citra/src/core/mem_map_funcs.cpp
2014-05-06 23:32:04 -04:00

286 lines
9.1 KiB
C++

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include <map>
#include "common/common.h"
#include "core/mem_map.h"
#include "core/hw/hw.h"
#include "hle/hle.h"
#include "hle/config_mem.h"
namespace Memory {
std::map<u32, MemoryBlock> g_heap_map;
std::map<u32, MemoryBlock> g_heap_gsp_map;
std::map<u32, MemoryBlock> g_shared_map;
/// Convert a physical address (or firmware-specific virtual address) to primary virtual address
u32 _VirtualAddress(const u32 addr) {
// Our memory interface read/write functions assume virtual addresses. Put any physical address
// to virtual address translations here. This is obviously quite hacky... But we're not doing
// any MMU emulation yet or anything
if ((addr >= FCRAM_PADDR) && (addr < FCRAM_PADDR_END)) {
return VirtualAddressFromPhysical_FCRAM(addr);
// Virtual address mapping FW0B
} else if ((addr >= FCRAM_VADDR_FW0B) && (addr < FCRAM_VADDR_FW0B_END)) {
return VirtualAddressFromPhysical_FCRAM(addr);
// Hardware IO
// TODO(bunnei): FixMe
// This isn't going to work... The physical address of HARDWARE_IO conflicts with the virtual
// address of shared memory.
//} else if ((addr >= HARDWARE_IO_PADDR) && (addr < HARDWARE_IO_PADDR_END)) {
// return (addr + 0x0EB00000);
}
return addr;
}
template <typename T>
inline void _Read(T &var, const u32 addr) {
// TODO: Figure out the fastest order of tests for both read and write (they are probably different).
// TODO: Make sure this represents the mirrors in a correct way.
// Could just do a base-relative read, too.... TODO
const u32 vaddr = _VirtualAddress(addr);
// Memory allocated for HLE use that can be addressed from the emulated application
// The primary use of this is sharing a commandbuffer between the HLE OS (syscore) and the LLE
// core running the user application (appcore)
if (vaddr >= HLE::CMD_BUFFER_ADDR && vaddr < HLE::CMD_BUFFER_ADDR_END) {
HLE::Read<T>(var, vaddr);
// Hardware I/O register reads
// 0x10XXXXXX- is physical address space, 0x1EXXXXXX is virtual address space
} else if ((vaddr >= HARDWARE_IO_VADDR) && (vaddr < HARDWARE_IO_VADDR_END)) {
HW::Read<T>(var, vaddr);
// ExeFS:/.code is loaded here
} else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) {
var = *((const T*)&g_exefs_code[vaddr & EXEFS_CODE_MASK]);
// FCRAM - GSP heap
} else if ((vaddr >= HEAP_GSP_VADDR) && (vaddr < HEAP_GSP_VADDR_END)) {
var = *((const T*)&g_heap_gsp[vaddr & HEAP_GSP_MASK]);
// FCRAM - application heap
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
var = *((const T*)&g_heap[vaddr & HEAP_MASK]);
// Shared memory
} else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
var = *((const T*)&g_shared_mem[vaddr & SHARED_MEMORY_MASK]);
// Config memory
} else if ((vaddr >= CONFIG_MEMORY_VADDR) && (vaddr < CONFIG_MEMORY_VADDR_END)) {
ConfigMem::Read<T>(var, vaddr);
// VRAM
} else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) {
var = *((const T*)&g_vram[vaddr & VRAM_MASK]);
} else {
//_assert_msg_(MEMMAP, false, "unknown Read%d @ 0x%08X", sizeof(var) * 8, vaddr);
}
}
template <typename T>
inline void _Write(u32 addr, const T data) {
u32 vaddr = _VirtualAddress(addr);
// Memory allocated for HLE use that can be addressed from the emulated application
// The primary use of this is sharing a commandbuffer between the HLE OS (syscore) and the LLE
// core running the user application (appcore)
if (vaddr >= HLE::CMD_BUFFER_ADDR && vaddr < HLE::CMD_BUFFER_ADDR_END) {
HLE::Write<T>(vaddr, data);
// Hardware I/O register writes
// 0x10XXXXXX- is physical address space, 0x1EXXXXXX is virtual address space
} else if ((vaddr >= HARDWARE_IO_VADDR) && (vaddr < HARDWARE_IO_VADDR_END)) {
HW::Write<T>(vaddr, data);
// ExeFS:/.code is loaded here
} else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) {
*(T*)&g_exefs_code[vaddr & EXEFS_CODE_MASK] = data;
// FCRAM - GSP heap
} else if ((vaddr >= HEAP_GSP_VADDR) && (vaddr < HEAP_GSP_VADDR_END)) {
*(T*)&g_heap_gsp[vaddr & HEAP_GSP_MASK] = data;
// FCRAM - application heap
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
*(T*)&g_heap[vaddr & HEAP_MASK] = data;
// Shared memory
} else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
*(T*)&g_shared_mem[vaddr & SHARED_MEMORY_MASK] = data;
// VRAM
} else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) {
*(T*)&g_vram[vaddr & VRAM_MASK] = data;
//} else if ((vaddr & 0xFFF00000) == 0x1FF00000) {
// _assert_msg_(MEMMAP, false, "umimplemented write to DSP memory");
//} else if ((vaddr & 0xFFFF0000) == 0x1FF80000) {
// _assert_msg_(MEMMAP, false, "umimplemented write to Configuration Memory");
//} else if ((vaddr & 0xFFFFF000) == 0x1FF81000) {
// _assert_msg_(MEMMAP, false, "umimplemented write to shared page");
// Error out...
} else {
_assert_msg_(MEMMAP, false, "unknown Write%d 0x%08X @ 0x%08X", sizeof(data) * 8,
data, vaddr);
}
}
u8 *GetPointer(const u32 addr) {
const u32 vaddr = _VirtualAddress(addr);
// ExeFS:/.code is loaded here
if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) {
return g_exefs_code + (vaddr & EXEFS_CODE_MASK);
// FCRAM - GSP heap
} else if ((vaddr >= HEAP_GSP_VADDR) && (vaddr < HEAP_GSP_VADDR_END)) {
return g_heap_gsp + (vaddr & HEAP_GSP_MASK);
// FCRAM - application heap
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
return g_heap + (vaddr & HEAP_MASK);
// Shared memory
} else if ((vaddr > SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
return g_shared_mem + (vaddr & SHARED_MEMORY_MASK);
// VRAM
} else if ((vaddr > VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) {
return g_vram + (vaddr & VRAM_MASK);
} else {
ERROR_LOG(MEMMAP, "unknown GetPointer @ 0x%08x", vaddr);
return 0;
}
}
/**
* Maps a block of memory in shared memory
* @param handle Handle to map memory block for
* @param addr Address to map memory block to
* @param permissions Memory map permissions
*/
u32 MapBlock_Shared(u32 handle, u32 addr,u32 permissions) {
MemoryBlock block;
block.handle = handle;
block.base_address = addr;
block.permissions = permissions;
if (g_shared_map.size() > 0) {
const MemoryBlock last_block = g_shared_map.rbegin()->second;
block.address = last_block.address + last_block.size;
}
g_shared_map[block.GetVirtualAddress()] = block;
return block.GetVirtualAddress();
}
/**
* Maps a block of memory on the heap
* @param size Size of block in bytes
* @param operation Memory map operation type
* @param flags Memory allocation flags
*/
u32 MapBlock_Heap(u32 size, u32 operation, u32 permissions) {
MemoryBlock block;
block.base_address = HEAP_VADDR;
block.size = size;
block.operation = operation;
block.permissions = permissions;
if (g_heap_map.size() > 0) {
const MemoryBlock last_block = g_heap_map.rbegin()->second;
block.address = last_block.address + last_block.size;
}
g_heap_map[block.GetVirtualAddress()] = block;
return block.GetVirtualAddress();
}
/**
* Maps a block of memory on the GSP heap
* @param size Size of block in bytes
* @param operation Memory map operation type
* @param flags Memory allocation flags
*/
u32 MapBlock_HeapGSP(u32 size, u32 operation, u32 permissions) {
MemoryBlock block;
block.base_address = HEAP_GSP_VADDR;
block.size = size;
block.operation = operation;
block.permissions = permissions;
if (g_heap_gsp_map.size() > 0) {
const MemoryBlock last_block = g_heap_gsp_map.rbegin()->second;
block.address = last_block.address + last_block.size;
}
g_heap_gsp_map[block.GetVirtualAddress()] = block;
return block.GetVirtualAddress();
}
u8 Read8(const u32 addr) {
u8 _var = 0;
_Read<u8>(_var, addr);
return (u8)_var;
}
u16 Read16(const u32 addr) {
u16_le _var = 0;
_Read<u16_le>(_var, addr);
return (u16)_var;
}
u32 Read32(const u32 addr) {
u32_le _var = 0;
_Read<u32_le>(_var, addr);
return _var;
}
u64 Read64(const u32 addr) {
u64_le _var = 0;
_Read<u64_le>(_var, addr);
return _var;
}
u32 Read8_ZX(const u32 addr) {
return (u32)Read8(addr);
}
u32 Read16_ZX(const u32 addr) {
return (u32)Read16(addr);
}
void Write8(const u32 addr, const u8 data) {
_Write<u8>(addr, data);
}
void Write16(const u32 addr, const u16 data) {
_Write<u16_le>(addr, data);
}
void Write32(const u32 addr, const u32 data) {
_Write<u32_le>(addr, data);
}
void Write64(const u32 addr, const u64 data) {
_Write<u64_le>(addr, data);
}
} // namespace