] = (red << 4) | (red >> 4); dst[1] = (green << 4) | (green >> 4); dst[2] = (blue << 4) | (blue >> 4); dst[3] = (alpha << 4) | (alpha >> 4); } } void UV88ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { const uint8* pEndSrc = src + numPixels * 2; for ( ; src < pEndSrc; src += 2, dst += 4 ) { dst[0] = src[0]; dst[1] = src[1]; dst[2] = 0; dst[3] = 0; } } void UVWQ8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { RGBA8888ToRGBA8888( src, dst, numPixels ); } void UVLX8888ToRGBA8888( const uint8 *src, uint8 *dst, int numPixels ) { RGBA8888ToRGBA8888( src, dst, numPixels ); } // HDRFIXME: This assumes that the 16-bit integer values are 4.12 fixed-point. void RGBA16161616ToRGBA8888( const uint8 *src_, uint8 *dst, int numPixels ) { unsigned short *src = ( unsigned short * )src_; unsigned short *pEndSrc = src + numPixels * 4; for ( ; src < pEndSrc; src += 4, dst += 4 ) { dst[0] = min( 255, src[0] >> 4 ); dst[1] = min( 255, src[1] >> 4 ); dst[2] = min( 255, src[2] >> 4 ); dst[3] = min( 255, src[3] >> 8 ); } } } // ImageLoader namespace ends