dolphin/Source/Core/Core/FifoPlayer/FifoPlayer.cpp

819 lines
22 KiB
C++

// Copyright 2011 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "Core/FifoPlayer/FifoPlayer.h"
#include <algorithm>
#include <cstring>
#include <mutex>
#include <type_traits>
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "Common/MsgHandler.h"
#include "Core/Config/MainSettings.h"
#include "Core/Core.h"
#include "Core/CoreTiming.h"
#include "Core/FifoPlayer/FifoDataFile.h"
#include "Core/HW/CPU.h"
#include "Core/HW/GPFifo.h"
#include "Core/HW/Memmap.h"
#include "Core/HW/ProcessorInterface.h"
#include "Core/HW/SystemTimers.h"
#include "Core/HW/VideoInterface.h"
#include "Core/Host.h"
#include "Core/PowerPC/MMU.h"
#include "Core/PowerPC/PowerPC.h"
#include "Core/System.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/CommandProcessor.h"
#include "VideoCommon/VideoCommon.h"
// We need to include TextureDecoder.h for the texMem array.
// TODO: Move texMem somewhere else so this isn't an issue.
#include "VideoCommon/TextureDecoder.h"
namespace
{
class FifoPlaybackAnalyzer : public OpcodeDecoder::Callback
{
public:
static void AnalyzeFrames(FifoDataFile* file, std::vector<AnalyzedFrameInfo>& frame_info);
explicit FifoPlaybackAnalyzer(const u32* cpmem) : m_cpmem(cpmem) {}
OPCODE_CALLBACK(void OnXF(u16 address, u8 count, const u8* data)) {}
OPCODE_CALLBACK(void OnCP(u8 command, u32 value)) { GetCPState().LoadCPReg(command, value); }
OPCODE_CALLBACK(void OnBP(u8 command, u32 value));
OPCODE_CALLBACK(void OnIndexedLoad(CPArray array, u32 index, u16 address, u8 size)) {}
OPCODE_CALLBACK(void OnPrimitiveCommand(OpcodeDecoder::Primitive primitive, u8 vat,
u32 vertex_size, u16 num_vertices,
const u8* vertex_data));
OPCODE_CALLBACK(void OnDisplayList(u32 address, u32 size)) {}
OPCODE_CALLBACK(void OnNop(u32 count));
OPCODE_CALLBACK(void OnUnknown(u8 opcode, const u8* data)) {}
OPCODE_CALLBACK(void OnCommand(const u8* data, u32 size));
OPCODE_CALLBACK(CPState& GetCPState()) { return m_cpmem; }
OPCODE_CALLBACK(u32 GetVertexSize(u8 vat))
{
return VertexLoaderBase::GetVertexSize(GetCPState().vtx_desc, GetCPState().vtx_attr[vat]);
}
bool m_start_of_primitives = false;
bool m_end_of_primitives = false;
bool m_efb_copy = false;
// Internal state, copied to above in OnCommand
bool m_was_primitive = false;
bool m_is_primitive = false;
bool m_is_copy = false;
bool m_is_nop = false;
CPState m_cpmem;
};
void FifoPlaybackAnalyzer::AnalyzeFrames(FifoDataFile* file,
std::vector<AnalyzedFrameInfo>& frame_info)
{
FifoPlaybackAnalyzer analyzer(file->GetCPMem());
frame_info.clear();
frame_info.resize(file->GetFrameCount());
for (u32 frame_no = 0; frame_no < file->GetFrameCount(); frame_no++)
{
const FifoFrameInfo& frame = file->GetFrame(frame_no);
AnalyzedFrameInfo& analyzed = frame_info[frame_no];
u32 offset = 0;
u32 part_start = 0;
CPState cpmem;
while (offset < frame.fifoData.size())
{
const u32 cmd_size = OpcodeDecoder::RunCommand(&frame.fifoData[offset],
u32(frame.fifoData.size()) - offset, analyzer);
if (analyzer.m_start_of_primitives)
{
// Start of primitive data for an object
analyzed.AddPart(FramePartType::Commands, part_start, offset, analyzer.m_cpmem);
part_start = offset;
// Copy cpmem now, because end_of_primitives isn't triggered until the first opcode after
// primitive data, and the first opcode might update cpmem
static_assert(std::is_trivially_copyable_v<CPState>);
std::memcpy(static_cast<void*>(&cpmem), static_cast<const void*>(&analyzer.m_cpmem),
sizeof(CPState));
}
if (analyzer.m_end_of_primitives)
{
// End of primitive data for an object, and thus end of the object
analyzed.AddPart(FramePartType::PrimitiveData, part_start, offset, cpmem);
part_start = offset;
}
offset += cmd_size;
if (analyzer.m_efb_copy)
{
// We increase the offset beforehand, so that the trigger EFB copy command is included.
analyzed.AddPart(FramePartType::EFBCopy, part_start, offset, analyzer.m_cpmem);
part_start = offset;
}
}
// The frame should end with an EFB copy, so part_start should have been updated to the end.
ASSERT(part_start == frame.fifoData.size());
ASSERT(offset == frame.fifoData.size());
}
}
void FifoPlaybackAnalyzer::OnBP(u8 command, u32 value)
{
if (command == BPMEM_TRIGGER_EFB_COPY)
m_is_copy = true;
}
void FifoPlaybackAnalyzer::OnPrimitiveCommand(OpcodeDecoder::Primitive primitive, u8 vat,
u32 vertex_size, u16 num_vertices,
const u8* vertex_data)
{
m_is_primitive = true;
}
void FifoPlaybackAnalyzer::OnNop(u32 count)
{
m_is_nop = true;
}
void FifoPlaybackAnalyzer::OnCommand(const u8* data, u32 size)
{
m_start_of_primitives = false;
m_end_of_primitives = false;
m_efb_copy = false;
if (!m_is_nop)
{
if (m_is_primitive && !m_was_primitive)
m_start_of_primitives = true;
else if (m_was_primitive && !m_is_primitive)
m_end_of_primitives = true;
else if (m_is_copy)
m_efb_copy = true;
m_was_primitive = m_is_primitive;
}
m_is_primitive = false;
m_is_copy = false;
m_is_nop = false;
}
} // namespace
bool IsPlayingBackFifologWithBrokenEFBCopies = false;
FifoPlayer::FifoPlayer(Core::System& system) : m_system(system)
{
m_config_changed_callback_id = Config::AddConfigChangedCallback([this] { RefreshConfig(); });
RefreshConfig();
}
FifoPlayer::~FifoPlayer()
{
Config::RemoveConfigChangedCallback(m_config_changed_callback_id);
}
bool FifoPlayer::Open(const std::string& filename)
{
Close();
m_File = FifoDataFile::Load(filename, false);
if (m_File)
{
FifoPlaybackAnalyzer::AnalyzeFrames(m_File.get(), m_FrameInfo);
m_FrameRangeEnd = m_File->GetFrameCount() - 1;
}
if (m_FileLoadedCb)
m_FileLoadedCb();
return (m_File != nullptr);
}
void FifoPlayer::Close()
{
m_File.reset();
m_FrameRangeStart = 0;
m_FrameRangeEnd = 0;
}
bool FifoPlayer::IsPlaying() const
{
return GetFile() != nullptr && Core::IsRunning(m_system);
}
class FifoPlayer::CPUCore final : public CPUCoreBase
{
public:
explicit CPUCore(FifoPlayer* parent) : m_parent(parent) {}
CPUCore(const CPUCore&) = delete;
~CPUCore() {}
CPUCore& operator=(const CPUCore&) = delete;
void Init() override
{
IsPlayingBackFifologWithBrokenEFBCopies = m_parent->m_File->HasBrokenEFBCopies();
// Without this call, we deadlock in initialization in dual core, as the FIFO is disabled and
// thus ClearEfb()'s call to WaitForGPUInactive() never returns
m_parent->m_system.GetCPU().EnableStepping(false);
m_parent->m_CurrentFrame = m_parent->m_FrameRangeStart;
m_parent->LoadMemory();
}
void Shutdown() override { IsPlayingBackFifologWithBrokenEFBCopies = false; }
void ClearCache() override
{
// Nothing to clear.
}
void SingleStep() override
{
// NOTE: AdvanceFrame() will get stuck forever in Dual Core because the FIFO
// is disabled by CPU::EnableStepping(true) so the frame never gets displayed.
PanicAlertFmtT("Cannot SingleStep the FIFO. Use Frame Advance instead.");
}
const char* GetName() const override { return "FifoPlayer"; }
void Run() override
{
auto& cpu = m_parent->m_system.GetCPU();
while (cpu.GetState() == CPU::State::Running)
{
switch (m_parent->AdvanceFrame())
{
case CPU::State::PowerDown:
cpu.Break();
Host_Message(HostMessageID::WMUserStop);
break;
case CPU::State::Stepping:
cpu.Break();
Host_UpdateMainFrame();
break;
case CPU::State::Running:
break;
}
}
}
private:
FifoPlayer* m_parent;
};
CPU::State FifoPlayer::AdvanceFrame()
{
if (m_CurrentFrame > m_FrameRangeEnd)
{
if (!m_Loop)
return CPU::State::PowerDown;
// When looping, reload the contents of all the BP/CP/CF registers.
// This ensures that each time the first frame is played back, the state of the
// GPU is the same for each playback loop.
m_CurrentFrame = m_FrameRangeStart;
LoadRegisters();
LoadTextureMemory();
FlushWGP();
}
if (m_FrameWrittenCb)
m_FrameWrittenCb();
if (m_EarlyMemoryUpdates && m_CurrentFrame == m_FrameRangeStart)
WriteAllMemoryUpdates();
WriteFrame(m_File->GetFrame(m_CurrentFrame), m_FrameInfo[m_CurrentFrame]);
++m_CurrentFrame;
return CPU::State::Running;
}
std::unique_ptr<CPUCoreBase> FifoPlayer::GetCPUCore()
{
if (!m_File || m_File->GetFrameCount() == 0)
return nullptr;
return std::make_unique<CPUCore>(this);
}
void FifoPlayer::RefreshConfig()
{
m_Loop = Config::Get(Config::MAIN_FIFOPLAYER_LOOP_REPLAY);
m_EarlyMemoryUpdates = Config::Get(Config::MAIN_FIFOPLAYER_EARLY_MEMORY_UPDATES);
}
void FifoPlayer::SetFileLoadedCallback(CallbackFunc callback)
{
m_FileLoadedCb = std::move(callback);
// Trigger the callback immediatly if the file is already loaded.
if (GetFile() != nullptr)
{
m_FileLoadedCb();
}
}
bool FifoPlayer::IsRunningWithFakeVideoInterfaceUpdates() const
{
if (!m_File || m_File->GetFrameCount() == 0)
{
return false;
}
return m_File->ShouldGenerateFakeVIUpdates();
}
u32 FifoPlayer::GetMaxObjectCount() const
{
u32 result = 0;
for (auto& frame : m_FrameInfo)
{
const u32 count = frame.part_type_counts[FramePartType::PrimitiveData];
if (count > result)
result = count;
}
return result;
}
u32 FifoPlayer::GetFrameObjectCount(u32 frame) const
{
if (frame < m_FrameInfo.size())
{
return m_FrameInfo[frame].part_type_counts[FramePartType::PrimitiveData];
}
return 0;
}
u32 FifoPlayer::GetCurrentFrameObjectCount() const
{
return GetFrameObjectCount(m_CurrentFrame);
}
void FifoPlayer::SetFrameRangeStart(u32 start)
{
if (m_File)
{
const u32 lastFrame = m_File->GetFrameCount() - 1;
if (start > lastFrame)
start = lastFrame;
m_FrameRangeStart = start;
if (m_FrameRangeEnd < start)
m_FrameRangeEnd = start;
if (m_CurrentFrame < m_FrameRangeStart)
m_CurrentFrame = m_FrameRangeStart;
}
}
void FifoPlayer::SetFrameRangeEnd(u32 end)
{
if (m_File)
{
const u32 lastFrame = m_File->GetFrameCount() - 1;
if (end > lastFrame)
end = lastFrame;
m_FrameRangeEnd = end;
if (m_FrameRangeStart > end)
m_FrameRangeStart = end;
if (m_CurrentFrame >= m_FrameRangeEnd)
m_CurrentFrame = m_FrameRangeStart;
}
}
void FifoPlayer::WriteFrame(const FifoFrameInfo& frame, const AnalyzedFrameInfo& info)
{
// Core timing information
auto& vi = m_system.GetVideoInterface();
m_CyclesPerFrame = static_cast<u64>(m_system.GetSystemTimers().GetTicksPerSecond()) *
vi.GetTargetRefreshRateDenominator() / vi.GetTargetRefreshRateNumerator();
m_ElapsedCycles = 0;
m_FrameFifoSize = static_cast<u32>(frame.fifoData.size());
u32 memory_update = 0;
u32 object_num = 0;
// Skip all memory updates if early memory updates are enabled, as we already wrote them
if (m_EarlyMemoryUpdates)
{
memory_update = (u32)(frame.memoryUpdates.size());
}
for (const FramePart& part : info.parts)
{
bool show_part;
if (part.m_type == FramePartType::PrimitiveData)
{
show_part = m_ObjectRangeStart <= object_num && object_num <= m_ObjectRangeEnd;
object_num++;
}
else
{
// We always include commands and EFB copies, as commands from earlier objects still apply to
// later ones (games generally do not reconfigure everything for each object)
show_part = true;
}
if (show_part)
WriteFramePart(part, &memory_update, frame);
}
FlushWGP();
WaitForGPUInactive();
}
void FifoPlayer::WriteFramePart(const FramePart& part, u32* next_mem_update,
const FifoFrameInfo& frame)
{
const u8* const data = frame.fifoData.data();
u32 data_start = part.m_start;
const u32 data_end = part.m_end;
while (*next_mem_update < frame.memoryUpdates.size() && data_start < data_end)
{
const MemoryUpdate& memUpdate = frame.memoryUpdates[*next_mem_update];
if (memUpdate.fifoPosition < data_end)
{
if (data_start < memUpdate.fifoPosition)
{
WriteFifo(data, data_start, memUpdate.fifoPosition);
data_start = memUpdate.fifoPosition;
}
WriteMemory(memUpdate);
++*next_mem_update;
}
else
{
WriteFifo(data, data_start, data_end);
data_start = data_end;
}
}
if (data_start < data_end)
WriteFifo(data, data_start, data_end);
}
void FifoPlayer::WriteAllMemoryUpdates()
{
ASSERT(m_File);
for (u32 frameNum = 0; frameNum < m_File->GetFrameCount(); ++frameNum)
{
const FifoFrameInfo& frame = m_File->GetFrame(frameNum);
for (auto& update : frame.memoryUpdates)
{
WriteMemory(update);
}
}
}
void FifoPlayer::WriteMemory(const MemoryUpdate& memUpdate)
{
auto& memory = m_system.GetMemory();
u8* mem = nullptr;
if (memUpdate.address & 0x10000000)
mem = &memory.GetEXRAM()[memUpdate.address & memory.GetExRamMask()];
else
mem = &memory.GetRAM()[memUpdate.address & memory.GetRamMask()];
std::copy(memUpdate.data.begin(), memUpdate.data.end(), mem);
}
void FifoPlayer::WriteFifo(const u8* data, u32 start, u32 end)
{
u32 written = start;
u32 lastBurstEnd = end - 1;
auto& cpu = m_system.GetCPU();
auto& core_timing = m_system.GetCoreTiming();
auto& gpfifo = m_system.GetGPFifo();
auto& ppc_state = m_system.GetPPCState();
// Write up to 256 bytes at a time
while (written < end)
{
while (IsHighWatermarkSet())
{
if (cpu.GetState() != CPU::State::Running)
break;
core_timing.Idle();
core_timing.Advance();
}
u32 burstEnd = std::min(written + 255, lastBurstEnd);
std::copy(data + written, data + burstEnd, ppc_state.gather_pipe_ptr);
ppc_state.gather_pipe_ptr += burstEnd - written;
written = burstEnd;
gpfifo.Write8(data[written++]);
// Advance core timing
u32 elapsedCycles = u32(((u64)written * m_CyclesPerFrame) / m_FrameFifoSize);
u32 cyclesUsed = elapsedCycles - m_ElapsedCycles;
m_ElapsedCycles = elapsedCycles;
ppc_state.downcount -= cyclesUsed;
core_timing.Advance();
}
}
void FifoPlayer::SetupFifo()
{
WriteCP(CommandProcessor::CTRL_REGISTER, 0); // disable read, BP, interrupts
WriteCP(CommandProcessor::CLEAR_REGISTER, 7); // clear overflow, underflow, metrics
const FifoFrameInfo& frame = m_File->GetFrame(m_CurrentFrame);
// Set fifo bounds
WriteCP(CommandProcessor::FIFO_BASE_LO, frame.fifoStart);
WriteCP(CommandProcessor::FIFO_BASE_HI, frame.fifoStart >> 16);
WriteCP(CommandProcessor::FIFO_END_LO, frame.fifoEnd);
WriteCP(CommandProcessor::FIFO_END_HI, frame.fifoEnd >> 16);
// Set watermarks, high at 75%, low at 0%
u32 hi_watermark = (frame.fifoEnd - frame.fifoStart) * 3 / 4;
WriteCP(CommandProcessor::FIFO_HI_WATERMARK_LO, hi_watermark);
WriteCP(CommandProcessor::FIFO_HI_WATERMARK_HI, hi_watermark >> 16);
WriteCP(CommandProcessor::FIFO_LO_WATERMARK_LO, 0);
WriteCP(CommandProcessor::FIFO_LO_WATERMARK_HI, 0);
// Set R/W pointers to fifo start
WriteCP(CommandProcessor::FIFO_RW_DISTANCE_LO, 0);
WriteCP(CommandProcessor::FIFO_RW_DISTANCE_HI, 0);
WriteCP(CommandProcessor::FIFO_WRITE_POINTER_LO, frame.fifoStart);
WriteCP(CommandProcessor::FIFO_WRITE_POINTER_HI, frame.fifoStart >> 16);
WriteCP(CommandProcessor::FIFO_READ_POINTER_LO, frame.fifoStart);
WriteCP(CommandProcessor::FIFO_READ_POINTER_HI, frame.fifoStart >> 16);
// Set fifo bounds
WritePI(ProcessorInterface::PI_FIFO_BASE, frame.fifoStart);
WritePI(ProcessorInterface::PI_FIFO_END, frame.fifoEnd);
// Set write pointer
WritePI(ProcessorInterface::PI_FIFO_WPTR, frame.fifoStart);
FlushWGP();
WritePI(ProcessorInterface::PI_FIFO_WPTR, frame.fifoStart);
WriteCP(CommandProcessor::CTRL_REGISTER, 17); // enable read & GP link
}
void FifoPlayer::ClearEfb()
{
// Trigger a bogus EFB copy to clear the screen
// The target address is 0, and there shouldn't be anything there,
// but even if there is it should be loaded in by LoadTextureMemory afterwards
X10Y10 tl = bpmem.copyTexSrcXY;
tl.x = 0;
tl.y = 0;
LoadBPReg(BPMEM_EFB_TL, tl.hex);
X10Y10 wh = bpmem.copyTexSrcWH;
wh.x = EFB_WIDTH - 1;
wh.y = EFB_HEIGHT - 1;
LoadBPReg(BPMEM_EFB_WH, wh.hex);
LoadBPReg(BPMEM_EFB_STRIDE, 0x140);
// The clear color and Z value have already been loaded via LoadRegisters()
LoadBPReg(BPMEM_EFB_ADDR, 0);
UPE_Copy copy = bpmem.triggerEFBCopy;
copy.clamp_top = false;
copy.clamp_bottom = false;
copy.unknown_bit = false;
copy.target_pixel_format = static_cast<u32>(EFBCopyFormat::RGBA8) << 1;
copy.gamma = GammaCorrection::Gamma1_0;
copy.half_scale = false;
copy.scale_invert = false;
copy.clear = true;
copy.frame_to_field = FrameToField::Progressive;
copy.copy_to_xfb = false;
copy.intensity_fmt = false;
copy.auto_conv = false;
LoadBPReg(BPMEM_TRIGGER_EFB_COPY, copy.Hex);
// Restore existing data - this only works at the start of the fifolog.
// In practice most fifologs probably explicitly specify the size each time, but this is still
// probably a good idea.
LoadBPReg(BPMEM_EFB_TL, m_File->GetBPMem()[BPMEM_EFB_TL]);
LoadBPReg(BPMEM_EFB_WH, m_File->GetBPMem()[BPMEM_EFB_WH]);
LoadBPReg(BPMEM_EFB_STRIDE, m_File->GetBPMem()[BPMEM_EFB_STRIDE]);
LoadBPReg(BPMEM_EFB_ADDR, m_File->GetBPMem()[BPMEM_EFB_ADDR]);
// Wait for the EFB copy to finish. That way, the EFB copy (which will be performed at a later
// time) won't clobber any memory updates.
FlushWGP();
WaitForGPUInactive();
}
void FifoPlayer::LoadMemory()
{
auto& ppc_state = m_system.GetPPCState();
UReg_MSR newMSR;
newMSR.DR = 1;
newMSR.IR = 1;
ppc_state.msr.Hex = newMSR.Hex;
ppc_state.spr[SPR_IBAT0U] = 0x80001fff;
ppc_state.spr[SPR_IBAT0L] = 0x00000002;
ppc_state.spr[SPR_DBAT0U] = 0x80001fff;
ppc_state.spr[SPR_DBAT0L] = 0x00000002;
ppc_state.spr[SPR_DBAT1U] = 0xc0001fff;
ppc_state.spr[SPR_DBAT1L] = 0x0000002a;
PowerPC::MSRUpdated(ppc_state);
auto& mmu = m_system.GetMMU();
mmu.DBATUpdated();
mmu.IBATUpdated();
SetupFifo();
LoadRegisters();
ClearEfb();
LoadTextureMemory();
FlushWGP();
}
void FifoPlayer::LoadRegisters()
{
const u32* regs = m_File->GetBPMem();
for (int i = 0; i < FifoDataFile::BP_MEM_SIZE; ++i)
{
if (ShouldLoadBP(i))
LoadBPReg(i, regs[i]);
}
regs = m_File->GetCPMem();
LoadCPReg(MATINDEX_A, regs[MATINDEX_A]);
LoadCPReg(MATINDEX_B, regs[MATINDEX_B]);
LoadCPReg(VCD_LO, regs[VCD_LO]);
LoadCPReg(VCD_HI, regs[VCD_HI]);
for (int i = 0; i < CP_NUM_VAT_REG; ++i)
{
LoadCPReg(CP_VAT_REG_A + i, regs[CP_VAT_REG_A + i]);
LoadCPReg(CP_VAT_REG_B + i, regs[CP_VAT_REG_B + i]);
LoadCPReg(CP_VAT_REG_C + i, regs[CP_VAT_REG_C + i]);
}
for (int i = 0; i < CP_NUM_ARRAYS; ++i)
{
LoadCPReg(ARRAY_BASE + i, regs[ARRAY_BASE + i]);
LoadCPReg(ARRAY_STRIDE + i, regs[ARRAY_STRIDE + i]);
}
regs = m_File->GetXFMem();
for (int i = 0; i < FifoDataFile::XF_MEM_SIZE; i += 16)
LoadXFMem16(i, &regs[i]);
regs = m_File->GetXFRegs();
for (int i = 0; i < FifoDataFile::XF_REGS_SIZE; ++i)
{
if (ShouldLoadXF(i))
LoadXFReg(i, regs[i]);
}
}
void FifoPlayer::LoadTextureMemory()
{
static_assert(static_cast<size_t>(TMEM_SIZE) == static_cast<size_t>(FifoDataFile::TEX_MEM_SIZE),
"TMEM_SIZE matches the size of texture memory in FifoDataFile");
std::memcpy(s_tex_mem.data(), m_File->GetTexMem(), FifoDataFile::TEX_MEM_SIZE);
}
void FifoPlayer::WriteCP(u32 address, u16 value)
{
m_system.GetMMU().Write_U16(value, 0xCC000000 | address);
}
void FifoPlayer::WritePI(u32 address, u32 value)
{
m_system.GetMMU().Write_U32(value, 0xCC003000 | address);
}
void FifoPlayer::FlushWGP()
{
auto& gpfifo = m_system.GetGPFifo();
// Send 31 0s through the WGP
for (int i = 0; i < 7; ++i)
gpfifo.Write32(0);
gpfifo.Write16(0);
gpfifo.Write8(0);
gpfifo.ResetGatherPipe();
}
void FifoPlayer::WaitForGPUInactive()
{
auto& core_timing = m_system.GetCoreTiming();
auto& cpu = m_system.GetCPU();
// Sleep while the GPU is active
while (!IsIdleSet() && cpu.GetState() != CPU::State::PowerDown)
{
core_timing.Idle();
core_timing.Advance();
}
}
void FifoPlayer::LoadBPReg(u8 reg, u32 value)
{
auto& gpfifo = m_system.GetGPFifo();
gpfifo.Write8(0x61); // load BP reg
u32 cmd = (reg << 24) & 0xff000000;
cmd |= (value & 0x00ffffff);
gpfifo.Write32(cmd);
}
void FifoPlayer::LoadCPReg(u8 reg, u32 value)
{
auto& gpfifo = m_system.GetGPFifo();
gpfifo.Write8(0x08); // load CP reg
gpfifo.Write8(reg);
gpfifo.Write32(value);
}
void FifoPlayer::LoadXFReg(u16 reg, u32 value)
{
auto& gpfifo = m_system.GetGPFifo();
gpfifo.Write8(0x10); // load XF reg
gpfifo.Write32((reg & 0x0fff) | 0x1000); // load 4 bytes into reg
gpfifo.Write32(value);
}
void FifoPlayer::LoadXFMem16(u16 address, const u32* data)
{
auto& gpfifo = m_system.GetGPFifo();
// Loads 16 * 4 bytes in xf memory starting at address
gpfifo.Write8(0x10); // load XF reg
gpfifo.Write32(0x000f0000 | (address & 0xffff)); // load 16 * 4 bytes into address
for (int i = 0; i < 16; ++i)
gpfifo.Write32(data[i]);
}
bool FifoPlayer::ShouldLoadBP(u8 address)
{
switch (address)
{
case BPMEM_SETDRAWDONE:
case BPMEM_PE_TOKEN_ID:
case BPMEM_PE_TOKEN_INT_ID:
case BPMEM_TRIGGER_EFB_COPY:
case BPMEM_LOADTLUT1:
case BPMEM_PRELOAD_MODE:
case BPMEM_PERF1:
return false;
default:
return true;
}
}
bool FifoPlayer::ShouldLoadXF(u8 reg)
{
// Ignore unknown addresses
u16 address = reg + 0x1000;
return !(address == XFMEM_UNKNOWN_1007 ||
(address >= XFMEM_UNKNOWN_GROUP_1_START && address <= XFMEM_UNKNOWN_GROUP_1_END) ||
(address >= XFMEM_UNKNOWN_GROUP_2_START && address <= XFMEM_UNKNOWN_GROUP_2_END) ||
(address >= XFMEM_UNKNOWN_GROUP_3_START && address <= XFMEM_UNKNOWN_GROUP_3_END));
}
bool FifoPlayer::IsIdleSet() const
{
CommandProcessor::UCPStatusReg status =
m_system.GetMMU().Read_U16(0xCC000000 | CommandProcessor::STATUS_REGISTER);
return status.CommandIdle;
}
bool FifoPlayer::IsHighWatermarkSet() const
{
CommandProcessor::UCPStatusReg status =
m_system.GetMMU().Read_U16(0xCC000000 | CommandProcessor::STATUS_REGISTER);
return status.OverflowHiWatermark;
}