citra/src/video_core/macro/macro_interpreter.cpp
Lioncash 4c5f5c9bf3 video_core: Remove unnecessary enum class casting in logging messages
fmt now automatically prints the numeric value of an enum class member
by default, so we don't need to use casts any more.

Reduces the line noise a bit.
2020-12-07 00:41:50 -05:00

288 lines
9.4 KiB
C++

// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/macro/macro_interpreter.h"
MICROPROFILE_DEFINE(MacroInterp, "GPU", "Execute macro interpreter", MP_RGB(128, 128, 192));
namespace Tegra {
MacroInterpreter::MacroInterpreter(Engines::Maxwell3D& maxwell3d_)
: MacroEngine{maxwell3d_}, maxwell3d{maxwell3d_} {}
std::unique_ptr<CachedMacro> MacroInterpreter::Compile(const std::vector<u32>& code) {
return std::make_unique<MacroInterpreterImpl>(maxwell3d, code);
}
MacroInterpreterImpl::MacroInterpreterImpl(Engines::Maxwell3D& maxwell3d_,
const std::vector<u32>& code_)
: maxwell3d{maxwell3d_}, code{code_} {}
void MacroInterpreterImpl::Execute(const std::vector<u32>& params, u32 method) {
MICROPROFILE_SCOPE(MacroInterp);
Reset();
registers[1] = params[0];
num_parameters = params.size();
if (num_parameters > parameters_capacity) {
parameters_capacity = num_parameters;
parameters = std::make_unique<u32[]>(num_parameters);
}
std::memcpy(parameters.get(), params.data(), num_parameters * sizeof(u32));
// Execute the code until we hit an exit condition.
bool keep_executing = true;
while (keep_executing) {
keep_executing = Step(false);
}
// Assert the the macro used all the input parameters
ASSERT(next_parameter_index == num_parameters);
}
void MacroInterpreterImpl::Reset() {
registers = {};
pc = 0;
delayed_pc = {};
method_address.raw = 0;
num_parameters = 0;
// The next parameter index starts at 1, because $r1 already has the value of the first
// parameter.
next_parameter_index = 1;
carry_flag = false;
}
bool MacroInterpreterImpl::Step(bool is_delay_slot) {
u32 base_address = pc;
Macro::Opcode opcode = GetOpcode();
pc += 4;
// Update the program counter if we were delayed
if (delayed_pc) {
ASSERT(is_delay_slot);
pc = *delayed_pc;
delayed_pc = {};
}
switch (opcode.operation) {
case Macro::Operation::ALU: {
u32 result = GetALUResult(opcode.alu_operation, GetRegister(opcode.src_a),
GetRegister(opcode.src_b));
ProcessResult(opcode.result_operation, opcode.dst, result);
break;
}
case Macro::Operation::AddImmediate: {
ProcessResult(opcode.result_operation, opcode.dst,
GetRegister(opcode.src_a) + opcode.immediate);
break;
}
case Macro::Operation::ExtractInsert: {
u32 dst = GetRegister(opcode.src_a);
u32 src = GetRegister(opcode.src_b);
src = (src >> opcode.bf_src_bit) & opcode.GetBitfieldMask();
dst &= ~(opcode.GetBitfieldMask() << opcode.bf_dst_bit);
dst |= src << opcode.bf_dst_bit;
ProcessResult(opcode.result_operation, opcode.dst, dst);
break;
}
case Macro::Operation::ExtractShiftLeftImmediate: {
u32 dst = GetRegister(opcode.src_a);
u32 src = GetRegister(opcode.src_b);
u32 result = ((src >> dst) & opcode.GetBitfieldMask()) << opcode.bf_dst_bit;
ProcessResult(opcode.result_operation, opcode.dst, result);
break;
}
case Macro::Operation::ExtractShiftLeftRegister: {
u32 dst = GetRegister(opcode.src_a);
u32 src = GetRegister(opcode.src_b);
u32 result = ((src >> opcode.bf_src_bit) & opcode.GetBitfieldMask()) << dst;
ProcessResult(opcode.result_operation, opcode.dst, result);
break;
}
case Macro::Operation::Read: {
u32 result = Read(GetRegister(opcode.src_a) + opcode.immediate);
ProcessResult(opcode.result_operation, opcode.dst, result);
break;
}
case Macro::Operation::Branch: {
ASSERT_MSG(!is_delay_slot, "Executing a branch in a delay slot is not valid");
u32 value = GetRegister(opcode.src_a);
bool taken = EvaluateBranchCondition(opcode.branch_condition, value);
if (taken) {
// Ignore the delay slot if the branch has the annul bit.
if (opcode.branch_annul) {
pc = base_address + opcode.GetBranchTarget();
return true;
}
delayed_pc = base_address + opcode.GetBranchTarget();
// Execute one more instruction due to the delay slot.
return Step(true);
}
break;
}
default:
UNIMPLEMENTED_MSG("Unimplemented macro operation {}", opcode.operation.Value());
}
// An instruction with the Exit flag will not actually
// cause an exit if it's executed inside a delay slot.
if (opcode.is_exit && !is_delay_slot) {
// Exit has a delay slot, execute the next instruction
Step(true);
return false;
}
return true;
}
u32 MacroInterpreterImpl::GetALUResult(Macro::ALUOperation operation, u32 src_a, u32 src_b) {
switch (operation) {
case Macro::ALUOperation::Add: {
const u64 result{static_cast<u64>(src_a) + src_b};
carry_flag = result > 0xffffffff;
return static_cast<u32>(result);
}
case Macro::ALUOperation::AddWithCarry: {
const u64 result{static_cast<u64>(src_a) + src_b + (carry_flag ? 1ULL : 0ULL)};
carry_flag = result > 0xffffffff;
return static_cast<u32>(result);
}
case Macro::ALUOperation::Subtract: {
const u64 result{static_cast<u64>(src_a) - src_b};
carry_flag = result < 0x100000000;
return static_cast<u32>(result);
}
case Macro::ALUOperation::SubtractWithBorrow: {
const u64 result{static_cast<u64>(src_a) - src_b - (carry_flag ? 0ULL : 1ULL)};
carry_flag = result < 0x100000000;
return static_cast<u32>(result);
}
case Macro::ALUOperation::Xor:
return src_a ^ src_b;
case Macro::ALUOperation::Or:
return src_a | src_b;
case Macro::ALUOperation::And:
return src_a & src_b;
case Macro::ALUOperation::AndNot:
return src_a & ~src_b;
case Macro::ALUOperation::Nand:
return ~(src_a & src_b);
default:
UNIMPLEMENTED_MSG("Unimplemented ALU operation {}", operation);
return 0;
}
}
void MacroInterpreterImpl::ProcessResult(Macro::ResultOperation operation, u32 reg, u32 result) {
switch (operation) {
case Macro::ResultOperation::IgnoreAndFetch:
// Fetch parameter and ignore result.
SetRegister(reg, FetchParameter());
break;
case Macro::ResultOperation::Move:
// Move result.
SetRegister(reg, result);
break;
case Macro::ResultOperation::MoveAndSetMethod:
// Move result and use as Method Address.
SetRegister(reg, result);
SetMethodAddress(result);
break;
case Macro::ResultOperation::FetchAndSend:
// Fetch parameter and send result.
SetRegister(reg, FetchParameter());
Send(result);
break;
case Macro::ResultOperation::MoveAndSend:
// Move and send result.
SetRegister(reg, result);
Send(result);
break;
case Macro::ResultOperation::FetchAndSetMethod:
// Fetch parameter and use result as Method Address.
SetRegister(reg, FetchParameter());
SetMethodAddress(result);
break;
case Macro::ResultOperation::MoveAndSetMethodFetchAndSend:
// Move result and use as Method Address, then fetch and send parameter.
SetRegister(reg, result);
SetMethodAddress(result);
Send(FetchParameter());
break;
case Macro::ResultOperation::MoveAndSetMethodSend:
// Move result and use as Method Address, then send bits 12:17 of result.
SetRegister(reg, result);
SetMethodAddress(result);
Send((result >> 12) & 0b111111);
break;
default:
UNIMPLEMENTED_MSG("Unimplemented result operation {}", operation);
}
}
bool MacroInterpreterImpl::EvaluateBranchCondition(Macro::BranchCondition cond, u32 value) const {
switch (cond) {
case Macro::BranchCondition::Zero:
return value == 0;
case Macro::BranchCondition::NotZero:
return value != 0;
}
UNREACHABLE();
return true;
}
Macro::Opcode MacroInterpreterImpl::GetOpcode() const {
ASSERT((pc % sizeof(u32)) == 0);
ASSERT(pc < code.size() * sizeof(u32));
return {code[pc / sizeof(u32)]};
}
u32 MacroInterpreterImpl::GetRegister(u32 register_id) const {
return registers.at(register_id);
}
void MacroInterpreterImpl::SetRegister(u32 register_id, u32 value) {
// Register 0 is hardwired as the zero register.
// Ensure no writes to it actually occur.
if (register_id == 0) {
return;
}
registers.at(register_id) = value;
}
void MacroInterpreterImpl::SetMethodAddress(u32 address) {
method_address.raw = address;
}
void MacroInterpreterImpl::Send(u32 value) {
maxwell3d.CallMethodFromMME(method_address.address, value);
// Increment the method address by the method increment.
method_address.address.Assign(method_address.address.Value() +
method_address.increment.Value());
}
u32 MacroInterpreterImpl::Read(u32 method) const {
return maxwell3d.GetRegisterValue(method);
}
u32 MacroInterpreterImpl::FetchParameter() {
ASSERT(next_parameter_index < num_parameters);
return parameters[next_parameter_index++];
}
} // namespace Tegra