citra/src/video_core/gpu.cpp
ameerj 5bef54618a perf_stats: Rework FPS counter to be more accurate
The FPS counter was based on metrics in the nvdisp swapbuffers call. This metric would be accurate if the gpu thread/renderer were synchronous with the nvdisp service, but that's no longer the case.

This commit moves the frame counting responsibility onto the concrete renderers after their frame draw calls. Resulting in more meaningful metrics.
The displayed FPS is now made up of the average framerate between the previous and most recent update, in order to avoid distracting FPS counter updates when framerate is oscillating between close values.

The status bar update frequency was also changed from 2 seconds to 500ms.
2021-05-15 20:34:20 -04:00

537 lines
17 KiB
C++

// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <chrono>
#include "common/assert.h"
#include "common/microprofile.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/frontend/emu_window.h"
#include "core/hardware_interrupt_manager.h"
#include "core/memory.h"
#include "core/perf_stats.h"
#include "video_core/engines/fermi_2d.h"
#include "video_core/engines/kepler_compute.h"
#include "video_core/engines/kepler_memory.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/maxwell_dma.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
#include "video_core/renderer_base.h"
#include "video_core/shader_notify.h"
#include "video_core/video_core.h"
namespace Tegra {
MICROPROFILE_DEFINE(GPU_wait, "GPU", "Wait for the GPU", MP_RGB(128, 128, 192));
GPU::GPU(Core::System& system_, bool is_async_, bool use_nvdec_)
: system{system_}, memory_manager{std::make_unique<Tegra::MemoryManager>(system)},
dma_pusher{std::make_unique<Tegra::DmaPusher>(system, *this)}, use_nvdec{use_nvdec_},
maxwell_3d{std::make_unique<Engines::Maxwell3D>(system, *memory_manager)},
fermi_2d{std::make_unique<Engines::Fermi2D>()},
kepler_compute{std::make_unique<Engines::KeplerCompute>(system, *memory_manager)},
maxwell_dma{std::make_unique<Engines::MaxwellDMA>(system, *memory_manager)},
kepler_memory{std::make_unique<Engines::KeplerMemory>(system, *memory_manager)},
shader_notify{std::make_unique<VideoCore::ShaderNotify>()}, is_async{is_async_},
gpu_thread{system_, is_async_} {}
GPU::~GPU() = default;
void GPU::BindRenderer(std::unique_ptr<VideoCore::RendererBase> renderer_) {
renderer = std::move(renderer_);
rasterizer = renderer->ReadRasterizer();
memory_manager->BindRasterizer(rasterizer);
maxwell_3d->BindRasterizer(rasterizer);
fermi_2d->BindRasterizer(rasterizer);
kepler_compute->BindRasterizer(rasterizer);
}
Engines::Maxwell3D& GPU::Maxwell3D() {
return *maxwell_3d;
}
const Engines::Maxwell3D& GPU::Maxwell3D() const {
return *maxwell_3d;
}
Engines::KeplerCompute& GPU::KeplerCompute() {
return *kepler_compute;
}
const Engines::KeplerCompute& GPU::KeplerCompute() const {
return *kepler_compute;
}
MemoryManager& GPU::MemoryManager() {
return *memory_manager;
}
const MemoryManager& GPU::MemoryManager() const {
return *memory_manager;
}
DmaPusher& GPU::DmaPusher() {
return *dma_pusher;
}
Tegra::CDmaPusher& GPU::CDmaPusher() {
return *cdma_pusher;
}
const DmaPusher& GPU::DmaPusher() const {
return *dma_pusher;
}
const Tegra::CDmaPusher& GPU::CDmaPusher() const {
return *cdma_pusher;
}
void GPU::WaitFence(u32 syncpoint_id, u32 value) {
// Synced GPU, is always in sync
if (!is_async) {
return;
}
if (syncpoint_id == UINT32_MAX) {
// TODO: Research what this does.
LOG_ERROR(HW_GPU, "Waiting for syncpoint -1 not implemented");
return;
}
MICROPROFILE_SCOPE(GPU_wait);
std::unique_lock lock{sync_mutex};
sync_cv.wait(lock, [=, this] { return syncpoints.at(syncpoint_id).load() >= value; });
}
void GPU::IncrementSyncPoint(const u32 syncpoint_id) {
auto& syncpoint = syncpoints.at(syncpoint_id);
syncpoint++;
std::lock_guard lock{sync_mutex};
sync_cv.notify_all();
auto& interrupt = syncpt_interrupts.at(syncpoint_id);
if (!interrupt.empty()) {
u32 value = syncpoint.load();
auto it = interrupt.begin();
while (it != interrupt.end()) {
if (value >= *it) {
TriggerCpuInterrupt(syncpoint_id, *it);
it = interrupt.erase(it);
continue;
}
it++;
}
}
}
u32 GPU::GetSyncpointValue(const u32 syncpoint_id) const {
return syncpoints.at(syncpoint_id).load();
}
void GPU::RegisterSyncptInterrupt(const u32 syncpoint_id, const u32 value) {
auto& interrupt = syncpt_interrupts.at(syncpoint_id);
bool contains = std::any_of(interrupt.begin(), interrupt.end(),
[value](u32 in_value) { return in_value == value; });
if (contains) {
return;
}
interrupt.emplace_back(value);
}
bool GPU::CancelSyncptInterrupt(const u32 syncpoint_id, const u32 value) {
std::lock_guard lock{sync_mutex};
auto& interrupt = syncpt_interrupts.at(syncpoint_id);
const auto iter =
std::find_if(interrupt.begin(), interrupt.end(),
[value](u32 interrupt_value) { return value == interrupt_value; });
if (iter == interrupt.end()) {
return false;
}
interrupt.erase(iter);
return true;
}
u64 GPU::RequestFlush(VAddr addr, std::size_t size) {
std::unique_lock lck{flush_request_mutex};
const u64 fence = ++last_flush_fence;
flush_requests.emplace_back(fence, addr, size);
return fence;
}
void GPU::TickWork() {
std::unique_lock lck{flush_request_mutex};
while (!flush_requests.empty()) {
auto& request = flush_requests.front();
const u64 fence = request.fence;
const VAddr addr = request.addr;
const std::size_t size = request.size;
flush_requests.pop_front();
flush_request_mutex.unlock();
rasterizer->FlushRegion(addr, size);
current_flush_fence.store(fence);
flush_request_mutex.lock();
}
}
u64 GPU::GetTicks() const {
// This values were reversed engineered by fincs from NVN
// The gpu clock is reported in units of 385/625 nanoseconds
constexpr u64 gpu_ticks_num = 384;
constexpr u64 gpu_ticks_den = 625;
u64 nanoseconds = system.CoreTiming().GetGlobalTimeNs().count();
if (Settings::values.use_fast_gpu_time.GetValue()) {
nanoseconds /= 256;
}
const u64 nanoseconds_num = nanoseconds / gpu_ticks_den;
const u64 nanoseconds_rem = nanoseconds % gpu_ticks_den;
return nanoseconds_num * gpu_ticks_num + (nanoseconds_rem * gpu_ticks_num) / gpu_ticks_den;
}
void GPU::RendererFrameEndNotify() {
system.GetPerfStats().EndGameFrame();
}
void GPU::FlushCommands() {
rasterizer->FlushCommands();
}
void GPU::SyncGuestHost() {
rasterizer->SyncGuestHost();
}
enum class GpuSemaphoreOperation {
AcquireEqual = 0x1,
WriteLong = 0x2,
AcquireGequal = 0x4,
AcquireMask = 0x8,
};
void GPU::CallMethod(const MethodCall& method_call) {
LOG_TRACE(HW_GPU, "Processing method {:08X} on subchannel {}", method_call.method,
method_call.subchannel);
ASSERT(method_call.subchannel < bound_engines.size());
if (ExecuteMethodOnEngine(method_call.method)) {
CallEngineMethod(method_call);
} else {
CallPullerMethod(method_call);
}
}
void GPU::CallMultiMethod(u32 method, u32 subchannel, const u32* base_start, u32 amount,
u32 methods_pending) {
LOG_TRACE(HW_GPU, "Processing method {:08X} on subchannel {}", method, subchannel);
ASSERT(subchannel < bound_engines.size());
if (ExecuteMethodOnEngine(method)) {
CallEngineMultiMethod(method, subchannel, base_start, amount, methods_pending);
} else {
for (std::size_t i = 0; i < amount; i++) {
CallPullerMethod(MethodCall{
method,
base_start[i],
subchannel,
methods_pending - static_cast<u32>(i),
});
}
}
}
bool GPU::ExecuteMethodOnEngine(u32 method) {
const auto buffer_method = static_cast<BufferMethods>(method);
return buffer_method >= BufferMethods::NonPullerMethods;
}
void GPU::CallPullerMethod(const MethodCall& method_call) {
regs.reg_array[method_call.method] = method_call.argument;
const auto method = static_cast<BufferMethods>(method_call.method);
switch (method) {
case BufferMethods::BindObject: {
ProcessBindMethod(method_call);
break;
}
case BufferMethods::Nop:
case BufferMethods::SemaphoreAddressHigh:
case BufferMethods::SemaphoreAddressLow:
case BufferMethods::SemaphoreSequence:
case BufferMethods::RefCnt:
case BufferMethods::UnkCacheFlush:
case BufferMethods::WrcacheFlush:
case BufferMethods::FenceValue:
break;
case BufferMethods::FenceAction:
ProcessFenceActionMethod();
break;
case BufferMethods::WaitForInterrupt:
ProcessWaitForInterruptMethod();
break;
case BufferMethods::SemaphoreTrigger: {
ProcessSemaphoreTriggerMethod();
break;
}
case BufferMethods::NotifyIntr: {
// TODO(Kmather73): Research and implement this method.
LOG_ERROR(HW_GPU, "Special puller engine method NotifyIntr not implemented");
break;
}
case BufferMethods::Unk28: {
// TODO(Kmather73): Research and implement this method.
LOG_ERROR(HW_GPU, "Special puller engine method Unk28 not implemented");
break;
}
case BufferMethods::SemaphoreAcquire: {
ProcessSemaphoreAcquire();
break;
}
case BufferMethods::SemaphoreRelease: {
ProcessSemaphoreRelease();
break;
}
case BufferMethods::Yield: {
// TODO(Kmather73): Research and implement this method.
LOG_ERROR(HW_GPU, "Special puller engine method Yield not implemented");
break;
}
default:
LOG_ERROR(HW_GPU, "Special puller engine method {:X} not implemented", method);
break;
}
}
void GPU::CallEngineMethod(const MethodCall& method_call) {
const EngineID engine = bound_engines[method_call.subchannel];
switch (engine) {
case EngineID::FERMI_TWOD_A:
fermi_2d->CallMethod(method_call.method, method_call.argument, method_call.IsLastCall());
break;
case EngineID::MAXWELL_B:
maxwell_3d->CallMethod(method_call.method, method_call.argument, method_call.IsLastCall());
break;
case EngineID::KEPLER_COMPUTE_B:
kepler_compute->CallMethod(method_call.method, method_call.argument,
method_call.IsLastCall());
break;
case EngineID::MAXWELL_DMA_COPY_A:
maxwell_dma->CallMethod(method_call.method, method_call.argument, method_call.IsLastCall());
break;
case EngineID::KEPLER_INLINE_TO_MEMORY_B:
kepler_memory->CallMethod(method_call.method, method_call.argument,
method_call.IsLastCall());
break;
default:
UNIMPLEMENTED_MSG("Unimplemented engine");
}
}
void GPU::CallEngineMultiMethod(u32 method, u32 subchannel, const u32* base_start, u32 amount,
u32 methods_pending) {
const EngineID engine = bound_engines[subchannel];
switch (engine) {
case EngineID::FERMI_TWOD_A:
fermi_2d->CallMultiMethod(method, base_start, amount, methods_pending);
break;
case EngineID::MAXWELL_B:
maxwell_3d->CallMultiMethod(method, base_start, amount, methods_pending);
break;
case EngineID::KEPLER_COMPUTE_B:
kepler_compute->CallMultiMethod(method, base_start, amount, methods_pending);
break;
case EngineID::MAXWELL_DMA_COPY_A:
maxwell_dma->CallMultiMethod(method, base_start, amount, methods_pending);
break;
case EngineID::KEPLER_INLINE_TO_MEMORY_B:
kepler_memory->CallMultiMethod(method, base_start, amount, methods_pending);
break;
default:
UNIMPLEMENTED_MSG("Unimplemented engine");
}
}
void GPU::ProcessBindMethod(const MethodCall& method_call) {
// Bind the current subchannel to the desired engine id.
LOG_DEBUG(HW_GPU, "Binding subchannel {} to engine {}", method_call.subchannel,
method_call.argument);
const auto engine_id = static_cast<EngineID>(method_call.argument);
bound_engines[method_call.subchannel] = static_cast<EngineID>(engine_id);
switch (engine_id) {
case EngineID::FERMI_TWOD_A:
dma_pusher->BindSubchannel(fermi_2d.get(), method_call.subchannel);
break;
case EngineID::MAXWELL_B:
dma_pusher->BindSubchannel(maxwell_3d.get(), method_call.subchannel);
break;
case EngineID::KEPLER_COMPUTE_B:
dma_pusher->BindSubchannel(kepler_compute.get(), method_call.subchannel);
break;
case EngineID::MAXWELL_DMA_COPY_A:
dma_pusher->BindSubchannel(maxwell_dma.get(), method_call.subchannel);
break;
case EngineID::KEPLER_INLINE_TO_MEMORY_B:
dma_pusher->BindSubchannel(kepler_memory.get(), method_call.subchannel);
break;
default:
UNIMPLEMENTED_MSG("Unimplemented engine {:04X}", engine_id);
}
}
void GPU::ProcessFenceActionMethod() {
switch (regs.fence_action.op) {
case FenceOperation::Acquire:
WaitFence(regs.fence_action.syncpoint_id, regs.fence_value);
break;
case FenceOperation::Increment:
IncrementSyncPoint(regs.fence_action.syncpoint_id);
break;
default:
UNIMPLEMENTED_MSG("Unimplemented operation {}", regs.fence_action.op.Value());
}
}
void GPU::ProcessWaitForInterruptMethod() {
// TODO(bunnei) ImplementMe
LOG_WARNING(HW_GPU, "(STUBBED) called");
}
void GPU::ProcessSemaphoreTriggerMethod() {
const auto semaphoreOperationMask = 0xF;
const auto op =
static_cast<GpuSemaphoreOperation>(regs.semaphore_trigger & semaphoreOperationMask);
if (op == GpuSemaphoreOperation::WriteLong) {
struct Block {
u32 sequence;
u32 zeros = 0;
u64 timestamp;
};
Block block{};
block.sequence = regs.semaphore_sequence;
// TODO(Kmather73): Generate a real GPU timestamp and write it here instead of
// CoreTiming
block.timestamp = GetTicks();
memory_manager->WriteBlock(regs.semaphore_address.SemaphoreAddress(), &block,
sizeof(block));
} else {
const u32 word{memory_manager->Read<u32>(regs.semaphore_address.SemaphoreAddress())};
if ((op == GpuSemaphoreOperation::AcquireEqual && word == regs.semaphore_sequence) ||
(op == GpuSemaphoreOperation::AcquireGequal &&
static_cast<s32>(word - regs.semaphore_sequence) > 0) ||
(op == GpuSemaphoreOperation::AcquireMask && (word & regs.semaphore_sequence))) {
// Nothing to do in this case
} else {
regs.acquire_source = true;
regs.acquire_value = regs.semaphore_sequence;
if (op == GpuSemaphoreOperation::AcquireEqual) {
regs.acquire_active = true;
regs.acquire_mode = false;
} else if (op == GpuSemaphoreOperation::AcquireGequal) {
regs.acquire_active = true;
regs.acquire_mode = true;
} else if (op == GpuSemaphoreOperation::AcquireMask) {
// TODO(kemathe) The acquire mask operation waits for a value that, ANDed with
// semaphore_sequence, gives a non-0 result
LOG_ERROR(HW_GPU, "Invalid semaphore operation AcquireMask not implemented");
} else {
LOG_ERROR(HW_GPU, "Invalid semaphore operation");
}
}
}
}
void GPU::ProcessSemaphoreRelease() {
memory_manager->Write<u32>(regs.semaphore_address.SemaphoreAddress(), regs.semaphore_release);
}
void GPU::ProcessSemaphoreAcquire() {
const u32 word = memory_manager->Read<u32>(regs.semaphore_address.SemaphoreAddress());
const auto value = regs.semaphore_acquire;
if (word != value) {
regs.acquire_active = true;
regs.acquire_value = value;
// TODO(kemathe73) figure out how to do the acquire_timeout
regs.acquire_mode = false;
regs.acquire_source = false;
}
}
void GPU::Start() {
gpu_thread.StartThread(*renderer, renderer->Context(), *dma_pusher);
cpu_context = renderer->GetRenderWindow().CreateSharedContext();
cpu_context->MakeCurrent();
}
void GPU::ObtainContext() {
cpu_context->MakeCurrent();
}
void GPU::ReleaseContext() {
cpu_context->DoneCurrent();
}
void GPU::PushGPUEntries(Tegra::CommandList&& entries) {
gpu_thread.SubmitList(std::move(entries));
}
void GPU::PushCommandBuffer(Tegra::ChCommandHeaderList& entries) {
if (!use_nvdec) {
return;
}
if (!cdma_pusher) {
cdma_pusher = std::make_unique<Tegra::CDmaPusher>(*this);
}
// SubmitCommandBuffer would make the nvdec operations async, this is not currently working
// TODO(ameerj): RE proper async nvdec operation
// gpu_thread.SubmitCommandBuffer(std::move(entries));
cdma_pusher->ProcessEntries(std::move(entries));
}
void GPU::ClearCdmaInstance() {
cdma_pusher.reset();
}
void GPU::SwapBuffers(const Tegra::FramebufferConfig* framebuffer) {
gpu_thread.SwapBuffers(framebuffer);
}
void GPU::FlushRegion(VAddr addr, u64 size) {
gpu_thread.FlushRegion(addr, size);
}
void GPU::InvalidateRegion(VAddr addr, u64 size) {
gpu_thread.InvalidateRegion(addr, size);
}
void GPU::FlushAndInvalidateRegion(VAddr addr, u64 size) {
gpu_thread.FlushAndInvalidateRegion(addr, size);
}
void GPU::TriggerCpuInterrupt(const u32 syncpoint_id, const u32 value) const {
auto& interrupt_manager = system.InterruptManager();
interrupt_manager.GPUInterruptSyncpt(syncpoint_id, value);
}
void GPU::ShutDown() {
gpu_thread.ShutDown();
}
void GPU::OnCommandListEnd() {
if (is_async) {
// This command only applies to asynchronous GPU mode
gpu_thread.OnCommandListEnd();
}
}
} // namespace Tegra