citra/src/core/core_timing.h
PabloMK7 5c45c97ff9
Implement/Fix more SOC related functions (#6267)
* Implement SOC_U::GetHostByName and partial SOC_U::GetNetworkOpt

* Implement AC::GetWifiStatus, and get proper network interface.

* Minor fixes

* More minor fixes

* Even more fixes

* Fix Get/Set SockOpt

* Implement SendToOther

* Apply suggestions and fix timer advance

* Fix variable name

* Add more sockopt values and fix send/recv flags.

* Fix dontwait logic

* Add missing header for linux

* Remove TCP_STDURG

* Fix poll and add more 3ds <-> platform conversions

* Finish implementing all platform <-> 3ds conversion.

* Disable UDP connreset and fix poll again.

* Fix compile issues

* Apply suggestions

* Fix compiler issues

* Fix compiler errors (again)

* Fix GetAddrInfo

* Use IPC::MakeHeader instead of raw hardcoded value.
2023-05-21 19:01:08 -07:00

319 lines
10 KiB
C++

// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#pragma once
/**
* This is a system to schedule events into the emulated machine's future. Time is measured
* in main CPU clock cycles.
*
* To schedule an event, you first have to register its type. This is where you pass in the
* callback. You then schedule events using the type id you get back.
*
* The int cyclesLate that the callbacks get is how many cycles late it was.
* So to schedule a new event on a regular basis:
* inside callback:
* ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever")
*/
#include <chrono>
#include <functional>
#include <limits>
#include <string>
#include <unordered_map>
#include <vector>
#include <boost/serialization/split_member.hpp>
#include <boost/serialization/vector.hpp>
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/threadsafe_queue.h"
#include "core/global.h"
// The timing we get from the assembly is 268,111,855.956 Hz
// It is possible that this number isn't just an integer because the compiler could have
// optimized the multiplication by a multiply-by-constant division.
// Rounding to the nearest integer should be fine
constexpr u64 BASE_CLOCK_RATE_ARM11 = 268111856;
constexpr u64 MAX_VALUE_TO_MULTIPLY = std::numeric_limits<s64>::max() / BASE_CLOCK_RATE_ARM11;
constexpr s64 msToCycles(int ms) {
// since ms is int there is no way to overflow
return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ms) / 1000;
}
constexpr s64 msToCycles(float ms) {
return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.001f) * ms);
}
constexpr s64 msToCycles(double ms) {
return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.001) * ms);
}
constexpr s64 usToCycles(float us) {
return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.000001f) * us);
}
constexpr s64 usToCycles(int us) {
return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us) / 1000000);
}
inline s64 usToCycles(s64 us) {
if (us / 1000000 > static_cast<s64>(MAX_VALUE_TO_MULTIPLY)) {
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
return std::numeric_limits<s64>::max();
}
if (us > static_cast<s64>(MAX_VALUE_TO_MULTIPLY)) {
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
return BASE_CLOCK_RATE_ARM11 * (us / 1000000);
}
return (BASE_CLOCK_RATE_ARM11 * us) / 1000000;
}
inline s64 usToCycles(u64 us) {
if (us / 1000000 > MAX_VALUE_TO_MULTIPLY) {
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
return std::numeric_limits<s64>::max();
}
if (us > MAX_VALUE_TO_MULTIPLY) {
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us / 1000000);
}
return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us)) / 1000000;
}
constexpr s64 nsToCycles(float ns) {
return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.000000001f) * ns);
}
constexpr s64 nsToCycles(int ns) {
return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ns) / 1000000000;
}
inline s64 nsToCycles(s64 ns) {
if (ns / 1000000000 > static_cast<s64>(MAX_VALUE_TO_MULTIPLY)) {
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
return std::numeric_limits<s64>::max();
}
if (ns > static_cast<s64>(MAX_VALUE_TO_MULTIPLY)) {
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
return BASE_CLOCK_RATE_ARM11 * (ns / 1000000000);
}
return (BASE_CLOCK_RATE_ARM11 * ns) / 1000000000;
}
inline s64 nsToCycles(u64 ns) {
if (ns / 1000000000 > MAX_VALUE_TO_MULTIPLY) {
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
return std::numeric_limits<s64>::max();
}
if (ns > MAX_VALUE_TO_MULTIPLY) {
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
return BASE_CLOCK_RATE_ARM11 * (static_cast<s64>(ns) / 1000000000);
}
return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ns)) / 1000000000;
}
constexpr u64 cyclesToNs(s64 cycles) {
return cycles * 1000000000 / BASE_CLOCK_RATE_ARM11;
}
constexpr s64 cyclesToUs(s64 cycles) {
return cycles * 1000000 / BASE_CLOCK_RATE_ARM11;
}
constexpr u64 cyclesToMs(s64 cycles) {
return cycles * 1000 / BASE_CLOCK_RATE_ARM11;
}
namespace Core {
using TimedCallback = std::function<void(std::uintptr_t user_data, int cycles_late)>;
struct TimingEventType {
TimedCallback callback;
const std::string* name;
};
class Timing {
public:
struct Event {
s64 time;
u64 fifo_order;
std::uintptr_t user_data;
const TimingEventType* type;
bool operator>(const Event& right) const;
bool operator<(const Event& right) const;
private:
template <class Archive>
void save(Archive& ar, const unsigned int) const {
ar& time;
ar& fifo_order;
ar& user_data;
std::string name = *(type->name);
ar << name;
}
template <class Archive>
void load(Archive& ar, const unsigned int) {
ar& time;
ar& fifo_order;
ar& user_data;
std::string name;
ar >> name;
type = Global<Timing>().RegisterEvent(name, nullptr);
}
friend class boost::serialization::access;
BOOST_SERIALIZATION_SPLIT_MEMBER()
};
// currently Service::HID::pad_update_ticks is the smallest interval for an event that gets
// always scheduled. Therfore we use this as orientation for the MAX_SLICE_LENGTH
// For performance bigger slice length are desired, though this will lead to cores desync
// But we never want to schedule events into the current slice, because then cores might to
// run small slices to sync up again. This is especially important for events that are always
// scheduled and repated.
static constexpr int MAX_SLICE_LENGTH = BASE_CLOCK_RATE_ARM11 / 234;
class Timer {
public:
Timer();
~Timer();
s64 GetMaxSliceLength() const;
void Advance();
void SetNextSlice(s64 max_slice_length = MAX_SLICE_LENGTH);
void Idle();
u64 GetTicks() const;
u64 GetIdleTicks() const;
void AddTicks(u64 ticks);
s64 GetDowncount() const;
void ForceExceptionCheck(s64 cycles);
void MoveEvents();
private:
friend class Timing;
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't
// accommodated by the standard adaptor class.
std::vector<Event> event_queue;
u64 event_fifo_id = 0;
// the queue for storing the events from other threads threadsafe until they will be added
// to the event_queue by the emu thread
Common::MPSCQueue<Event> ts_queue;
// Are we in a function that has been called from Advance()
// If events are sheduled from a function that gets called from Advance(),
// don't change slice_length and downcount.
// The time between CoreTiming being intialized and the first call to Advance() is
// considered the slice boundary between slice -1 and slice 0. Dispatcher loops must call
// Advance() before executing the first cycle of each slice to prepare the slice length and
// downcount for that slice.
bool is_timer_sane = true;
s64 slice_length = MAX_SLICE_LENGTH;
s64 downcount = MAX_SLICE_LENGTH;
s64 executed_ticks = 0;
u64 idled_cycles = 0;
// Stores a scaling for the internal clockspeed. Changing this number results in
// under/overclocking the guest cpu
double cpu_clock_scale = 1.0;
template <class Archive>
void serialize(Archive& ar, const unsigned int) {
MoveEvents();
ar& event_queue;
ar& event_fifo_id;
ar& slice_length;
ar& downcount;
ar& executed_ticks;
ar& idled_cycles;
}
friend class boost::serialization::access;
};
explicit Timing(std::size_t num_cores, u32 cpu_clock_percentage);
~Timing(){};
/**
* Returns the event_type identifier. if name is not unique, it will assert.
*/
TimingEventType* RegisterEvent(const std::string& name, TimedCallback callback);
void ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type,
std::uintptr_t user_data = 0,
std::size_t core_id = std::numeric_limits<std::size_t>::max());
void UnscheduleEvent(const TimingEventType* event_type, std::uintptr_t user_data);
/// We only permit one event of each type in the queue at a time.
void RemoveEvent(const TimingEventType* event_type);
void SetCurrentTimer(std::size_t core_id);
s64 GetTicks() const;
s64 GetGlobalTicks() const;
/**
* Updates the value of the cpu clock scaling to the new percentage.
*/
void UpdateClockSpeed(u32 cpu_clock_percentage);
std::chrono::microseconds GetGlobalTimeUs() const;
std::shared_ptr<Timer> GetTimer(std::size_t cpu_id);
// Used after deserializing to unprotect the event queue.
void UnlockEventQueue() {
event_queue_locked = false;
}
private:
// unordered_map stores each element separately as a linked list node so pointers to
// elements remain stable regardless of rehashes/resizing.
std::unordered_map<std::string, TimingEventType> event_types = {};
std::vector<std::shared_ptr<Timer>> timers;
Timer* current_timer = nullptr;
// When true, the event queue can't be modified. Used while deserializing to workaround
// destructor side effects.
bool event_queue_locked = false;
template <class Archive>
void serialize(Archive& ar, const unsigned int file_version) {
// event_types set during initialization of other things
ar& timers;
if (file_version == 0) {
std::shared_ptr<Timer> x;
ar& x;
current_timer = x.get();
} else {
ar& current_timer;
}
if (Archive::is_loading::value) {
event_queue_locked = true;
}
}
friend class boost::serialization::access;
};
} // namespace Core
BOOST_CLASS_VERSION(Core::Timing, 1)