AudioCommon: Integrate FreeSurround partially

This commit is contained in:
Dr. Dystopia 2025-05-18 19:34:23 +02:00
parent 2e22a3cf42
commit d189337c04
19 changed files with 228 additions and 2490 deletions

View File

@ -701,11 +701,6 @@ dolphin_find_optional_system_library_pkgconfig(lz4 liblz4>=1.8 LZ4::LZ4 External
dolphin_find_optional_system_library_pkgconfig(SPNG spng spng::spng Externals/libspng)
# Using static FreeSurround from Externals
# There is no system FreeSurround library.
message(STATUS "Using static FreeSurround from Externals")
add_subdirectory(Externals/FreeSurround)
if (APPLE OR WIN32)
message(STATUS "Using ed25519 from Externals")
add_subdirectory(Externals/ed25519)

View File

@ -1,17 +0,0 @@
if (NOT MSVC)
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
endif()
set(SRCS
source/ChannelMaps.cpp
source/KissFFT.cpp
source/KissFFTR.cpp
source/FreeSurroundDecoder.cpp
)
add_library(FreeSurround STATIC ${SRCS})
dolphin_disable_warnings(FreeSurround)
target_include_directories(FreeSurround PUBLIC include)
target_compile_options(FreeSurround PRIVATE -w)

View File

@ -1,39 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<Project>
<Import Project="..\..\Source\VSProps\Base.Macros.props" />
<Import Project="$(VSPropsDir)Base.Targets.props" />
<PropertyGroup Label="Globals">
<ProjectGuid>{8498F2FA-5CA6-4169-9971-DE5B1FE6132C}</ProjectGuid>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<Import Project="$(VSPropsDir)Configuration.StaticLibrary.props" />
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings" />
<ImportGroup Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
<Import Project="$(VSPropsDir)Base.props" />
<Import Project="$(VSPropsDir)ClDisableAllWarnings.props" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<ItemDefinitionGroup>
<ClCompile>
<AdditionalIncludeDirectories>include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
</ClCompile>
</ItemDefinitionGroup>
<ItemGroup>
<ClInclude Include="include\FreeSurround\ChannelMaps.h" />
<ClInclude Include="include\FreeSurround\FreeSurroundDecoder.h" />
<ClInclude Include="include\FreeSurround\KissFFT.h" />
<ClInclude Include="include\FreeSurround\KissFFTR.h" />
<ClInclude Include="include\FreeSurround\_KissFFTGuts.h" />
</ItemGroup>
<ItemGroup>
<ClCompile Include="source\ChannelMaps.cpp" />
<ClCompile Include="source\FreeSurroundDecoder.cpp" />
<ClCompile Include="source\KissFFT.cpp" />
<ClCompile Include="source\KissFFTR.cpp" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>

View File

@ -1,42 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<Project>
<ItemGroup>
<ClCompile Include="source\ChannelMaps.cpp">
<Filter>source</Filter>
</ClCompile>
<ClCompile Include="source\FreeSurroundDecoder.cpp">
<Filter>source</Filter>
</ClCompile>
<ClCompile Include="source\KissFFT.cpp">
<Filter>source</Filter>
</ClCompile>
<ClCompile Include="source\KissFFTR.cpp">
<Filter>source</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="include\FreeSurround\_KissFFTGuts.h">
<Filter>include</Filter>
</ClInclude>
<ClInclude Include="include\FreeSurround\ChannelMaps.h">
<Filter>include</Filter>
</ClInclude>
<ClInclude Include="include\FreeSurround\FreeSurroundDecoder.h">
<Filter>include</Filter>
</ClInclude>
<ClInclude Include="include\FreeSurround\KissFFT.h">
<Filter>include</Filter>
</ClInclude>
<ClInclude Include="include\FreeSurround\KissFFTR.h">
<Filter>include</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<Filter Include="include">
<UniqueIdentifier>{776ecb31-6d5e-489f-bac9-b91a1b202345}</UniqueIdentifier>
</Filter>
<Filter Include="source">
<UniqueIdentifier>{11345325-d67c-4a21-b2e9-c7c6c8cfc8b4}</UniqueIdentifier>
</Filter>
</ItemGroup>
</Project>

View File

@ -1,13 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<Project>
<ItemDefinitionGroup>
<ClCompile>
<AdditionalIncludeDirectories>$(ExternalsDir)FreeSurround\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
</ClCompile>
</ItemDefinitionGroup>
<ItemGroup>
<ProjectReference Include="$(ExternalsDir)FreeSurround\FreeSurround.vcxproj">
<Project>{8498f2fa-5ca6-4169-9971-de5b1fe6132c}</Project>
</ProjectReference>
</ItemGroup>
</Project>

View File

@ -1,36 +0,0 @@
/*
Copyright (C) 2010 Christian Kothe
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef CHANNELMAPS_H
#define CHANNELMAPS_H
#include "FreeSurroundDecoder.h"
#include <map>
#include <vector>
const int grid_res = 21; // resolution of the lookup grid
// channel allocation maps (per setup)
typedef std::vector<std::vector<float *>> alloc_lut;
extern std::map<unsigned, alloc_lut> chn_alloc;
// channel metadata maps (per setup)
extern std::map<unsigned, std::vector<float>> chn_angle;
extern std::map<unsigned, std::vector<float>> chn_xsf;
extern std::map<unsigned, std::vector<float>> chn_ysf;
extern std::map<unsigned, std::vector<channel_id>> chn_id;
#endif

View File

@ -1,131 +0,0 @@
#ifndef KISS_FFT_H
#define KISS_FFT_H
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef __cplusplus
extern "C" {
#endif
// we're using doubles here...
#define kiss_fft_scalar double
/*
ATTENTION!
If you would like a :
-- a utility that will handle the caching of fft objects
-- real-only (no imaginary time component ) FFT
-- a multi-dimensional FFT
-- a command-line utility to perform ffts
-- a command-line utility to perform fast-convolution filtering
Then see kfc.h kiss_fftr.h kiss_fftnd.h fftutil.c kiss_fastfir.c
in the tools/ directory.
*/
#ifdef USE_SIMD
#include <xmmintrin.h>
#define kiss_fft_scalar __m128
#define KISS_FFT_MALLOC(nbytes) _mm_malloc(nbytes, 16)
#define KISS_FFT_FREE _mm_free
#else
#define KISS_FFT_MALLOC malloc
#define KISS_FFT_FREE free
#endif
#ifdef FIXED_POINT
#include <sys/types.h>
#if (FIXED_POINT == 32)
#define kiss_fft_scalar int32_t
#else
#define kiss_fft_scalar int16_t
#endif
#else
#ifndef kiss_fft_scalar
/* default is float */
#define kiss_fft_scalar float
#endif
#endif
typedef struct {
kiss_fft_scalar r;
kiss_fft_scalar i;
} kiss_fft_cpx;
typedef struct kiss_fft_state *kiss_fft_cfg;
/*
* kiss_fft_alloc
*
* Initialize a FFT (or IFFT) algorithm's cfg/state buffer.
*
* typical usage: kiss_fft_cfg mycfg=kiss_fft_alloc(1024,0,NULL,NULL);
*
* The return value from fft_alloc is a cfg buffer used internally
* by the fft routine or NULL.
*
* If lenmem is NULL, then kiss_fft_alloc will allocate a cfg buffer using
* malloc.
* The returned value should be free()d when done to avoid memory leaks.
*
* The state can be placed in a user supplied buffer 'mem':
* If lenmem is not NULL and mem is not NULL and *lenmem is large enough,
* then the function places the cfg in mem and the size used in *lenmem
* and returns mem.
*
* If lenmem is not NULL and ( mem is NULL or *lenmem is not large enough),
* then the function returns NULL and places the minimum cfg
* buffer size in *lenmem.
* */
kiss_fft_cfg kiss_fft_alloc(int nfft, int inverse_fft, void *mem,
size_t *lenmem);
/*
* kiss_fft(cfg,in_out_buf)
*
* Perform an FFT on a complex input buffer.
* for a forward FFT,
* fin should be f[0] , f[1] , ... ,f[nfft-1]
* fout will be F[0] , F[1] , ... ,F[nfft-1]
* Note that each element is complex and can be accessed like
f[k].r and f[k].i
* */
void kiss_fft(kiss_fft_cfg cfg, const kiss_fft_cpx *fin, kiss_fft_cpx *fout);
/*
A more generic version of the above function. It reads its input from every Nth
sample.
* */
void kiss_fft_stride(kiss_fft_cfg cfg, const kiss_fft_cpx *fin,
kiss_fft_cpx *fout, int fin_stride);
/* If kiss_fft_alloc allocated a buffer, it is one contiguous
buffer and can be simply free()d when no longer needed*/
#define kiss_fft_free free
/*
Cleans up some memory that gets managed internally. Not necessary to call, but
it might clean up
your compiler output to call this before you exit.
*/
void kiss_fft_cleanup(void);
/*
* Returns the smallest integer k, such that k>=n and k has only "fast" factors
* (2,3,5)
*/
int kiss_fft_next_fast_size(int n);
/* for real ffts, we need an even size */
#define kiss_fftr_next_fast_size_real(n) \
(kiss_fft_next_fast_size(((n) + 1) >> 1) << 1)
#ifdef __cplusplus
}
#endif
#endif

View File

@ -1,47 +0,0 @@
#ifndef KISS_FTR_H
#define KISS_FTR_H
#include "KissFFT.h"
#ifdef __cplusplus
extern "C" {
#endif
/*
Real optimized version can save about 45% cpu time vs. complex fft of a real
seq.
*/
typedef struct kiss_fftr_state *kiss_fftr_cfg;
kiss_fftr_cfg kiss_fftr_alloc(int nfft, int inverse_fft, void *mem,
size_t *lenmem);
/*
nfft must be even
If you don't care to allocate space, use mem = lenmem = NULL
*/
void kiss_fftr(kiss_fftr_cfg cfg, const kiss_fft_scalar *timedata,
kiss_fft_cpx *freqdata);
/*
input timedata has nfft scalar points
output freqdata has nfft/2+1 complex points
*/
void kiss_fftri(kiss_fftr_cfg cfg, const kiss_fft_cpx *freqdata,
kiss_fft_scalar *timedata);
/*
input freqdata has nfft/2+1 complex points
output timedata has nfft scalar points
*/
#define kiss_fftr_free free
#ifdef __cplusplus
}
#endif
#endif

View File

@ -1,202 +0,0 @@
/*
Copyright (c) 2003-2010, Mark Borgerding
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted
provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions
and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of
conditions and the following disclaimer in the documentation and/or other
materials provided with
the distribution.
* Neither the author nor the names of any contributors may be used to
endorse or promote
products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* kiss_fft.h
defines kiss_fft_scalar as either short or a float type
and defines
typedef struct { kiss_fft_scalar r; kiss_fft_scalar i; }kiss_fft_cpx; */
#include "KissFFT.h"
#include <limits.h>
#define MAXFACTORS 32
/* e.g. an fft of length 128 has 4 factors
as far as kissfft is concerned
4*4*4*2
*/
struct kiss_fft_state {
int nfft;
int inverse;
int factors[2 * MAXFACTORS];
kiss_fft_cpx twiddles[1];
};
/*
Explanation of macros dealing with complex math:
C_MUL(m,a,b) : m = a*b
C_FIXDIV( c , div ) : if a fixed point impl., c /= div. noop otherwise
C_SUB( res, a,b) : res = a - b
C_SUBFROM( res , a) : res -= a
C_ADDTO( res , a) : res += a
* */
#ifdef FIXED_POINT
#if (FIXED_POINT == 32)
#define FRACBITS 31
#define SAMPPROD int64_t
#define SAMP_MAX 2147483647
#else
#define FRACBITS 15
#define SAMPPROD int32_t
#define SAMP_MAX 32767
#endif
#define SAMP_MIN -SAMP_MAX
#if defined(CHECK_OVERFLOW)
#define CHECK_OVERFLOW_OP(a, op, b) \
if ((SAMPPROD)(a)op(SAMPPROD)(b) > SAMP_MAX || \
(SAMPPROD)(a)op(SAMPPROD)(b) < SAMP_MIN) { \
fprintf(stderr, \
"WARNING:overflow @ " __FILE__ "(%d): (%d " #op " %d) = %ld\n", \
__LINE__, (a), (b), (SAMPPROD)(a)op(SAMPPROD)(b)); \
}
#endif
#define smul(a, b) ((SAMPPROD)(a) * (b))
#define sround(x) (kiss_fft_scalar)(((x) + (1 << (FRACBITS - 1))) >> FRACBITS)
#define S_MUL(a, b) sround(smul(a, b))
#define C_MUL(m, a, b) \
do { \
(m).r = sround(smul((a).r, (b).r) - smul((a).i, (b).i)); \
(m).i = sround(smul((a).r, (b).i) + smul((a).i, (b).r)); \
} while (0)
#define DIVSCALAR(x, k) (x) = sround(smul(x, SAMP_MAX / k))
#define C_FIXDIV(c, div) \
do { \
DIVSCALAR((c).r, div); \
DIVSCALAR((c).i, div); \
} while (0)
#define C_MULBYSCALAR(c, s) \
do { \
(c).r = sround(smul((c).r, s)); \
(c).i = sround(smul((c).i, s)); \
} while (0)
#else /* not FIXED_POINT*/
#define S_MUL(a, b) ((a) * (b))
#define C_MUL(m, a, b) \
do { \
(m).r = (a).r * (b).r - (a).i * (b).i; \
(m).i = (a).r * (b).i + (a).i * (b).r; \
} while (0)
#define C_FIXDIV(c, div) /* NOOP */
#define C_MULBYSCALAR(c, s) \
do { \
(c).r *= (s); \
(c).i *= (s); \
} while (0)
#endif
#ifndef CHECK_OVERFLOW_OP
#define CHECK_OVERFLOW_OP(a, op, b) /* noop */
#endif
#define C_ADD(res, a, b) \
do { \
CHECK_OVERFLOW_OP((a).r, +, (b).r) \
CHECK_OVERFLOW_OP((a).i, +, (b).i) \
(res).r = (a).r + (b).r; \
(res).i = (a).i + (b).i; \
} while (0)
#define C_SUB(res, a, b) \
do { \
CHECK_OVERFLOW_OP((a).r, -, (b).r) \
CHECK_OVERFLOW_OP((a).i, -, (b).i) \
(res).r = (a).r - (b).r; \
(res).i = (a).i - (b).i; \
} while (0)
#define C_ADDTO(res, a) \
do { \
CHECK_OVERFLOW_OP((res).r, +, (a).r) \
CHECK_OVERFLOW_OP((res).i, +, (a).i) \
(res).r += (a).r; \
(res).i += (a).i; \
} while (0)
#define C_SUBFROM(res, a) \
do { \
CHECK_OVERFLOW_OP((res).r, -, (a).r) \
CHECK_OVERFLOW_OP((res).i, -, (a).i) \
(res).r -= (a).r; \
(res).i -= (a).i; \
} while (0)
#ifdef FIXED_POINT
#define KISS_FFT_COS(phase) floor(.5 + SAMP_MAX * cos(phase))
#define KISS_FFT_SIN(phase) floor(.5 + SAMP_MAX * sin(phase))
#define HALF_OF(x) ((x) >> 1)
#elif defined(USE_SIMD)
#define KISS_FFT_COS(phase) _mm_set1_ps(cos(phase))
#define KISS_FFT_SIN(phase) _mm_set1_ps(sin(phase))
#define HALF_OF(x) ((x)*_mm_set1_ps(.5))
#else
#define KISS_FFT_COS(phase) (kiss_fft_scalar) cos(phase)
#define KISS_FFT_SIN(phase) (kiss_fft_scalar) sin(phase)
#define HALF_OF(x) ((x)*.5)
#endif
#define kf_cexp(x, phase) \
do { \
(x)->r = KISS_FFT_COS(phase); \
(x)->i = KISS_FFT_SIN(phase); \
} while (0)
/* a debugging function */
#define pcpx(c) \
fprintf(stderr, "%g + %gi\n", (double)((c)->r), (double)((c)->i))
#ifdef KISS_FFT_USE_ALLOCA
// define this to allow use of alloca instead of malloc for temporary buffers
// Temporary buffers are used in two case:
// 1. FFT sizes that have "bad" factors. i.e. not 2,3 and 5
// 2. "in-place" FFTs. Notice the quotes, since kissfft does not really do an
// in-place transform.
#include <alloca.h>
#define KISS_FFT_TMP_ALLOC(nbytes) alloca(nbytes)
#define KISS_FFT_TMP_FREE(ptr)
#else
#define KISS_FFT_TMP_ALLOC(nbytes) KISS_FFT_MALLOC(nbytes)
#define KISS_FFT_TMP_FREE(ptr) KISS_FFT_FREE(ptr)
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,444 +0,0 @@
/*
Copyright (c) 2003-2010, Mark Borgerding
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted
provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions
and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of
conditions and the following disclaimer in the documentation and/or other
materials provided with
the distribution.
* Neither the author nor the names of any contributors may be used to
endorse or promote
products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "FreeSurround/_KissFFTGuts.h"
/* The guts header contains all the multiplication and addition macros that are
defined for
fixed or floating point complex numbers. It also delares the kf_ internal
functions.
*/
static void kf_bfly2(kiss_fft_cpx *Fout, const size_t fstride,
const kiss_fft_cfg st, int m) {
kiss_fft_cpx *Fout2;
kiss_fft_cpx *tw1 = st->twiddles;
kiss_fft_cpx t;
Fout2 = Fout + m;
do {
C_FIXDIV(*Fout, 2);
C_FIXDIV(*Fout2, 2);
C_MUL(t, *Fout2, *tw1);
tw1 += fstride;
C_SUB(*Fout2, *Fout, t);
C_ADDTO(*Fout, t);
++Fout2;
++Fout;
} while (--m);
}
static void kf_bfly4(kiss_fft_cpx *Fout, const size_t fstride,
const kiss_fft_cfg st, const size_t m) {
kiss_fft_cpx *tw1, *tw2, *tw3;
kiss_fft_cpx scratch[6];
size_t k = m;
const size_t m2 = 2 * m;
const size_t m3 = 3 * m;
tw3 = tw2 = tw1 = st->twiddles;
do {
C_FIXDIV(*Fout, 4);
C_FIXDIV(Fout[m], 4);
C_FIXDIV(Fout[m2], 4);
C_FIXDIV(Fout[m3], 4);
C_MUL(scratch[0], Fout[m], *tw1);
C_MUL(scratch[1], Fout[m2], *tw2);
C_MUL(scratch[2], Fout[m3], *tw3);
C_SUB(scratch[5], *Fout, scratch[1]);
C_ADDTO(*Fout, scratch[1]);
C_ADD(scratch[3], scratch[0], scratch[2]);
C_SUB(scratch[4], scratch[0], scratch[2]);
C_SUB(Fout[m2], *Fout, scratch[3]);
tw1 += fstride;
tw2 += fstride * 2;
tw3 += fstride * 3;
C_ADDTO(*Fout, scratch[3]);
if (st->inverse) {
Fout[m].r = scratch[5].r - scratch[4].i;
Fout[m].i = scratch[5].i + scratch[4].r;
Fout[m3].r = scratch[5].r + scratch[4].i;
Fout[m3].i = scratch[5].i - scratch[4].r;
} else {
Fout[m].r = scratch[5].r + scratch[4].i;
Fout[m].i = scratch[5].i - scratch[4].r;
Fout[m3].r = scratch[5].r - scratch[4].i;
Fout[m3].i = scratch[5].i + scratch[4].r;
}
++Fout;
} while (--k);
}
static void kf_bfly3(kiss_fft_cpx *Fout, const size_t fstride,
const kiss_fft_cfg st, size_t m) {
size_t k = m;
const size_t m2 = 2 * m;
kiss_fft_cpx *tw1, *tw2;
kiss_fft_cpx scratch[5];
kiss_fft_cpx epi3;
epi3 = st->twiddles[fstride * m];
tw1 = tw2 = st->twiddles;
do {
C_FIXDIV(*Fout, 3);
C_FIXDIV(Fout[m], 3);
C_FIXDIV(Fout[m2], 3);
C_MUL(scratch[1], Fout[m], *tw1);
C_MUL(scratch[2], Fout[m2], *tw2);
C_ADD(scratch[3], scratch[1], scratch[2]);
C_SUB(scratch[0], scratch[1], scratch[2]);
tw1 += fstride;
tw2 += fstride * 2;
Fout[m].r = Fout->r - HALF_OF(scratch[3].r);
Fout[m].i = Fout->i - HALF_OF(scratch[3].i);
C_MULBYSCALAR(scratch[0], epi3.i);
C_ADDTO(*Fout, scratch[3]);
Fout[m2].r = Fout[m].r + scratch[0].i;
Fout[m2].i = Fout[m].i - scratch[0].r;
Fout[m].r -= scratch[0].i;
Fout[m].i += scratch[0].r;
++Fout;
} while (--k);
}
static void kf_bfly5(kiss_fft_cpx *Fout, const size_t fstride,
const kiss_fft_cfg st, int m) {
kiss_fft_cpx *Fout0, *Fout1, *Fout2, *Fout3, *Fout4;
int u;
kiss_fft_cpx scratch[13];
kiss_fft_cpx *twiddles = st->twiddles;
kiss_fft_cpx *tw;
kiss_fft_cpx ya, yb;
ya = twiddles[fstride * m];
yb = twiddles[fstride * 2 * m];
Fout0 = Fout;
Fout1 = Fout0 + m;
Fout2 = Fout0 + 2 * m;
Fout3 = Fout0 + 3 * m;
Fout4 = Fout0 + 4 * m;
tw = st->twiddles;
for (u = 0; u < m; ++u) {
C_FIXDIV(*Fout0, 5);
C_FIXDIV(*Fout1, 5);
C_FIXDIV(*Fout2, 5);
C_FIXDIV(*Fout3, 5);
C_FIXDIV(*Fout4, 5);
scratch[0] = *Fout0;
C_MUL(scratch[1], *Fout1, tw[u * fstride]);
C_MUL(scratch[2], *Fout2, tw[2 * u * fstride]);
C_MUL(scratch[3], *Fout3, tw[3 * u * fstride]);
C_MUL(scratch[4], *Fout4, tw[4 * u * fstride]);
C_ADD(scratch[7], scratch[1], scratch[4]);
C_SUB(scratch[10], scratch[1], scratch[4]);
C_ADD(scratch[8], scratch[2], scratch[3]);
C_SUB(scratch[9], scratch[2], scratch[3]);
Fout0->r += scratch[7].r + scratch[8].r;
Fout0->i += scratch[7].i + scratch[8].i;
scratch[5].r =
scratch[0].r + S_MUL(scratch[7].r, ya.r) + S_MUL(scratch[8].r, yb.r);
scratch[5].i =
scratch[0].i + S_MUL(scratch[7].i, ya.r) + S_MUL(scratch[8].i, yb.r);
scratch[6].r = S_MUL(scratch[10].i, ya.i) + S_MUL(scratch[9].i, yb.i);
scratch[6].i = -S_MUL(scratch[10].r, ya.i) - S_MUL(scratch[9].r, yb.i);
C_SUB(*Fout1, scratch[5], scratch[6]);
C_ADD(*Fout4, scratch[5], scratch[6]);
scratch[11].r =
scratch[0].r + S_MUL(scratch[7].r, yb.r) + S_MUL(scratch[8].r, ya.r);
scratch[11].i =
scratch[0].i + S_MUL(scratch[7].i, yb.r) + S_MUL(scratch[8].i, ya.r);
scratch[12].r = -S_MUL(scratch[10].i, yb.i) + S_MUL(scratch[9].i, ya.i);
scratch[12].i = S_MUL(scratch[10].r, yb.i) - S_MUL(scratch[9].r, ya.i);
C_ADD(*Fout2, scratch[11], scratch[12]);
C_SUB(*Fout3, scratch[11], scratch[12]);
++Fout0;
++Fout1;
++Fout2;
++Fout3;
++Fout4;
}
}
/* perform the butterfly for one stage of a mixed radix FFT */
static void kf_bfly_generic(kiss_fft_cpx *Fout, const size_t fstride,
const kiss_fft_cfg st, int m, int p) {
int u, k, q1, q;
kiss_fft_cpx *twiddles = st->twiddles;
kiss_fft_cpx t;
int Norig = st->nfft;
kiss_fft_cpx *scratch =
(kiss_fft_cpx *)KISS_FFT_TMP_ALLOC(sizeof(kiss_fft_cpx) * p);
for (u = 0; u < m; ++u) {
k = u;
for (q1 = 0; q1 < p; ++q1) {
scratch[q1] = Fout[k];
C_FIXDIV(scratch[q1], p);
k += m;
}
k = u;
for (q1 = 0; q1 < p; ++q1) {
int twidx = 0;
Fout[k] = scratch[0];
for (q = 1; q < p; ++q) {
twidx += static_cast<int>(fstride) * k;
if (twidx >= Norig)
twidx -= Norig;
C_MUL(t, scratch[q], twiddles[twidx]);
C_ADDTO(Fout[k], t);
}
k += m;
}
}
KISS_FFT_TMP_FREE(scratch);
}
static void kf_work(kiss_fft_cpx *Fout, const kiss_fft_cpx *f,
const size_t fstride, int in_stride, int *factors,
const kiss_fft_cfg st) {
kiss_fft_cpx *Fout_beg = Fout;
const int p = *factors++; /* the radix */
const int m = *factors++; /* stage's fft length/p */
const kiss_fft_cpx *Fout_end = Fout + p * m;
#ifdef _OPENMP
// use openmp extensions at the
// top-level (not recursive)
if (fstride == 1 && p <= 5) {
int k;
// execute the p different work units in different threads
#pragma omp parallel for
for (k = 0; k < p; ++k)
kf_work(Fout + k * m, f + fstride * in_stride * k, fstride * p, in_stride,
factors, st);
// all threads have joined by this point
switch (p) {
case 2:
kf_bfly2(Fout, fstride, st, m);
break;
case 3:
kf_bfly3(Fout, fstride, st, m);
break;
case 4:
kf_bfly4(Fout, fstride, st, m);
break;
case 5:
kf_bfly5(Fout, fstride, st, m);
break;
default:
kf_bfly_generic(Fout, fstride, st, m, p);
break;
}
return;
}
#endif
if (m == 1) {
do {
*Fout = *f;
f += fstride * in_stride;
} while (++Fout != Fout_end);
} else {
do {
// recursive call:
// DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
// each one takes a decimated version of the input
kf_work(Fout, f, fstride * p, in_stride, factors, st);
f += fstride * in_stride;
} while ((Fout += m) != Fout_end);
}
Fout = Fout_beg;
// recombine the p smaller DFTs
switch (p) {
case 2:
kf_bfly2(Fout, fstride, st, m);
break;
case 3:
kf_bfly3(Fout, fstride, st, m);
break;
case 4:
kf_bfly4(Fout, fstride, st, m);
break;
case 5:
kf_bfly5(Fout, fstride, st, m);
break;
default:
kf_bfly_generic(Fout, fstride, st, m, p);
break;
}
}
/* facbuf is populated by p1,m1,p2,m2, ...
where
p[i] * m[i] = m[i-1]
m0 = n */
static void kf_factor(int n, int *facbuf) {
int p = 4;
double floor_sqrt;
floor_sqrt = floor(sqrt((double)n));
/*factor out powers of 4, powers of 2, then any remaining primes */
do {
while (n % p) {
switch (p) {
case 4:
p = 2;
break;
case 2:
p = 3;
break;
default:
p += 2;
break;
}
if (p > floor_sqrt)
p = n; /* no more factors, skip to end */
}
n /= p;
*facbuf++ = p;
*facbuf++ = n;
} while (n > 1);
}
/*
*
* User-callable function to allocate all necessary storage space for the fft.
*
* The return value is a contiguous block of memory, allocated with malloc. As
* such,
* It can be freed with free(), rather than a kiss_fft-specific function.
* */
kiss_fft_cfg kiss_fft_alloc(int nfft, int inverse_fft, void *mem,
size_t *lenmem) {
kiss_fft_cfg st = NULL;
size_t memneeded = sizeof(struct kiss_fft_state) +
sizeof(kiss_fft_cpx) * (nfft - 1); /* twiddle factors*/
if (lenmem == NULL) {
st = (kiss_fft_cfg) new char[memneeded];
} else {
if (mem != NULL && *lenmem >= memneeded)
st = (kiss_fft_cfg)mem;
*lenmem = memneeded;
}
if (st) {
int i;
st->nfft = nfft;
st->inverse = inverse_fft;
for (i = 0; i < nfft; ++i) {
const double pi =
3.141592653589793238462643383279502884197169399375105820974944;
double phase = -2 * pi * i / nfft;
if (st->inverse)
phase *= -1;
kf_cexp(st->twiddles + i, phase);
}
kf_factor(nfft, st->factors);
}
return st;
}
void kiss_fft_stride(kiss_fft_cfg st, const kiss_fft_cpx *fin,
kiss_fft_cpx *fout, int in_stride) {
if (fin == fout) {
// NOTE: this is not really an in-place FFT algorithm.
// It just performs an out-of-place FFT into a temp buffer
kiss_fft_cpx *tmpbuf =
(kiss_fft_cpx *)KISS_FFT_TMP_ALLOC(sizeof(kiss_fft_cpx) * st->nfft);
kf_work(tmpbuf, fin, 1, in_stride, st->factors, st);
memcpy(fout, tmpbuf, sizeof(kiss_fft_cpx) * st->nfft);
KISS_FFT_TMP_FREE(tmpbuf);
} else {
kf_work(fout, fin, 1, in_stride, st->factors, st);
}
}
void kiss_fft(kiss_fft_cfg cfg, const kiss_fft_cpx *fin, kiss_fft_cpx *fout) {
kiss_fft_stride(cfg, fin, fout, 1);
}
void kiss_fft_cleanup(void) {
// nothing needed any more
}
int kiss_fft_next_fast_size(int n) {
while (1) {
int m = n;
while ((m % 2) == 0)
m /= 2;
while ((m % 3) == 0)
m /= 3;
while ((m % 5) == 0)
m /= 5;
if (m <= 1)
break; /* n is completely factorable by twos, threes, and fives */
n++;
}
return n;
}

View File

@ -1,185 +0,0 @@
/*
Copyright (c) 2003-2004, Mark Borgerding
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted
provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions
and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of
conditions and the following disclaimer in the documentation and/or other
materials provided with
the distribution.
* Neither the author nor the names of any contributors may be used to
endorse or promote
products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "FreeSurround/KissFFTR.h"
#include "FreeSurround/_KissFFTGuts.h"
struct kiss_fftr_state {
kiss_fft_cfg substate;
kiss_fft_cpx *tmpbuf;
kiss_fft_cpx *super_twiddles;
#ifdef USE_SIMD
void *pad;
#endif
};
kiss_fftr_cfg kiss_fftr_alloc(int nfft, int inverse_fft, void *mem,
size_t *lenmem) {
int i;
kiss_fftr_cfg st = NULL;
size_t subsize = 65536 * 4, memneeded = 0;
if (nfft & 1) {
fprintf(stderr, "Real FFT optimization must be even.\n");
return NULL;
}
nfft >>= 1;
kiss_fft_alloc(nfft, inverse_fft, NULL, &subsize);
memneeded = sizeof(struct kiss_fftr_state) + subsize +
sizeof(kiss_fft_cpx) * (nfft * 3 / 2);
if (lenmem == NULL) {
st = (kiss_fftr_cfg)malloc(memneeded);
} else {
if (*lenmem >= memneeded)
st = (kiss_fftr_cfg)mem;
*lenmem = memneeded;
}
if (!st)
return NULL;
st->substate = (kiss_fft_cfg)(st + 1); /*just beyond kiss_fftr_state struct */
st->tmpbuf = (kiss_fft_cpx *)(((char *)st->substate) + subsize);
st->super_twiddles = st->tmpbuf + nfft;
kiss_fft_alloc(nfft, inverse_fft, st->substate, &subsize);
for (i = 0; i < nfft / 2; ++i) {
double phase =
-3.14159265358979323846264338327 * ((double)(i + 1) / nfft + .5);
if (inverse_fft)
phase *= -1;
kf_cexp(st->super_twiddles + i, phase);
}
return st;
}
void kiss_fftr(kiss_fftr_cfg st, const kiss_fft_scalar *timedata,
kiss_fft_cpx *freqdata) {
/* input buffer timedata is stored row-wise */
int k, ncfft;
kiss_fft_cpx fpnk, fpk, f1k, f2k, tw, tdc;
if (st->substate->inverse) {
fprintf(stderr, "kiss fft usage error: improper alloc\n");
exit(1);
}
ncfft = st->substate->nfft;
/*perform the parallel fft of two real signals packed in real,imag*/
kiss_fft(st->substate, (const kiss_fft_cpx *)timedata, st->tmpbuf);
/* The real part of the DC element of the frequency spectrum in st->tmpbuf
* contains the sum of the even-numbered elements of the input time sequence
* The imag part is the sum of the odd-numbered elements
*
* The sum of tdc.r and tdc.i is the sum of the input time sequence.
* yielding DC of input time sequence
* The difference of tdc.r - tdc.i is the sum of the input (dot product)
* [1,-1,1,-1...
* yielding Nyquist bin of input time sequence
*/
tdc.r = st->tmpbuf[0].r;
tdc.i = st->tmpbuf[0].i;
C_FIXDIV(tdc, 2);
CHECK_OVERFLOW_OP(tdc.r, +, tdc.i);
CHECK_OVERFLOW_OP(tdc.r, -, tdc.i);
freqdata[0].r = tdc.r + tdc.i;
freqdata[ncfft].r = tdc.r - tdc.i;
#ifdef USE_SIMD
freqdata[ncfft].i = freqdata[0].i = _mm_set1_ps(0);
#else
freqdata[ncfft].i = freqdata[0].i = 0;
#endif
for (k = 1; k <= ncfft / 2; ++k) {
fpk = st->tmpbuf[k];
fpnk.r = st->tmpbuf[ncfft - k].r;
fpnk.i = -st->tmpbuf[ncfft - k].i;
C_FIXDIV(fpk, 2);
C_FIXDIV(fpnk, 2);
C_ADD(f1k, fpk, fpnk);
C_SUB(f2k, fpk, fpnk);
C_MUL(tw, f2k, st->super_twiddles[k - 1]);
freqdata[k].r = HALF_OF(f1k.r + tw.r);
freqdata[k].i = HALF_OF(f1k.i + tw.i);
freqdata[ncfft - k].r = HALF_OF(f1k.r - tw.r);
freqdata[ncfft - k].i = HALF_OF(tw.i - f1k.i);
}
}
void kiss_fftri(kiss_fftr_cfg st, const kiss_fft_cpx *freqdata,
kiss_fft_scalar *timedata) {
/* input buffer timedata is stored row-wise */
int k, ncfft;
if (st->substate->inverse == 0) {
fprintf(stderr, "kiss fft usage error: improper alloc\n");
exit(1);
}
ncfft = st->substate->nfft;
st->tmpbuf[0].r = freqdata[0].r + freqdata[ncfft].r;
st->tmpbuf[0].i = freqdata[0].r - freqdata[ncfft].r;
C_FIXDIV(st->tmpbuf[0], 2);
for (k = 1; k <= ncfft / 2; ++k) {
kiss_fft_cpx fk, fnkc, fek, fok, tmp;
fk = freqdata[k];
fnkc.r = freqdata[ncfft - k].r;
fnkc.i = -freqdata[ncfft - k].i;
C_FIXDIV(fk, 2);
C_FIXDIV(fnkc, 2);
C_ADD(fek, fk, fnkc);
C_SUB(tmp, fk, fnkc);
C_MUL(fok, tmp, st->super_twiddles[k - 1]);
C_ADD(st->tmpbuf[k], fek, fok);
C_SUB(st->tmpbuf[ncfft - k], fek, fok);
#ifdef USE_SIMD
st->tmpbuf[ncfft - k].i *= _mm_set1_ps(-1.0);
#else
st->tmpbuf[ncfft - k].i *= -1;
#endif
}
kiss_fft(st->substate, st->tmpbuf, (kiss_fft_cpx *)timedata);
}

View File

@ -3,6 +3,8 @@ add_library(audiocommon
AudioCommon.h
CubebStream.h
Enums.h
FreeSurroundDecoder.cpp
FreeSurroundDecoder.h
Mixer.cpp
Mixer.h
SurroundDecoder.cpp
@ -85,10 +87,7 @@ endif()
target_link_libraries(audiocommon
PUBLIC
common
PRIVATE
FreeSurround)
common)
if(ENABLE_CUBEB)
target_link_libraries(audiocommon PRIVATE cubeb::cubeb)

View File

@ -1,45 +1,38 @@
/*
Copyright (C) 2007-2010 Christian Kothe
// Copyright 2025 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
#include "FreeSurroundDecoder.h"
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#include <cstring>
#include <numbers>
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "FreeSurround/FreeSurroundDecoder.h"
#include "FreeSurround/ChannelMaps.h"
#include <cmath>
using std::numbers::pi;
#undef min
#undef max
#define kiss_fftr_free free
// FreeSurround implementation
// DPL2FSDecoder::Init() must be called before using the decoder.
DPL2FSDecoder::DPL2FSDecoder() {
DPL2FSDecoder::DPL2FSDecoder()
{
initialized = false;
buffer_empty = true;
}
DPL2FSDecoder::~DPL2FSDecoder() {
DPL2FSDecoder::~DPL2FSDecoder()
{
kiss_fftr_free(forward);
kiss_fftr_free(inverse);
}
void DPL2FSDecoder::Init(channel_setup chsetup, unsigned int blsize,
unsigned int sample_rate) {
if (!initialized) {
void DPL2FSDecoder::Init(const channel_setup chsetup, const unsigned int blocksize,
const unsigned int sample_rate)
{
if (!initialized)
{
setup = chsetup;
N = blsize;
N = blocksize;
samplerate = sample_rate;
// Initialize the parameters
@ -50,8 +43,8 @@ void DPL2FSDecoder::Init(channel_setup chsetup, unsigned int blsize,
dst = std::vector<double>(N);
lf = std::vector<cplx>(N / 2 + 1);
rf = std::vector<cplx>(N / 2 + 1);
forward = kiss_fftr_alloc(N, 0, 0, 0);
inverse = kiss_fftr_alloc(N, 1, 0, 0);
forward = kiss_fftr_alloc(N, 0, nullptr, nullptr);
inverse = kiss_fftr_alloc(N, 1, nullptr, nullptr);
C = static_cast<unsigned int>(chn_alloc[setup].size());
// Allocate per-channel buffers
@ -80,8 +73,10 @@ void DPL2FSDecoder::Init(channel_setup chsetup, unsigned int blsize,
// decode a stereo chunk, produces a multichannel chunk of the same size
// (lagged)
float *DPL2FSDecoder::decode(float *input) {
if (initialized) {
float* DPL2FSDecoder::decode(const float* input)
{
if (initialized)
{
// append incoming data to the end of the input buffer
memcpy(&inbuf[N], &input[0], 8 * N);
// process first and second half, overlapped
@ -93,85 +88,131 @@ float *DPL2FSDecoder::decode(float *input) {
buffer_empty = false;
return &outbuf[0];
}
return 0;
return nullptr;
}
// flush the internal buffers
void DPL2FSDecoder::flush() {
void DPL2FSDecoder::flush()
{
memset(&outbuf[0], 0, outbuf.size() * 4);
memset(&inbuf[0], 0, inbuf.size() * 4);
buffer_empty = true;
}
// number of samples currently held in the buffer
unsigned int DPL2FSDecoder::buffered() { return buffer_empty ? 0 : N / 2; }
// set soundfield & rendering parameters
void DPL2FSDecoder::set_circular_wrap(float v) { circular_wrap = v; }
void DPL2FSDecoder::set_shift(float v) { shift = v; }
void DPL2FSDecoder::set_depth(float v) { depth = v; }
void DPL2FSDecoder::set_focus(float v) { focus = v; }
void DPL2FSDecoder::set_center_image(float v) { center_image = v; }
void DPL2FSDecoder::set_front_separation(float v) { front_separation = v; }
void DPL2FSDecoder::set_rear_separation(float v) { rear_separation = v; }
void DPL2FSDecoder::set_low_cutoff(float v) { lo_cut = v * (N / 2); }
void DPL2FSDecoder::set_high_cutoff(float v) { hi_cut = v * (N / 2); }
void DPL2FSDecoder::set_bass_redirection(bool v) { use_lfe = v; }
void DPL2FSDecoder::set_circular_wrap(const float v)
{
circular_wrap = v;
}
void DPL2FSDecoder::set_shift(const float v)
{
shift = v;
}
void DPL2FSDecoder::set_depth(const float v)
{
depth = v;
}
void DPL2FSDecoder::set_focus(const float v)
{
focus = v;
}
void DPL2FSDecoder::set_center_image(const float v)
{
center_image = v;
}
void DPL2FSDecoder::set_front_separation(const float v)
{
front_separation = v;
}
void DPL2FSDecoder::set_rear_separation(const float v)
{
rear_separation = v;
}
void DPL2FSDecoder::set_low_cutoff(const float v)
{
lo_cut = v * (N / 2);
}
void DPL2FSDecoder::set_high_cutoff(const float v)
{
hi_cut = v * (N / 2);
}
void DPL2FSDecoder::set_bass_redirection(const bool v)
{
use_lfe = v;
}
// helper functions
inline float DPL2FSDecoder::sqr(double x) { return static_cast<float>(x * x); }
inline double DPL2FSDecoder::amplitude(const cplx &x) {
inline float DPL2FSDecoder::sqr(const double x)
{
return static_cast<float>(x * x);
}
inline double DPL2FSDecoder::amplitude(const cplx& x)
{
return sqrt(sqr(x.real()) + sqr(x.imag()));
}
inline double DPL2FSDecoder::phase(const cplx &x) {
inline double DPL2FSDecoder::phase(const cplx& x)
{
return atan2(x.imag(), x.real());
}
inline cplx DPL2FSDecoder::polar(double a, double p) {
inline cplx DPL2FSDecoder::polar(const double a, const double p)
{
return cplx(a * cos(p), a * sin(p));
}
inline float DPL2FSDecoder::min(double a, double b) {
inline float DPL2FSDecoder::min(const double a, const double b)
{
return static_cast<float>(a < b ? a : b);
}
inline float DPL2FSDecoder::max(double a, double b) {
inline float DPL2FSDecoder::max(const double a, const double b)
{
return static_cast<float>(a > b ? a : b);
}
inline float DPL2FSDecoder::clamp(double x) { return max(-1, min(1, x)); }
inline float DPL2FSDecoder::sign(double x) {
return static_cast<float>(x < 0 ? -1 : (x > 0 ? 1 : 0));
inline float DPL2FSDecoder::clamp(const double x)
{
return max(-1, min(1, x));
}
inline float DPL2FSDecoder::sign(const double x)
{
return static_cast<float>(x < 0 ? -1 : x > 0 ? 1 : 0);
}
// get the distance of the soundfield edge, along a given angle
inline double DPL2FSDecoder::edgedistance(double a) {
inline double DPL2FSDecoder::edgedistance(const double a)
{
return min(sqrt(1 + sqr(tan(a))), sqrt(1 + sqr(1 / tan(a))));
}
// get the index (and fractional offset!) in a piecewise-linear channel
// allocation grid
int DPL2FSDecoder::map_to_grid(double &x) {
double gp = ((x + 1) * 0.5) * (grid_res - 1),
i = min(grid_res - 2, floor(gp));
int DPL2FSDecoder::map_to_grid(double& x)
{
const double gp = (x + 1) * 0.5 * (grid_res - 1), i = min(grid_res - 2, floor(gp));
x = gp - i;
return static_cast<int>(i);
}
// decode a block of data and overlap-add it into outbuf
void DPL2FSDecoder::buffered_decode(float *input) {
void DPL2FSDecoder::buffered_decode(const float* input)
{
// demultiplex and apply window function
for (unsigned int k = 0; k < N; k++) {
for (unsigned int k = 0; k < N; k++)
{
lt[k] = wnd[k] * input[k * 2 + 0];
rt[k] = wnd[k] * input[k * 2 + 1];
}
// map into spectral domain
kiss_fftr(forward, &lt[0], (kiss_fft_cpx *)&lf[0]);
kiss_fftr(forward, &rt[0], (kiss_fft_cpx *)&rf[0]);
kiss_fftr(forward, &lt[0], reinterpret_cast<kiss_fft_cpx*>(&lf[0]));
kiss_fftr(forward, &rt[0], reinterpret_cast<kiss_fft_cpx*>(&rf[0]));
// compute multichannel output signal in the spectral domain
for (unsigned int f = 1; f < N / 2; f++) {
for (unsigned int f = 1; f < N / 2; f++)
{
// get Lt/Rt amplitudes & phases
double ampL = amplitude(lf[f]), ampR = amplitude(rf[f]);
double phaseL = phase(lf[f]), phaseR = phase(rf[f]);
const double ampL = amplitude(lf[f]), ampR = amplitude(rf[f]);
const double phaseL = phase(lf[f]), phaseR = phase(rf[f]);
// calculate the amplitude & phase differences
double ampDiff =
clamp((ampL + ampR < epsilon) ? 0 : (ampR - ampL) / (ampR + ampL));
const double ampDiff = clamp(
ampL + ampR < std::numeric_limits<double>::epsilon() ? 0 : (ampR - ampL) / (ampR + ampL));
double phaseDiff = abs(phaseL - phaseR);
if (phaseDiff > pi)
phaseDiff = 2 * pi - phaseDiff;
@ -188,41 +229,38 @@ void DPL2FSDecoder::buffered_decode(float *input) {
// add focus control
transform_focus(x, y, focus);
// add crossfeed control
x = clamp(x *
(front_separation * (1 + y) / 2 + rear_separation * (1 - y) / 2));
x = clamp(x * (front_separation * (1 + y) / 2 + rear_separation * (1 - y) / 2));
// get total signal amplitude
double amp_total = sqrt(ampL * ampL + ampR * ampR);
const double amp_total = sqrt(ampL * ampL + ampR * ampR);
// and total L/C/R signal phases
double phase_of[] = {
phaseL, atan2(lf[f].imag() + rf[f].imag(), lf[f].real() + rf[f].real()),
phaseR};
const double phase_of[] = {
phaseL, atan2(lf[f].imag() + rf[f].imag(), lf[f].real() + rf[f].real()), phaseR};
// compute 2d channel map indexes p/q and update x/y to fractional offsets
// in the map grid
int p = map_to_grid(x), q = map_to_grid(y);
const int p = map_to_grid(x), q = map_to_grid(y);
// map position to channel volumes
for (unsigned int c = 0; c < C - 1; c++) {
for (unsigned int c = 0; c < C - 1; c++)
{
// look up channel map at respective position (with bilinear
// interpolation) and build the
// signal
std::vector<float *> &a = chn_alloc[setup][c];
signal[c][f] = polar(
amp_total * ((1 - x) * (1 - y) * a[q][p] + x * (1 - y) * a[q][p + 1] +
(1 - x) * y * a[q + 1][p] + x * y * a[q + 1][p + 1]),
phase_of[1 + static_cast<int>(sign(chn_xsf[setup][c]))]);
std::vector<float*>& a = chn_alloc[setup][c];
signal[c][f] = polar(amp_total * ((1 - x) * (1 - y) * a[q][p] + x * (1 - y) * a[q][p + 1] +
(1 - x) * y * a[q + 1][p] + x * y * a[q + 1][p + 1]),
phase_of[1 + static_cast<int>(sign(chn_xsf[setup][c]))]);
}
// optionally redirect bass
if (use_lfe && f < hi_cut) {
if (use_lfe && f < hi_cut)
{
// level of LFE channel according to normalized frequency
double lfe_level =
f < lo_cut ? 1
: 0.5 * (1 + cos(pi * (f - lo_cut) / (hi_cut - lo_cut)));
double lfe_level = f < lo_cut ? 1 : 0.5 * (1 + cos(pi * (f - lo_cut) / (hi_cut - lo_cut)));
// assign LFE channel
signal[C - 1][f] = lfe_level * polar(amp_total, phase_of[1]);
// subtract the signal from the other channels
for (unsigned int c = 0; c < C - 1; c++)
signal[c][f] *= (1 - lfe_level);
signal[c][f] *= 1 - lfe_level;
}
}
@ -231,9 +269,10 @@ void DPL2FSDecoder::buffered_decode(float *input) {
// and clear the rest
memset(&outbuf[C * N], 0, C * 4 * N / 2);
// backtransform each channel and overlap-add
for (unsigned int c = 0; c < C; c++) {
for (unsigned int c = 0; c < C; c++)
{
// back-transform into time domain
kiss_fftri(inverse, (kiss_fft_cpx *)&signal[c][0], &dst[0]);
kiss_fftri(inverse, reinterpret_cast<kiss_fft_cpx*>(&signal[c][0]), &dst[0]);
// add the result to the last 2/3 of the output buffer, windowed (and
// remultiplex)
for (unsigned int k = 0; k < N; k++)
@ -241,40 +280,33 @@ void DPL2FSDecoder::buffered_decode(float *input) {
}
}
// transform amp/phase difference space into x/y soundfield space
void DPL2FSDecoder::transform_decode(double a, double p, double &x, double &y) {
void DPL2FSDecoder::transform_decode(const double a, const double p, double& x, double& y)
{
x = clamp(1.0047 * a + 0.46804 * a * p * p * p - 0.2042 * a * p * p * p * p +
0.0080586 * a * p * p * p * p * p * p * p -
0.0001526 * a * p * p * p * p * p * p * p * p * p * p -
0.073512 * a * a * a * p - 0.2499 * a * a * a * p * p * p * p +
0.016932 * a * a * a * p * p * p * p * p * p * p -
0.0001526 * a * p * p * p * p * p * p * p * p * p * p - 0.073512 * a * a * a * p -
0.2499 * a * a * a * p * p * p * p + 0.016932 * a * a * a * p * p * p * p * p * p * p -
0.00027707 * a * a * a * p * p * p * p * p * p * p * p * p * p +
0.048105 * a * a * a * a * a * p * p * p * p * p * p * p -
0.0065947 * a * a * a * a * a * p * p * p * p * p * p * p * p * p *
p +
0.0016006 * a * a * a * a * a * p * p * p * p * p * p * p * p * p *
p * p -
0.0071132 * a * a * a * a * a * a * a * p * p * p * p * p * p * p *
p * p +
0.0022336 * a * a * a * a * a * a * a * p * p * p * p * p * p * p *
p * p * p * p -
0.0004804 * a * a * a * a * a * a * a * p * p * p * p * p * p * p *
p * p * p * p * p);
y = clamp(
0.98592 - 0.62237 * p + 0.077875 * p * p - 0.0026929 * p * p * p * p * p +
0.4971 * a * a * p - 0.00032124 * a * a * p * p * p * p * p * p +
9.2491e-006 * a * a * a * a * p * p * p * p * p * p * p * p * p * p +
0.051549 * a * a * a * a * a * a * a * a +
1.0727e-014 * a * a * a * a * a * a * a * a * a * a);
0.0065947 * a * a * a * a * a * p * p * p * p * p * p * p * p * p * p +
0.0016006 * a * a * a * a * a * p * p * p * p * p * p * p * p * p * p * p -
0.0071132 * a * a * a * a * a * a * a * p * p * p * p * p * p * p * p * p +
0.0022336 * a * a * a * a * a * a * a * p * p * p * p * p * p * p * p * p * p * p -
0.0004804 * a * a * a * a * a * a * a * p * p * p * p * p * p * p * p * p * p * p * p);
y = clamp(0.98592 - 0.62237 * p + 0.077875 * p * p - 0.0026929 * p * p * p * p * p +
0.4971 * a * a * p - 0.00032124 * a * a * p * p * p * p * p * p +
9.2491e-006 * a * a * a * a * p * p * p * p * p * p * p * p * p * p +
0.051549 * a * a * a * a * a * a * a * a +
1.0727e-014 * a * a * a * a * a * a * a * a * a * a);
}
// apply a circular_wrap transformation to some position
void DPL2FSDecoder::transform_circular_wrap(double &x, double &y,
double refangle) {
void DPL2FSDecoder::transform_circular_wrap(double& x, double& y, double refangle)
{
if (refangle == 90)
return;
refangle = refangle * pi / 180;
double baseangle = 90 * pi / 180;
constexpr double baseangle = 90 * pi / 180;
// translate into edge-normalized polar coordinates
double ang = atan2(x, y), len = sqrt(x * x + y * y);
len = len / edgedistance(ang);
@ -284,8 +316,7 @@ void DPL2FSDecoder::transform_circular_wrap(double &x, double &y,
ang *= refangle / baseangle;
else
// angle falls within the rear region (to be shrunken)
ang = pi - (-(((refangle - 2 * pi) * (pi - abs(ang)) * sign(ang)) /
(2 * pi - baseangle)));
ang = pi - -((refangle - 2 * pi) * (pi - abs(ang)) * sign(ang) / (2 * pi - baseangle));
// translate back into soundfield position
len = len * edgedistance(ang);
x = clamp(sin(ang) * len);
@ -293,12 +324,13 @@ void DPL2FSDecoder::transform_circular_wrap(double &x, double &y,
}
// apply a focus transformation to some position
void DPL2FSDecoder::transform_focus(double &x, double &y, double focus) {
void DPL2FSDecoder::transform_focus(double& x, double& y, const double focus)
{
if (focus == 0)
return;
const double ang = atan2(x, y);
// translate into edge-normalized polar coordinates
double ang = atan2(x, y),
len = clamp(sqrt(x * x + y * y) / edgedistance(ang));
double len = clamp(sqrt(x * x + y * y) / edgedistance(ang));
// apply focus
len = focus > 0 ? 1 - pow(1 - len, 1 + focus * 20) : pow(len, 1 - focus * 20);
// back-transform into euclidian soundfield position

View File

@ -1,24 +1,10 @@
// Copyright (C) 2007-2010 Christian Kothe
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
// USA.
// Copyright 2025 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#ifndef FREESURROUND_DECODER_H
#define FREESURROUND_DECODER_H
#include "KissFFTR.h"
#include <complex>
#include <map>
#include <vector>
typedef std::complex<double> cplx;
@ -27,7 +13,8 @@ typedef std::complex<double> cplx;
// right). The ordering here also determines the ordering of interleaved
// samples in the output signal.
typedef enum channel_id {
typedef enum channel_id
{
ci_none = 0,
ci_front_left = 1 << 1,
ci_front_center_left = 1 << 2,
@ -51,18 +38,64 @@ typedef enum channel_id {
// The supported output channel setups. A channel setup is defined by the set
// of channels that are present. Here is a graphic of the cs_5point1 setup:
// http://en.wikipedia.org/wiki/File:5_1_channels_(surround_sound)_label.svg
typedef enum channel_setup {
cs_5point1 = ci_front_left | ci_front_center | ci_front_right | ci_back_left |
ci_back_right | ci_lfe,
typedef enum channel_setup
{
cs_5point1 =
ci_front_left | ci_front_center | ci_front_right | ci_back_left | ci_back_right | ci_lfe,
cs_7point1 = ci_front_left | ci_front_center | ci_front_right |
ci_side_center_left | ci_side_center_right | ci_back_left |
ci_back_right | ci_lfe
cs_7point1 = ci_front_left | ci_front_center | ci_front_right | ci_side_center_left |
ci_side_center_right | ci_back_left | ci_back_right | ci_lfe
} channel_setup;
extern "C" {
// we're using doubles here...
#define kiss_fft_scalar double
typedef struct
{
kiss_fft_scalar r;
kiss_fft_scalar i;
} kiss_fft_cpx;
typedef struct kiss_fftr_state* kiss_fftr_cfg;
kiss_fftr_cfg kiss_fftr_alloc(int nfft, int inverse_fft, void* mem, size_t* lenmem);
/*
nfft must be even
If you don't care to allocate space, use mem = lenmem = NULL
*/
void kiss_fftr(kiss_fftr_cfg cfg, const kiss_fft_scalar* timedata, kiss_fft_cpx* freqdata);
/*
input timedata has nfft scalar points
output freqdata has nfft/2+1 complex points
*/
void kiss_fftri(kiss_fftr_cfg cfg, const kiss_fft_cpx* freqdata, kiss_fft_scalar* timedata);
/*
input freqdata has nfft/2+1 complex points
output timedata has nfft scalar points
*/
}
typedef std::vector<std::vector<float*>> alloc_lut;
constexpr int grid_res = 21; // resolution of the lookup grid
// channel allocation maps (per setup)
extern std::map<unsigned, alloc_lut> chn_alloc;
// channel metadata maps (per setup)
extern std::map<unsigned, std::vector<float>> chn_angle;
extern std::map<unsigned, std::vector<float>> chn_xsf;
extern std::map<unsigned, std::vector<float>> chn_ysf;
extern std::map<unsigned, std::vector<channel_id>> chn_id;
// The FreeSurround decoder.
class DPL2FSDecoder {
class DPL2FSDecoder
{
public:
// Create an instance of the decoder.
// @param setup The output channel setup -- determines the number of output
@ -75,8 +108,8 @@ public:
DPL2FSDecoder();
~DPL2FSDecoder();
void Init(channel_setup setup = cs_5point1, unsigned int blocksize = 4096,
unsigned int samplerate = 48000);
void Init(channel_setup chsetup = cs_5point1, unsigned int blocksize = 4096,
unsigned int sample_rate = 48000);
// Decode a chunk of stereo sound. The output is delayed by half of the
// blocksize. This function is the only one needed for straightforward
@ -86,11 +119,12 @@ public:
// @return A pointer to an internal buffer of exactly blocksize (multiplexed)
// multichannel samples. The actual number of values depends on the number of
// output channels in the chosen channel setup.
float *decode(float *input);
float* decode(const float* input);
// Flush the internal buffer.
void flush();
private:
// set soundfield & rendering parameters
// for more information, see full FreeSurround source code
void set_circular_wrap(float v);
@ -104,14 +138,6 @@ public:
void set_high_cutoff(float v);
void set_bass_redirection(bool v);
// number of samples currently held in the buffer
unsigned int buffered();
private:
// constants
const float pi = 3.141592654f;
const float epsilon = 0.000001f;
// number of samples per input/output block, number of output channels
unsigned int N, C;
unsigned int samplerate;
@ -178,32 +204,32 @@ private:
std::vector<std::vector<cplx>> signal;
// helper functions
inline float sqr(double x);
inline double amplitude(const cplx &x);
inline double phase(const cplx &x);
inline cplx polar(double a, double p);
inline float min(double a, double b);
inline float max(double a, double b);
inline float clamp(double x);
inline float sign(double x);
static inline float sqr(double x);
static inline double amplitude(const cplx& x);
static inline double phase(const cplx& x);
static inline cplx polar(double a, double p);
static inline float min(double a, double b);
static inline float max(double a, double b);
static inline float clamp(double x);
static inline float sign(double x);
// get the distance of the soundfield edge, along a given angle
inline double edgedistance(double a);
static inline double edgedistance(double a);
// get the index (and fractional offset!) in a piecewise-linear channel
// allocation grid
int map_to_grid(double &x);
static int map_to_grid(double& x);
// decode a block of data and overlap-add it into outbuf
void buffered_decode(float *input);
void buffered_decode(const float* input);
// transform amp/phase difference space into x/y soundfield space
void transform_decode(double a, double p, double &x, double &y);
static void transform_decode(double a, double p, double& x, double& y);
// apply a circular_wrap transformation to some position
void transform_circular_wrap(double &x, double &y, double refangle);
static void transform_circular_wrap(double& x, double& y, double refangle);
// apply a focus transformation to some position
void transform_focus(double &x, double &y, double focus);
static void transform_focus(double& x, double& y, double focus);
};
#endif

View File

@ -2,8 +2,8 @@
// SPDX-License-Identifier: GPL-2.0-or-later
#include "AudioCommon/SurroundDecoder.h"
#include "AudioCommon/FreeSurroundDecoder.h"
#include <FreeSurround/FreeSurroundDecoder.h>
#include <limits>
namespace AudioCommon

View File

@ -5,6 +5,7 @@
<ClInclude Include="AudioCommon\CubebStream.h" />
<ClInclude Include="AudioCommon\CubebUtils.h" />
<ClInclude Include="AudioCommon\Enums.h" />
<ClInclude Include="AudioCommon\FreeSurroundDecoder.h" />
<ClInclude Include="AudioCommon\Mixer.h" />
<ClInclude Include="AudioCommon\NullSoundStream.h" />
<ClInclude Include="AudioCommon\OpenALStream.h" />
@ -777,6 +778,7 @@
<ClCompile Include="AudioCommon\AudioCommon.cpp" />
<ClCompile Include="AudioCommon\CubebStream.cpp" />
<ClCompile Include="AudioCommon\CubebUtils.cpp" />
<ClCompile Include="AudioCommon\FreeSurroundDecoder.cpp" />
<ClCompile Include="AudioCommon\Mixer.cpp" />
<ClCompile Include="AudioCommon\NullSoundStream.cpp" />
<ClCompile Include="AudioCommon\OpenALStream.cpp" />

View File

@ -38,7 +38,6 @@
<Import Project="$(ExternalsDir)enet\exports.props" />
<Import Project="$(ExternalsDir)FatFs\exports.props" />
<Import Project="$(ExternalsDir)fmt\exports.props" />
<Import Project="$(ExternalsDir)FreeSurround\exports.props" />
<Import Project="$(ExternalsDir)glslang\exports.props" />
<Import Project="$(ExternalsDir)imgui\exports.props" />
<Import Project="$(ExternalsDir)implot\exports.props" />

View File

@ -59,8 +59,6 @@ Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "picojson", "..\Externals\pi
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "ed25519", "..\Externals\ed25519\ed25519.vcxproj", "{5BDF4B91-1491-4FB0-BC27-78E9A8E97DC3}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "FreeSurround", "..\Externals\FreeSurround\FreeSurround.vcxproj", "{8498F2FA-5CA6-4169-9971-DE5B1FE6132C}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "discord-rpc", "..\Externals\discord-rpc\src\discord-rpc.vcxproj", "{4482FD2A-EC43-3FFB-AC20-2E5C54B05EAD}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "minizip-ng", "..\Externals\minizip-ng\minizip-ng.vcxproj", "{23114507-079A-4418-9707-CFA81A03CA99}"
@ -311,14 +309,6 @@ Global
{5BDF4B91-1491-4FB0-BC27-78E9A8E97DC3}.Release|ARM64.Build.0 = Release|ARM64
{5BDF4B91-1491-4FB0-BC27-78E9A8E97DC3}.Release|x64.ActiveCfg = Release|x64
{5BDF4B91-1491-4FB0-BC27-78E9A8E97DC3}.Release|x64.Build.0 = Release|x64
{8498F2FA-5CA6-4169-9971-DE5B1FE6132C}.Debug|ARM64.ActiveCfg = Debug|ARM64
{8498F2FA-5CA6-4169-9971-DE5B1FE6132C}.Debug|ARM64.Build.0 = Debug|ARM64
{8498F2FA-5CA6-4169-9971-DE5B1FE6132C}.Debug|x64.ActiveCfg = Debug|x64
{8498F2FA-5CA6-4169-9971-DE5B1FE6132C}.Debug|x64.Build.0 = Debug|x64
{8498F2FA-5CA6-4169-9971-DE5B1FE6132C}.Release|ARM64.ActiveCfg = Release|ARM64
{8498F2FA-5CA6-4169-9971-DE5B1FE6132C}.Release|ARM64.Build.0 = Release|ARM64
{8498F2FA-5CA6-4169-9971-DE5B1FE6132C}.Release|x64.ActiveCfg = Release|x64
{8498F2FA-5CA6-4169-9971-DE5B1FE6132C}.Release|x64.Build.0 = Release|x64
{4482FD2A-EC43-3FFB-AC20-2E5C54B05EAD}.Debug|ARM64.ActiveCfg = Debug|ARM64
{4482FD2A-EC43-3FFB-AC20-2E5C54B05EAD}.Debug|ARM64.Build.0 = Debug|ARM64
{4482FD2A-EC43-3FFB-AC20-2E5C54B05EAD}.Debug|x64.ActiveCfg = Debug|x64
@ -461,7 +451,6 @@ Global
{38FEE76F-F347-484B-949C-B4649381CFFB} = {87ADDFF9-5768-4DA2-A33B-2477593D6677}
{2C0D058E-DE35-4471-AD99-E68A2CAF9E18} = {87ADDFF9-5768-4DA2-A33B-2477593D6677}
{5BDF4B91-1491-4FB0-BC27-78E9A8E97DC3} = {87ADDFF9-5768-4DA2-A33B-2477593D6677}
{8498F2FA-5CA6-4169-9971-DE5B1FE6132C} = {87ADDFF9-5768-4DA2-A33B-2477593D6677}
{4482FD2A-EC43-3FFB-AC20-2E5C54B05EAD} = {87ADDFF9-5768-4DA2-A33B-2477593D6677}
{23114507-079A-4418-9707-CFA81A03CA99} = {87ADDFF9-5768-4DA2-A33B-2477593D6677}
{4C3B2264-EA73-4A7B-9CFE-65B0FD635EBB} = {87ADDFF9-5768-4DA2-A33B-2477593D6677}