citra/src/audio_core/command_generator.cpp
ameerj 5daf3abe65 common/logging: Move Log::Entry declaration to a separate header
This reduces the load of requiring to include std::chrono in all files which include log.h
2021-10-01 20:48:49 -04:00

1371 lines
58 KiB
C++

// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <cmath>
#include <numbers>
#include "audio_core/algorithm/interpolate.h"
#include "audio_core/command_generator.h"
#include "audio_core/effect_context.h"
#include "audio_core/mix_context.h"
#include "audio_core/voice_context.h"
#include "common/common_types.h"
#include "core/memory.h"
namespace AudioCore {
namespace {
constexpr std::size_t MIX_BUFFER_SIZE = 0x3f00;
constexpr std::size_t SCALED_MIX_BUFFER_SIZE = MIX_BUFFER_SIZE << 15ULL;
using DelayLineTimes = std::array<f32, AudioCommon::I3DL2REVERB_DELAY_LINE_COUNT>;
constexpr DelayLineTimes FDN_MIN_DELAY_LINE_TIMES{5.0f, 6.0f, 13.0f, 14.0f};
constexpr DelayLineTimes FDN_MAX_DELAY_LINE_TIMES{45.704f, 82.782f, 149.94f, 271.58f};
constexpr DelayLineTimes DECAY0_MAX_DELAY_LINE_TIMES{17.0f, 13.0f, 9.0f, 7.0f};
constexpr DelayLineTimes DECAY1_MAX_DELAY_LINE_TIMES{19.0f, 11.0f, 10.0f, 6.0f};
constexpr std::array<f32, AudioCommon::I3DL2REVERB_TAPS> EARLY_TAP_TIMES{
0.017136f, 0.059154f, 0.161733f, 0.390186f, 0.425262f, 0.455411f, 0.689737f,
0.745910f, 0.833844f, 0.859502f, 0.000000f, 0.075024f, 0.168788f, 0.299901f,
0.337443f, 0.371903f, 0.599011f, 0.716741f, 0.817859f, 0.851664f};
constexpr std::array<f32, AudioCommon::I3DL2REVERB_TAPS> EARLY_GAIN{
0.67096f, 0.61027f, 1.0f, 0.35680f, 0.68361f, 0.65978f, 0.51939f,
0.24712f, 0.45945f, 0.45021f, 0.64196f, 0.54879f, 0.92925f, 0.38270f,
0.72867f, 0.69794f, 0.5464f, 0.24563f, 0.45214f, 0.44042f};
template <std::size_t N>
void ApplyMix(std::span<s32> output, std::span<const s32> input, s32 gain, s32 sample_count) {
for (std::size_t i = 0; i < static_cast<std::size_t>(sample_count); i += N) {
for (std::size_t j = 0; j < N; j++) {
output[i + j] +=
static_cast<s32>((static_cast<s64>(input[i + j]) * gain + 0x4000) >> 15);
}
}
}
s32 ApplyMixRamp(std::span<s32> output, std::span<const s32> input, float gain, float delta,
s32 sample_count) {
// XC2 passes in NaN mix volumes, causing further issues as we handle everything as s32 rather
// than float, so the NaN propogation is lost. As the samples get further modified for
// volume etc, they can get out of NaN range, so a later heuristic for catching this is
// more difficult. Handle it here by setting these samples to silence.
if (std::isnan(gain)) {
gain = 0.0f;
delta = 0.0f;
}
s32 x = 0;
for (s32 i = 0; i < sample_count; i++) {
x = static_cast<s32>(static_cast<float>(input[i]) * gain);
output[i] += x;
gain += delta;
}
return x;
}
void ApplyGain(std::span<s32> output, std::span<const s32> input, s32 gain, s32 delta,
s32 sample_count) {
for (s32 i = 0; i < sample_count; i++) {
output[i] = static_cast<s32>((static_cast<s64>(input[i]) * gain + 0x4000) >> 15);
gain += delta;
}
}
void ApplyGainWithoutDelta(std::span<s32> output, std::span<const s32> input, s32 gain,
s32 sample_count) {
for (s32 i = 0; i < sample_count; i++) {
output[i] = static_cast<s32>((static_cast<s64>(input[i]) * gain + 0x4000) >> 15);
}
}
s32 ApplyMixDepop(std::span<s32> output, s32 first_sample, s32 delta, s32 sample_count) {
const bool positive = first_sample > 0;
auto final_sample = std::abs(first_sample);
for (s32 i = 0; i < sample_count; i++) {
final_sample = static_cast<s32>((static_cast<s64>(final_sample) * delta) >> 15);
if (positive) {
output[i] += final_sample;
} else {
output[i] -= final_sample;
}
}
if (positive) {
return final_sample;
} else {
return -final_sample;
}
}
float Pow10(float x) {
if (x >= 0.0f) {
return 1.0f;
} else if (x <= -5.3f) {
return 0.0f;
}
return std::pow(10.0f, x);
}
float SinD(float degrees) {
return std::sin(degrees * std::numbers::pi_v<float> / 180.0f);
}
float CosD(float degrees) {
return std::cos(degrees * std::numbers::pi_v<float> / 180.0f);
}
float ToFloat(s32 sample) {
return static_cast<float>(sample) / 65536.f;
}
s32 ToS32(float sample) {
constexpr auto min = -8388608.0f;
constexpr auto max = 8388607.f;
float rescaled_sample = sample * 65536.0f;
if (rescaled_sample < min) {
rescaled_sample = min;
}
if (rescaled_sample > max) {
rescaled_sample = max;
}
return static_cast<s32>(rescaled_sample);
}
constexpr std::array<std::size_t, 20> REVERB_TAP_INDEX_1CH{0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
constexpr std::array<std::size_t, 20> REVERB_TAP_INDEX_2CH{0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
1, 1, 1, 0, 0, 0, 0, 1, 1, 1};
constexpr std::array<std::size_t, 20> REVERB_TAP_INDEX_4CH{0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1, 1, 1, 0, 0, 0, 0, 3, 3, 3};
constexpr std::array<std::size_t, 20> REVERB_TAP_INDEX_6CH{4, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1, 1, 1, 0, 0, 0, 0, 3, 3, 3};
template <std::size_t CHANNEL_COUNT>
void ApplyReverbGeneric(
I3dl2ReverbState& state,
const std::array<std::span<const s32>, AudioCommon::MAX_CHANNEL_COUNT>& input,
const std::array<std::span<s32>, AudioCommon::MAX_CHANNEL_COUNT>& output, s32 sample_count) {
auto GetTapLookup = []() {
if constexpr (CHANNEL_COUNT == 1) {
return REVERB_TAP_INDEX_1CH;
} else if constexpr (CHANNEL_COUNT == 2) {
return REVERB_TAP_INDEX_2CH;
} else if constexpr (CHANNEL_COUNT == 4) {
return REVERB_TAP_INDEX_4CH;
} else if constexpr (CHANNEL_COUNT == 6) {
return REVERB_TAP_INDEX_6CH;
}
};
const auto& tap_index_lut = GetTapLookup();
for (s32 sample = 0; sample < sample_count; sample++) {
std::array<f32, CHANNEL_COUNT> out_samples{};
std::array<f32, AudioCommon::I3DL2REVERB_DELAY_LINE_COUNT> fsamp{};
std::array<f32, AudioCommon::I3DL2REVERB_DELAY_LINE_COUNT> mixed{};
std::array<f32, AudioCommon::I3DL2REVERB_DELAY_LINE_COUNT> osamp{};
// Mix everything into a single sample
s32 temp_mixed_sample = 0;
for (std::size_t i = 0; i < CHANNEL_COUNT; i++) {
temp_mixed_sample += input[i][sample];
}
const auto current_sample = ToFloat(temp_mixed_sample);
const auto early_tap = state.early_delay_line.TapOut(state.early_to_late_taps);
for (std::size_t i = 0; i < AudioCommon::I3DL2REVERB_TAPS; i++) {
const auto tapped_samp =
state.early_delay_line.TapOut(state.early_tap_steps[i]) * EARLY_GAIN[i];
out_samples[tap_index_lut[i]] += tapped_samp;
if constexpr (CHANNEL_COUNT == 6) {
// handle lfe
out_samples[5] += tapped_samp;
}
}
state.lowpass_0 = current_sample * state.lowpass_2 + state.lowpass_0 * state.lowpass_1;
state.early_delay_line.Tick(state.lowpass_0);
for (std::size_t i = 0; i < CHANNEL_COUNT; i++) {
out_samples[i] *= state.early_gain;
}
// Two channel seems to apply a latet gain, we require to save this
f32 filter{};
for (std::size_t i = 0; i < AudioCommon::I3DL2REVERB_DELAY_LINE_COUNT; i++) {
filter = state.fdn_delay_line[i].GetOutputSample();
const auto computed = filter * state.lpf_coefficients[0][i] + state.shelf_filter[i];
state.shelf_filter[i] =
filter * state.lpf_coefficients[1][i] + computed * state.lpf_coefficients[2][i];
fsamp[i] = computed;
}
// Mixing matrix
mixed[0] = fsamp[1] + fsamp[2];
mixed[1] = -fsamp[0] - fsamp[3];
mixed[2] = fsamp[0] - fsamp[3];
mixed[3] = fsamp[1] - fsamp[2];
if constexpr (CHANNEL_COUNT == 2) {
for (auto& mix : mixed) {
mix *= (filter * state.late_gain);
}
}
for (std::size_t i = 0; i < AudioCommon::I3DL2REVERB_DELAY_LINE_COUNT; i++) {
const auto late = early_tap * state.late_gain;
osamp[i] = state.decay_delay_line0[i].Tick(late + mixed[i]);
osamp[i] = state.decay_delay_line1[i].Tick(osamp[i]);
state.fdn_delay_line[i].Tick(osamp[i]);
}
if constexpr (CHANNEL_COUNT == 1) {
output[0][sample] = ToS32(state.dry_gain * ToFloat(input[0][sample]) +
(out_samples[0] + osamp[0] + osamp[1]));
} else if constexpr (CHANNEL_COUNT == 2 || CHANNEL_COUNT == 4) {
for (std::size_t i = 0; i < CHANNEL_COUNT; i++) {
output[i][sample] =
ToS32(state.dry_gain * ToFloat(input[i][sample]) + (out_samples[i] + osamp[i]));
}
} else if constexpr (CHANNEL_COUNT == 6) {
const auto temp_center = state.center_delay_line.Tick(0.5f * (osamp[2] - osamp[3]));
for (std::size_t i = 0; i < 4; i++) {
output[i][sample] =
ToS32(state.dry_gain * ToFloat(input[i][sample]) + (out_samples[i] + osamp[i]));
}
output[4][sample] =
ToS32(state.dry_gain * ToFloat(input[4][sample]) + (out_samples[4] + temp_center));
output[5][sample] =
ToS32(state.dry_gain * ToFloat(input[5][sample]) + (out_samples[5] + osamp[3]));
}
}
}
} // namespace
CommandGenerator::CommandGenerator(AudioCommon::AudioRendererParameter& worker_params_,
VoiceContext& voice_context_, MixContext& mix_context_,
SplitterContext& splitter_context_,
EffectContext& effect_context_, Core::Memory::Memory& memory_)
: worker_params(worker_params_), voice_context(voice_context_), mix_context(mix_context_),
splitter_context(splitter_context_), effect_context(effect_context_), memory(memory_),
mix_buffer((worker_params.mix_buffer_count + AudioCommon::MAX_CHANNEL_COUNT) *
worker_params.sample_count),
sample_buffer(MIX_BUFFER_SIZE),
depop_buffer((worker_params.mix_buffer_count + AudioCommon::MAX_CHANNEL_COUNT) *
worker_params.sample_count) {}
CommandGenerator::~CommandGenerator() = default;
void CommandGenerator::ClearMixBuffers() {
std::fill(mix_buffer.begin(), mix_buffer.end(), 0);
std::fill(sample_buffer.begin(), sample_buffer.end(), 0);
// std::fill(depop_buffer.begin(), depop_buffer.end(), 0);
}
void CommandGenerator::GenerateVoiceCommands() {
if (dumping_frame) {
LOG_DEBUG(Audio, "(DSP_TRACE) GenerateVoiceCommands");
}
// Grab all our voices
const auto voice_count = voice_context.GetVoiceCount();
for (std::size_t i = 0; i < voice_count; i++) {
auto& voice_info = voice_context.GetSortedInfo(i);
// Update voices and check if we should queue them
if (voice_info.ShouldSkip() || !voice_info.UpdateForCommandGeneration(voice_context)) {
continue;
}
// Queue our voice
GenerateVoiceCommand(voice_info);
}
// Update our splitters
splitter_context.UpdateInternalState();
}
void CommandGenerator::GenerateVoiceCommand(ServerVoiceInfo& voice_info) {
auto& in_params = voice_info.GetInParams();
const auto channel_count = in_params.channel_count;
for (s32 channel = 0; channel < channel_count; channel++) {
const auto resource_id = in_params.voice_channel_resource_id[channel];
auto& dsp_state = voice_context.GetDspSharedState(resource_id);
auto& channel_resource = voice_context.GetChannelResource(resource_id);
// Decode our samples for our channel
GenerateDataSourceCommand(voice_info, dsp_state, channel);
if (in_params.should_depop) {
in_params.last_volume = 0.0f;
} else if (in_params.splitter_info_id != AudioCommon::NO_SPLITTER ||
in_params.mix_id != AudioCommon::NO_MIX) {
// Apply a biquad filter if needed
GenerateBiquadFilterCommandForVoice(voice_info, dsp_state,
worker_params.mix_buffer_count, channel);
// Base voice volume ramping
GenerateVolumeRampCommand(in_params.last_volume, in_params.volume, channel,
in_params.node_id);
in_params.last_volume = in_params.volume;
if (in_params.mix_id != AudioCommon::NO_MIX) {
// If we're using a mix id
auto& mix_info = mix_context.GetInfo(in_params.mix_id);
const auto& dest_mix_params = mix_info.GetInParams();
// Voice Mixing
GenerateVoiceMixCommand(
channel_resource.GetCurrentMixVolume(), channel_resource.GetLastMixVolume(),
dsp_state, dest_mix_params.buffer_offset, dest_mix_params.buffer_count,
worker_params.mix_buffer_count + channel, in_params.node_id);
// Update last mix volumes
channel_resource.UpdateLastMixVolumes();
} else if (in_params.splitter_info_id != AudioCommon::NO_SPLITTER) {
s32 base = channel;
while (auto* destination_data =
GetDestinationData(in_params.splitter_info_id, base)) {
base += channel_count;
if (!destination_data->IsConfigured()) {
continue;
}
if (destination_data->GetMixId() >= static_cast<int>(mix_context.GetCount())) {
continue;
}
const auto& mix_info = mix_context.GetInfo(destination_data->GetMixId());
const auto& dest_mix_params = mix_info.GetInParams();
GenerateVoiceMixCommand(
destination_data->CurrentMixVolumes(), destination_data->LastMixVolumes(),
dsp_state, dest_mix_params.buffer_offset, dest_mix_params.buffer_count,
worker_params.mix_buffer_count + channel, in_params.node_id);
destination_data->MarkDirty();
}
}
// Update biquad filter enabled states
for (std::size_t i = 0; i < AudioCommon::MAX_BIQUAD_FILTERS; i++) {
in_params.was_biquad_filter_enabled[i] = in_params.biquad_filter[i].enabled;
}
}
}
}
void CommandGenerator::GenerateSubMixCommands() {
const auto mix_count = mix_context.GetCount();
for (std::size_t i = 0; i < mix_count; i++) {
auto& mix_info = mix_context.GetSortedInfo(i);
const auto& in_params = mix_info.GetInParams();
if (!in_params.in_use || in_params.mix_id == AudioCommon::FINAL_MIX) {
continue;
}
GenerateSubMixCommand(mix_info);
}
}
void CommandGenerator::GenerateFinalMixCommands() {
GenerateFinalMixCommand();
}
void CommandGenerator::PreCommand() {
if (!dumping_frame) {
return;
}
for (std::size_t i = 0; i < splitter_context.GetInfoCount(); i++) {
const auto& base = splitter_context.GetInfo(i);
std::string graph = fmt::format("b[{}]", i);
const auto* head = base.GetHead();
while (head != nullptr) {
graph += fmt::format("->{}", head->GetMixId());
head = head->GetNextDestination();
}
LOG_DEBUG(Audio, "(DSP_TRACE) SplitterGraph splitter_info={}, {}", i, graph);
}
}
void CommandGenerator::PostCommand() {
if (!dumping_frame) {
return;
}
dumping_frame = false;
}
void CommandGenerator::GenerateDataSourceCommand(ServerVoiceInfo& voice_info, VoiceState& dsp_state,
s32 channel) {
const auto& in_params = voice_info.GetInParams();
const auto depop = in_params.should_depop;
if (depop) {
if (in_params.mix_id != AudioCommon::NO_MIX) {
auto& mix_info = mix_context.GetInfo(in_params.mix_id);
const auto& mix_in = mix_info.GetInParams();
GenerateDepopPrepareCommand(dsp_state, mix_in.buffer_count, mix_in.buffer_offset);
} else if (in_params.splitter_info_id != AudioCommon::NO_SPLITTER) {
s32 index{};
while (const auto* destination =
GetDestinationData(in_params.splitter_info_id, index++)) {
if (!destination->IsConfigured()) {
continue;
}
auto& mix_info = mix_context.GetInfo(destination->GetMixId());
const auto& mix_in = mix_info.GetInParams();
GenerateDepopPrepareCommand(dsp_state, mix_in.buffer_count, mix_in.buffer_offset);
}
}
} else {
switch (in_params.sample_format) {
case SampleFormat::Pcm8:
case SampleFormat::Pcm16:
case SampleFormat::Pcm32:
case SampleFormat::PcmFloat:
DecodeFromWaveBuffers(voice_info, GetChannelMixBuffer(channel), dsp_state, channel,
worker_params.sample_rate, worker_params.sample_count,
in_params.node_id);
break;
case SampleFormat::Adpcm:
ASSERT(channel == 0 && in_params.channel_count == 1);
DecodeFromWaveBuffers(voice_info, GetChannelMixBuffer(0), dsp_state, 0,
worker_params.sample_rate, worker_params.sample_count,
in_params.node_id);
break;
default:
UNREACHABLE_MSG("Unimplemented sample format={}", in_params.sample_format);
}
}
}
void CommandGenerator::GenerateBiquadFilterCommandForVoice(ServerVoiceInfo& voice_info,
VoiceState& dsp_state,
[[maybe_unused]] s32 mix_buffer_count,
[[maybe_unused]] s32 channel) {
for (std::size_t i = 0; i < AudioCommon::MAX_BIQUAD_FILTERS; i++) {
const auto& in_params = voice_info.GetInParams();
auto& biquad_filter = in_params.biquad_filter[i];
// Check if biquad filter is actually used
if (!biquad_filter.enabled) {
continue;
}
// Reinitialize our biquad filter state if it was enabled previously
if (!in_params.was_biquad_filter_enabled[i]) {
dsp_state.biquad_filter_state.fill(0);
}
// Generate biquad filter
// GenerateBiquadFilterCommand(mix_buffer_count, biquad_filter,
// dsp_state.biquad_filter_state,
// mix_buffer_count + channel, mix_buffer_count + channel,
// worker_params.sample_count, voice_info.GetInParams().node_id);
}
}
void CommandGenerator::GenerateBiquadFilterCommand([[maybe_unused]] s32 mix_buffer_id,
const BiquadFilterParameter& params,
std::array<s64, 2>& state,
std::size_t input_offset,
std::size_t output_offset, s32 sample_count,
s32 node_id) {
if (dumping_frame) {
LOG_DEBUG(Audio,
"(DSP_TRACE) GenerateBiquadFilterCommand node_id={}, "
"input_mix_buffer={}, output_mix_buffer={}",
node_id, input_offset, output_offset);
}
std::span<const s32> input = GetMixBuffer(input_offset);
std::span<s32> output = GetMixBuffer(output_offset);
// Biquad filter parameters
const auto [n0, n1, n2] = params.numerator;
const auto [d0, d1] = params.denominator;
// Biquad filter states
auto [s0, s1] = state;
constexpr s64 int32_min = std::numeric_limits<s32>::min();
constexpr s64 int32_max = std::numeric_limits<s32>::max();
for (int i = 0; i < sample_count; ++i) {
const auto sample = static_cast<s64>(input[i]);
const auto f = (sample * n0 + s0 + 0x4000) >> 15;
const auto y = std::clamp(f, int32_min, int32_max);
s0 = sample * n1 + y * d0 + s1;
s1 = sample * n2 + y * d1;
output[i] = static_cast<s32>(y);
}
state = {s0, s1};
}
void CommandGenerator::GenerateDepopPrepareCommand(VoiceState& dsp_state,
std::size_t mix_buffer_count,
std::size_t mix_buffer_offset) {
for (std::size_t i = 0; i < mix_buffer_count; i++) {
auto& sample = dsp_state.previous_samples[i];
if (sample != 0) {
depop_buffer[mix_buffer_offset + i] += sample;
sample = 0;
}
}
}
void CommandGenerator::GenerateDepopForMixBuffersCommand(std::size_t mix_buffer_count,
std::size_t mix_buffer_offset,
s32 sample_rate) {
const std::size_t end_offset =
std::min(mix_buffer_offset + mix_buffer_count, GetTotalMixBufferCount());
const s32 delta = sample_rate == 48000 ? 0x7B29 : 0x78CB;
for (std::size_t i = mix_buffer_offset; i < end_offset; i++) {
if (depop_buffer[i] == 0) {
continue;
}
depop_buffer[i] =
ApplyMixDepop(GetMixBuffer(i), depop_buffer[i], delta, worker_params.sample_count);
}
}
void CommandGenerator::GenerateEffectCommand(ServerMixInfo& mix_info) {
const std::size_t effect_count = effect_context.GetCount();
const auto buffer_offset = mix_info.GetInParams().buffer_offset;
for (std::size_t i = 0; i < effect_count; i++) {
const auto index = mix_info.GetEffectOrder(i);
if (index == AudioCommon::NO_EFFECT_ORDER) {
break;
}
auto* info = effect_context.GetInfo(index);
const auto type = info->GetType();
// TODO(ogniK): Finish remaining effects
switch (type) {
case EffectType::Aux:
GenerateAuxCommand(buffer_offset, info, info->IsEnabled());
break;
case EffectType::I3dl2Reverb:
GenerateI3dl2ReverbEffectCommand(buffer_offset, info, info->IsEnabled());
break;
case EffectType::BiquadFilter:
GenerateBiquadFilterEffectCommand(buffer_offset, info, info->IsEnabled());
break;
default:
break;
}
info->UpdateForCommandGeneration();
}
}
void CommandGenerator::GenerateI3dl2ReverbEffectCommand(s32 mix_buffer_offset, EffectBase* info,
bool enabled) {
auto* reverb = dynamic_cast<EffectI3dl2Reverb*>(info);
const auto& params = reverb->GetParams();
auto& state = reverb->GetState();
const auto channel_count = params.channel_count;
if (channel_count != 1 && channel_count != 2 && channel_count != 4 && channel_count != 6) {
return;
}
std::array<std::span<const s32>, AudioCommon::MAX_CHANNEL_COUNT> input{};
std::array<std::span<s32>, AudioCommon::MAX_CHANNEL_COUNT> output{};
const auto status = params.status;
for (s32 i = 0; i < channel_count; i++) {
input[i] = GetMixBuffer(mix_buffer_offset + params.input[i]);
output[i] = GetMixBuffer(mix_buffer_offset + params.output[i]);
}
if (enabled) {
if (status == ParameterStatus::Initialized) {
InitializeI3dl2Reverb(reverb->GetParams(), state, info->GetWorkBuffer());
} else if (status == ParameterStatus::Updating) {
UpdateI3dl2Reverb(reverb->GetParams(), state, false);
}
}
if (enabled) {
switch (channel_count) {
case 1:
ApplyReverbGeneric<1>(state, input, output, worker_params.sample_count);
break;
case 2:
ApplyReverbGeneric<2>(state, input, output, worker_params.sample_count);
break;
case 4:
ApplyReverbGeneric<4>(state, input, output, worker_params.sample_count);
break;
case 6:
ApplyReverbGeneric<6>(state, input, output, worker_params.sample_count);
break;
}
} else {
for (s32 i = 0; i < channel_count; i++) {
// Only copy if the buffer input and output do not match!
if ((mix_buffer_offset + params.input[i]) != (mix_buffer_offset + params.output[i])) {
std::memcpy(output[i].data(), input[i].data(),
worker_params.sample_count * sizeof(s32));
}
}
}
}
void CommandGenerator::GenerateBiquadFilterEffectCommand(s32 mix_buffer_offset, EffectBase* info,
bool enabled) {
if (!enabled) {
return;
}
const auto& params = dynamic_cast<EffectBiquadFilter*>(info)->GetParams();
const auto channel_count = params.channel_count;
for (s32 i = 0; i < channel_count; i++) {
// TODO(ogniK): Actually implement biquad filter
if (params.input[i] != params.output[i]) {
std::span<const s32> input = GetMixBuffer(mix_buffer_offset + params.input[i]);
std::span<s32> output = GetMixBuffer(mix_buffer_offset + params.output[i]);
ApplyMix<1>(output, input, 32768, worker_params.sample_count);
}
}
}
void CommandGenerator::GenerateAuxCommand(s32 mix_buffer_offset, EffectBase* info, bool enabled) {
auto* aux = dynamic_cast<EffectAuxInfo*>(info);
const auto& params = aux->GetParams();
if (aux->GetSendBuffer() != 0 && aux->GetRecvBuffer() != 0) {
const auto max_channels = params.count;
u32 offset{};
for (u32 channel = 0; channel < max_channels; channel++) {
u32 write_count = 0;
if (channel == (max_channels - 1)) {
write_count = offset + worker_params.sample_count;
}
const auto input_index = params.input_mix_buffers[channel] + mix_buffer_offset;
const auto output_index = params.output_mix_buffers[channel] + mix_buffer_offset;
if (enabled) {
AuxInfoDSP send_info{};
AuxInfoDSP recv_info{};
memory.ReadBlock(aux->GetSendInfo(), &send_info, sizeof(AuxInfoDSP));
memory.ReadBlock(aux->GetRecvInfo(), &recv_info, sizeof(AuxInfoDSP));
WriteAuxBuffer(send_info, aux->GetSendBuffer(), params.sample_count,
GetMixBuffer(input_index), worker_params.sample_count, offset,
write_count);
memory.WriteBlock(aux->GetSendInfo(), &send_info, sizeof(AuxInfoDSP));
const auto samples_read = ReadAuxBuffer(
recv_info, aux->GetRecvBuffer(), params.sample_count,
GetMixBuffer(output_index), worker_params.sample_count, offset, write_count);
memory.WriteBlock(aux->GetRecvInfo(), &recv_info, sizeof(AuxInfoDSP));
if (samples_read != static_cast<int>(worker_params.sample_count) &&
samples_read <= params.sample_count) {
std::memset(GetMixBuffer(output_index).data(), 0,
params.sample_count - samples_read);
}
} else {
AuxInfoDSP empty{};
memory.WriteBlock(aux->GetSendInfo(), &empty, sizeof(AuxInfoDSP));
memory.WriteBlock(aux->GetRecvInfo(), &empty, sizeof(AuxInfoDSP));
if (output_index != input_index) {
std::memcpy(GetMixBuffer(output_index).data(), GetMixBuffer(input_index).data(),
worker_params.sample_count * sizeof(s32));
}
}
offset += worker_params.sample_count;
}
}
}
ServerSplitterDestinationData* CommandGenerator::GetDestinationData(s32 splitter_id, s32 index) {
if (splitter_id == AudioCommon::NO_SPLITTER) {
return nullptr;
}
return splitter_context.GetDestinationData(splitter_id, index);
}
s32 CommandGenerator::WriteAuxBuffer(AuxInfoDSP& dsp_info, VAddr send_buffer, u32 max_samples,
std::span<const s32> data, u32 sample_count, u32 write_offset,
u32 write_count) {
if (max_samples == 0) {
return 0;
}
u32 offset = dsp_info.write_offset + write_offset;
if (send_buffer == 0 || offset > max_samples) {
return 0;
}
s32 data_offset{};
u32 remaining = sample_count;
while (remaining > 0) {
// Get position in buffer
const auto base = send_buffer + (offset * sizeof(u32));
const auto samples_to_grab = std::min(max_samples - offset, remaining);
// Write to output
memory.WriteBlock(base, (data.data() + data_offset), samples_to_grab * sizeof(u32));
offset = (offset + samples_to_grab) % max_samples;
remaining -= samples_to_grab;
data_offset += samples_to_grab;
}
if (write_count != 0) {
dsp_info.write_offset = (dsp_info.write_offset + write_count) % max_samples;
}
return sample_count;
}
s32 CommandGenerator::ReadAuxBuffer(AuxInfoDSP& recv_info, VAddr recv_buffer, u32 max_samples,
std::span<s32> out_data, u32 sample_count, u32 read_offset,
u32 read_count) {
if (max_samples == 0) {
return 0;
}
u32 offset = recv_info.read_offset + read_offset;
if (recv_buffer == 0 || offset > max_samples) {
return 0;
}
u32 remaining = sample_count;
s32 data_offset{};
while (remaining > 0) {
const auto base = recv_buffer + (offset * sizeof(u32));
const auto samples_to_grab = std::min(max_samples - offset, remaining);
std::vector<s32> buffer(samples_to_grab);
memory.ReadBlock(base, buffer.data(), buffer.size() * sizeof(u32));
std::memcpy(out_data.data() + data_offset, buffer.data(), buffer.size() * sizeof(u32));
offset = (offset + samples_to_grab) % max_samples;
remaining -= samples_to_grab;
data_offset += samples_to_grab;
}
if (read_count != 0) {
recv_info.read_offset = (recv_info.read_offset + read_count) % max_samples;
}
return sample_count;
}
void CommandGenerator::InitializeI3dl2Reverb(I3dl2ReverbParams& info, I3dl2ReverbState& state,
std::vector<u8>& work_buffer) {
// Reset state
state.lowpass_0 = 0.0f;
state.lowpass_1 = 0.0f;
state.lowpass_2 = 0.0f;
state.early_delay_line.Reset();
state.early_tap_steps.fill(0);
state.early_gain = 0.0f;
state.late_gain = 0.0f;
state.early_to_late_taps = 0;
for (std::size_t i = 0; i < AudioCommon::I3DL2REVERB_DELAY_LINE_COUNT; i++) {
state.fdn_delay_line[i].Reset();
state.decay_delay_line0[i].Reset();
state.decay_delay_line1[i].Reset();
}
state.last_reverb_echo = 0.0f;
state.center_delay_line.Reset();
for (auto& coef : state.lpf_coefficients) {
coef.fill(0.0f);
}
state.shelf_filter.fill(0.0f);
state.dry_gain = 0.0f;
const auto sample_rate = info.sample_rate / 1000;
f32* work_buffer_ptr = reinterpret_cast<f32*>(work_buffer.data());
s32 delay_samples{};
for (std::size_t i = 0; i < AudioCommon::I3DL2REVERB_DELAY_LINE_COUNT; i++) {
delay_samples =
AudioCommon::CalculateDelaySamples(sample_rate, FDN_MAX_DELAY_LINE_TIMES[i]);
state.fdn_delay_line[i].Initialize(delay_samples, work_buffer_ptr);
work_buffer_ptr += delay_samples + 1;
delay_samples =
AudioCommon::CalculateDelaySamples(sample_rate, DECAY0_MAX_DELAY_LINE_TIMES[i]);
state.decay_delay_line0[i].Initialize(delay_samples, 0.0f, work_buffer_ptr);
work_buffer_ptr += delay_samples + 1;
delay_samples =
AudioCommon::CalculateDelaySamples(sample_rate, DECAY1_MAX_DELAY_LINE_TIMES[i]);
state.decay_delay_line1[i].Initialize(delay_samples, 0.0f, work_buffer_ptr);
work_buffer_ptr += delay_samples + 1;
}
delay_samples = AudioCommon::CalculateDelaySamples(sample_rate, 5.0f);
state.center_delay_line.Initialize(delay_samples, work_buffer_ptr);
work_buffer_ptr += delay_samples + 1;
delay_samples = AudioCommon::CalculateDelaySamples(sample_rate, 400.0f);
state.early_delay_line.Initialize(delay_samples, work_buffer_ptr);
UpdateI3dl2Reverb(info, state, true);
}
void CommandGenerator::UpdateI3dl2Reverb(I3dl2ReverbParams& info, I3dl2ReverbState& state,
bool should_clear) {
state.dry_gain = info.dry_gain;
state.shelf_filter.fill(0.0f);
state.lowpass_0 = 0.0f;
state.early_gain = Pow10(std::min(info.room + info.reflection, 5000.0f) / 2000.0f);
state.late_gain = Pow10(std::min(info.room + info.reverb, 5000.0f) / 2000.0f);
const auto sample_rate = info.sample_rate / 1000;
const f32 hf_gain = Pow10(info.room_hf / 2000.0f);
if (hf_gain >= 1.0f) {
state.lowpass_2 = 1.0f;
state.lowpass_1 = 0.0f;
} else {
const auto a = 1.0f - hf_gain;
const auto b = 2.0f * (2.0f - hf_gain * CosD(256.0f * info.hf_reference /
static_cast<f32>(info.sample_rate)));
const auto c = std::sqrt(b * b - 4.0f * a * a);
state.lowpass_1 = (b - c) / (2.0f * a);
state.lowpass_2 = 1.0f - state.lowpass_1;
}
state.early_to_late_taps = AudioCommon::CalculateDelaySamples(
sample_rate, 1000.0f * (info.reflection_delay + info.reverb_delay));
state.last_reverb_echo = 0.6f * info.diffusion * 0.01f;
for (std::size_t i = 0; i < AudioCommon::I3DL2REVERB_DELAY_LINE_COUNT; i++) {
const auto length =
FDN_MIN_DELAY_LINE_TIMES[i] +
(info.density / 100.0f) * (FDN_MAX_DELAY_LINE_TIMES[i] - FDN_MIN_DELAY_LINE_TIMES[i]);
state.fdn_delay_line[i].SetDelay(AudioCommon::CalculateDelaySamples(sample_rate, length));
const auto delay_sample_counts = state.fdn_delay_line[i].GetDelay() +
state.decay_delay_line0[i].GetDelay() +
state.decay_delay_line1[i].GetDelay();
float a = (-60.0f * static_cast<f32>(delay_sample_counts)) /
(info.decay_time * static_cast<f32>(info.sample_rate));
float b = a / info.hf_decay_ratio;
float c = CosD(128.0f * 0.5f * info.hf_reference / static_cast<f32>(info.sample_rate)) /
SinD(128.0f * 0.5f * info.hf_reference / static_cast<f32>(info.sample_rate));
float d = Pow10((b - a) / 40.0f);
float e = Pow10((b + a) / 40.0f) * 0.7071f;
state.lpf_coefficients[0][i] = e * ((d * c) + 1.0f) / (c + d);
state.lpf_coefficients[1][i] = e * (1.0f - (d * c)) / (c + d);
state.lpf_coefficients[2][i] = (c - d) / (c + d);
state.decay_delay_line0[i].SetCoefficient(state.last_reverb_echo);
state.decay_delay_line1[i].SetCoefficient(-0.9f * state.last_reverb_echo);
}
if (should_clear) {
for (std::size_t i = 0; i < AudioCommon::I3DL2REVERB_DELAY_LINE_COUNT; i++) {
state.fdn_delay_line[i].Clear();
state.decay_delay_line0[i].Clear();
state.decay_delay_line1[i].Clear();
}
state.early_delay_line.Clear();
state.center_delay_line.Clear();
}
const auto max_early_delay = state.early_delay_line.GetMaxDelay();
const auto reflection_time = 1000.0f * (0.9998f * info.reverb_delay + 0.02f);
for (std::size_t tap = 0; tap < AudioCommon::I3DL2REVERB_TAPS; tap++) {
const auto length = AudioCommon::CalculateDelaySamples(
sample_rate, 1000.0f * info.reflection_delay + reflection_time * EARLY_TAP_TIMES[tap]);
state.early_tap_steps[tap] = std::min(length, max_early_delay);
}
}
void CommandGenerator::GenerateVolumeRampCommand(float last_volume, float current_volume,
s32 channel, s32 node_id) {
const auto last = static_cast<s32>(last_volume * 32768.0f);
const auto current = static_cast<s32>(current_volume * 32768.0f);
const auto delta = static_cast<s32>((static_cast<float>(current) - static_cast<float>(last)) /
static_cast<float>(worker_params.sample_count));
if (dumping_frame) {
LOG_DEBUG(Audio,
"(DSP_TRACE) GenerateVolumeRampCommand node_id={}, input={}, output={}, "
"last_volume={}, current_volume={}",
node_id, GetMixChannelBufferOffset(channel), GetMixChannelBufferOffset(channel),
last_volume, current_volume);
}
// Apply generic gain on samples
ApplyGain(GetChannelMixBuffer(channel), GetChannelMixBuffer(channel), last, delta,
worker_params.sample_count);
}
void CommandGenerator::GenerateVoiceMixCommand(const MixVolumeBuffer& mix_volumes,
const MixVolumeBuffer& last_mix_volumes,
VoiceState& dsp_state, s32 mix_buffer_offset,
s32 mix_buffer_count, s32 voice_index, s32 node_id) {
// Loop all our mix buffers
for (s32 i = 0; i < mix_buffer_count; i++) {
if (last_mix_volumes[i] != 0.0f || mix_volumes[i] != 0.0f) {
const auto delta = static_cast<float>((mix_volumes[i] - last_mix_volumes[i])) /
static_cast<float>(worker_params.sample_count);
if (dumping_frame) {
LOG_DEBUG(Audio,
"(DSP_TRACE) GenerateVoiceMixCommand node_id={}, input={}, "
"output={}, last_volume={}, current_volume={}",
node_id, voice_index, mix_buffer_offset + i, last_mix_volumes[i],
mix_volumes[i]);
}
dsp_state.previous_samples[i] =
ApplyMixRamp(GetMixBuffer(mix_buffer_offset + i), GetMixBuffer(voice_index),
last_mix_volumes[i], delta, worker_params.sample_count);
} else {
dsp_state.previous_samples[i] = 0;
}
}
}
void CommandGenerator::GenerateSubMixCommand(ServerMixInfo& mix_info) {
if (dumping_frame) {
LOG_DEBUG(Audio, "(DSP_TRACE) GenerateSubMixCommand");
}
const auto& in_params = mix_info.GetInParams();
GenerateDepopForMixBuffersCommand(in_params.buffer_count, in_params.buffer_offset,
in_params.sample_rate);
GenerateEffectCommand(mix_info);
GenerateMixCommands(mix_info);
}
void CommandGenerator::GenerateMixCommands(ServerMixInfo& mix_info) {
if (!mix_info.HasAnyConnection()) {
return;
}
const auto& in_params = mix_info.GetInParams();
if (in_params.dest_mix_id != AudioCommon::NO_MIX) {
const auto& dest_mix = mix_context.GetInfo(in_params.dest_mix_id);
const auto& dest_in_params = dest_mix.GetInParams();
const auto buffer_count = in_params.buffer_count;
for (s32 i = 0; i < buffer_count; i++) {
for (s32 j = 0; j < dest_in_params.buffer_count; j++) {
const auto mixed_volume = in_params.volume * in_params.mix_volume[i][j];
if (mixed_volume != 0.0f) {
GenerateMixCommand(dest_in_params.buffer_offset + j,
in_params.buffer_offset + i, mixed_volume,
in_params.node_id);
}
}
}
} else if (in_params.splitter_id != AudioCommon::NO_SPLITTER) {
s32 base{};
while (const auto* destination_data = GetDestinationData(in_params.splitter_id, base++)) {
if (!destination_data->IsConfigured()) {
continue;
}
const auto& dest_mix = mix_context.GetInfo(destination_data->GetMixId());
const auto& dest_in_params = dest_mix.GetInParams();
const auto mix_index = (base - 1) % in_params.buffer_count + in_params.buffer_offset;
for (std::size_t i = 0; i < static_cast<std::size_t>(dest_in_params.buffer_count);
i++) {
const auto mixed_volume = in_params.volume * destination_data->GetMixVolume(i);
if (mixed_volume != 0.0f) {
GenerateMixCommand(dest_in_params.buffer_offset + i, mix_index, mixed_volume,
in_params.node_id);
}
}
}
}
}
void CommandGenerator::GenerateMixCommand(std::size_t output_offset, std::size_t input_offset,
float volume, s32 node_id) {
if (dumping_frame) {
LOG_DEBUG(Audio,
"(DSP_TRACE) GenerateMixCommand node_id={}, input={}, output={}, volume={}",
node_id, input_offset, output_offset, volume);
}
std::span<s32> output = GetMixBuffer(output_offset);
std::span<const s32> input = GetMixBuffer(input_offset);
const s32 gain = static_cast<s32>(volume * 32768.0f);
// Mix with loop unrolling
if (worker_params.sample_count % 4 == 0) {
ApplyMix<4>(output, input, gain, worker_params.sample_count);
} else if (worker_params.sample_count % 2 == 0) {
ApplyMix<2>(output, input, gain, worker_params.sample_count);
} else {
ApplyMix<1>(output, input, gain, worker_params.sample_count);
}
}
void CommandGenerator::GenerateFinalMixCommand() {
if (dumping_frame) {
LOG_DEBUG(Audio, "(DSP_TRACE) GenerateFinalMixCommand");
}
auto& mix_info = mix_context.GetFinalMixInfo();
const auto& in_params = mix_info.GetInParams();
GenerateDepopForMixBuffersCommand(in_params.buffer_count, in_params.buffer_offset,
in_params.sample_rate);
GenerateEffectCommand(mix_info);
for (s32 i = 0; i < in_params.buffer_count; i++) {
const s32 gain = static_cast<s32>(in_params.volume * 32768.0f);
if (dumping_frame) {
LOG_DEBUG(
Audio,
"(DSP_TRACE) ApplyGainWithoutDelta node_id={}, input={}, output={}, volume={}",
in_params.node_id, in_params.buffer_offset + i, in_params.buffer_offset + i,
in_params.volume);
}
ApplyGainWithoutDelta(GetMixBuffer(in_params.buffer_offset + i),
GetMixBuffer(in_params.buffer_offset + i), gain,
worker_params.sample_count);
}
}
template <typename T>
s32 CommandGenerator::DecodePcm(ServerVoiceInfo& voice_info, VoiceState& dsp_state,
s32 sample_start_offset, s32 sample_end_offset, s32 sample_count,
s32 channel, std::size_t mix_offset) {
const auto& in_params = voice_info.GetInParams();
const auto& wave_buffer = in_params.wave_buffer[dsp_state.wave_buffer_index];
if (wave_buffer.buffer_address == 0) {
return 0;
}
if (wave_buffer.buffer_size == 0) {
return 0;
}
if (sample_end_offset < sample_start_offset) {
return 0;
}
const auto samples_remaining = (sample_end_offset - sample_start_offset) - dsp_state.offset;
const auto start_offset =
((dsp_state.offset + sample_start_offset) * in_params.channel_count) * sizeof(T);
const auto buffer_pos = wave_buffer.buffer_address + start_offset;
const auto samples_processed = std::min(sample_count, samples_remaining);
const auto channel_count = in_params.channel_count;
std::vector<T> buffer(samples_processed * channel_count);
memory.ReadBlock(buffer_pos, buffer.data(), buffer.size() * sizeof(T));
if constexpr (std::is_floating_point_v<T>) {
for (std::size_t i = 0; i < static_cast<std::size_t>(samples_processed); i++) {
sample_buffer[mix_offset + i] = static_cast<s32>(buffer[i * channel_count + channel] *
std::numeric_limits<s16>::max());
}
} else if constexpr (sizeof(T) == 1) {
for (std::size_t i = 0; i < static_cast<std::size_t>(samples_processed); i++) {
sample_buffer[mix_offset + i] =
static_cast<s32>(static_cast<f32>(buffer[i * channel_count + channel] /
std::numeric_limits<s8>::max()) *
std::numeric_limits<s16>::max());
}
} else if constexpr (sizeof(T) == 2) {
for (std::size_t i = 0; i < static_cast<std::size_t>(samples_processed); i++) {
sample_buffer[mix_offset + i] = buffer[i * channel_count + channel];
}
} else {
for (std::size_t i = 0; i < static_cast<std::size_t>(samples_processed); i++) {
sample_buffer[mix_offset + i] =
static_cast<s32>(static_cast<f32>(buffer[i * channel_count + channel] /
std::numeric_limits<s32>::max()) *
std::numeric_limits<s16>::max());
}
}
return samples_processed;
}
s32 CommandGenerator::DecodeAdpcm(ServerVoiceInfo& voice_info, VoiceState& dsp_state,
s32 sample_start_offset, s32 sample_end_offset, s32 sample_count,
[[maybe_unused]] s32 channel, std::size_t mix_offset) {
const auto& in_params = voice_info.GetInParams();
const auto& wave_buffer = in_params.wave_buffer[dsp_state.wave_buffer_index];
if (wave_buffer.buffer_address == 0) {
return 0;
}
if (wave_buffer.buffer_size == 0) {
return 0;
}
if (sample_end_offset < sample_start_offset) {
return 0;
}
static constexpr std::array<int, 16> SIGNED_NIBBLES{
0, 1, 2, 3, 4, 5, 6, 7, -8, -7, -6, -5, -4, -3, -2, -1,
};
constexpr std::size_t FRAME_LEN = 8;
constexpr std::size_t NIBBLES_PER_SAMPLE = 16;
constexpr std::size_t SAMPLES_PER_FRAME = 14;
auto frame_header = dsp_state.context.header;
s32 idx = (frame_header >> 4) & 0xf;
s32 scale = frame_header & 0xf;
s16 yn1 = dsp_state.context.yn1;
s16 yn2 = dsp_state.context.yn2;
Codec::ADPCM_Coeff coeffs;
memory.ReadBlock(in_params.additional_params_address, coeffs.data(),
sizeof(Codec::ADPCM_Coeff));
s32 coef1 = coeffs[idx * 2];
s32 coef2 = coeffs[idx * 2 + 1];
const auto samples_remaining = (sample_end_offset - sample_start_offset) - dsp_state.offset;
const auto samples_processed = std::min(sample_count, samples_remaining);
const auto sample_pos = dsp_state.offset + sample_start_offset;
const auto samples_remaining_in_frame = sample_pos % SAMPLES_PER_FRAME;
auto position_in_frame = ((sample_pos / SAMPLES_PER_FRAME) * NIBBLES_PER_SAMPLE) +
samples_remaining_in_frame + (samples_remaining_in_frame != 0 ? 2 : 0);
const auto decode_sample = [&](const int nibble) -> s16 {
const int xn = nibble * (1 << scale);
// We first transform everything into 11 bit fixed point, perform the second order
// digital filter, then transform back.
// 0x400 == 0.5 in 11 bit fixed point.
// Filter: y[n] = x[n] + 0.5 + c1 * y[n-1] + c2 * y[n-2]
int val = ((xn << 11) + 0x400 + coef1 * yn1 + coef2 * yn2) >> 11;
// Clamp to output range.
val = std::clamp<s32>(val, -32768, 32767);
// Advance output feedback.
yn2 = yn1;
yn1 = static_cast<s16>(val);
return yn1;
};
std::size_t buffer_offset{};
std::vector<u8> buffer(
std::max((samples_processed / FRAME_LEN) * SAMPLES_PER_FRAME, FRAME_LEN));
memory.ReadBlock(wave_buffer.buffer_address + (position_in_frame / 2), buffer.data(),
buffer.size());
std::size_t cur_mix_offset = mix_offset;
auto remaining_samples = samples_processed;
while (remaining_samples > 0) {
if (position_in_frame % NIBBLES_PER_SAMPLE == 0) {
// Read header
frame_header = buffer[buffer_offset++];
idx = (frame_header >> 4) & 0xf;
scale = frame_header & 0xf;
coef1 = coeffs[idx * 2];
coef2 = coeffs[idx * 2 + 1];
position_in_frame += 2;
// Decode entire frame
if (remaining_samples >= static_cast<int>(SAMPLES_PER_FRAME)) {
for (std::size_t i = 0; i < SAMPLES_PER_FRAME / 2; i++) {
// Sample 1
const s32 s0 = SIGNED_NIBBLES[buffer[buffer_offset] >> 4];
const s32 s1 = SIGNED_NIBBLES[buffer[buffer_offset++] & 0xf];
const s16 sample_1 = decode_sample(s0);
const s16 sample_2 = decode_sample(s1);
sample_buffer[cur_mix_offset++] = sample_1;
sample_buffer[cur_mix_offset++] = sample_2;
}
remaining_samples -= static_cast<int>(SAMPLES_PER_FRAME);
position_in_frame += SAMPLES_PER_FRAME;
continue;
}
}
// Decode mid frame
s32 current_nibble = buffer[buffer_offset];
if (position_in_frame++ & 0x1) {
current_nibble &= 0xf;
buffer_offset++;
} else {
current_nibble >>= 4;
}
const s16 sample = decode_sample(SIGNED_NIBBLES[current_nibble]);
sample_buffer[cur_mix_offset++] = sample;
remaining_samples--;
}
dsp_state.context.header = frame_header;
dsp_state.context.yn1 = yn1;
dsp_state.context.yn2 = yn2;
return samples_processed;
}
std::span<s32> CommandGenerator::GetMixBuffer(std::size_t index) {
return std::span<s32>(mix_buffer.data() + (index * worker_params.sample_count),
worker_params.sample_count);
}
std::span<const s32> CommandGenerator::GetMixBuffer(std::size_t index) const {
return std::span<const s32>(mix_buffer.data() + (index * worker_params.sample_count),
worker_params.sample_count);
}
std::size_t CommandGenerator::GetMixChannelBufferOffset(s32 channel) const {
return worker_params.mix_buffer_count + channel;
}
std::size_t CommandGenerator::GetTotalMixBufferCount() const {
return worker_params.mix_buffer_count + AudioCommon::MAX_CHANNEL_COUNT;
}
std::span<s32> CommandGenerator::GetChannelMixBuffer(s32 channel) {
return GetMixBuffer(worker_params.mix_buffer_count + channel);
}
std::span<const s32> CommandGenerator::GetChannelMixBuffer(s32 channel) const {
return GetMixBuffer(worker_params.mix_buffer_count + channel);
}
void CommandGenerator::DecodeFromWaveBuffers(ServerVoiceInfo& voice_info, std::span<s32> output,
VoiceState& dsp_state, s32 channel,
s32 target_sample_rate, s32 sample_count,
s32 node_id) {
const auto& in_params = voice_info.GetInParams();
if (dumping_frame) {
LOG_DEBUG(Audio,
"(DSP_TRACE) DecodeFromWaveBuffers, node_id={}, channel={}, "
"format={}, sample_count={}, sample_rate={}, mix_id={}, splitter_id={}",
node_id, channel, in_params.sample_format, sample_count, in_params.sample_rate,
in_params.mix_id, in_params.splitter_info_id);
}
ASSERT_OR_EXECUTE(output.data() != nullptr, { return; });
const auto resample_rate = static_cast<s32>(
static_cast<float>(in_params.sample_rate) / static_cast<float>(target_sample_rate) *
static_cast<float>(static_cast<s32>(in_params.pitch * 32768.0f)));
if (dsp_state.fraction + sample_count * resample_rate >
static_cast<s32>(SCALED_MIX_BUFFER_SIZE - 4ULL)) {
return;
}
auto min_required_samples =
std::min(static_cast<s32>(SCALED_MIX_BUFFER_SIZE) - dsp_state.fraction, resample_rate);
if (min_required_samples >= sample_count) {
min_required_samples = sample_count;
}
std::size_t temp_mix_offset{};
s32 samples_output{};
auto samples_remaining = sample_count;
while (samples_remaining > 0) {
const auto samples_to_output = std::min(samples_remaining, min_required_samples);
const auto samples_to_read = (samples_to_output * resample_rate + dsp_state.fraction) >> 15;
if (!in_params.behavior_flags.is_pitch_and_src_skipped) {
// Append sample histtory for resampler
for (std::size_t i = 0; i < AudioCommon::MAX_SAMPLE_HISTORY; i++) {
sample_buffer[temp_mix_offset + i] = dsp_state.sample_history[i];
}
temp_mix_offset += 4;
}
s32 samples_read{};
while (samples_read < samples_to_read) {
const auto& wave_buffer = in_params.wave_buffer[dsp_state.wave_buffer_index];
// No more data can be read
if (!dsp_state.is_wave_buffer_valid[dsp_state.wave_buffer_index]) {
break;
}
if (in_params.sample_format == SampleFormat::Adpcm && dsp_state.offset == 0 &&
wave_buffer.context_address != 0 && wave_buffer.context_size != 0) {
memory.ReadBlock(wave_buffer.context_address, &dsp_state.context,
sizeof(ADPCMContext));
}
s32 samples_offset_start;
s32 samples_offset_end;
if (dsp_state.loop_count > 0 && wave_buffer.loop_start_sample != 0 &&
wave_buffer.loop_end_sample != 0 &&
wave_buffer.loop_start_sample <= wave_buffer.loop_end_sample) {
samples_offset_start = wave_buffer.loop_start_sample;
samples_offset_end = wave_buffer.loop_end_sample;
} else {
samples_offset_start = wave_buffer.start_sample_offset;
samples_offset_end = wave_buffer.end_sample_offset;
}
s32 samples_decoded{0};
switch (in_params.sample_format) {
case SampleFormat::Pcm8:
samples_decoded =
DecodePcm<s8>(voice_info, dsp_state, samples_offset_start, samples_offset_end,
samples_to_read - samples_read, channel, temp_mix_offset);
break;
case SampleFormat::Pcm16:
samples_decoded =
DecodePcm<s16>(voice_info, dsp_state, samples_offset_start, samples_offset_end,
samples_to_read - samples_read, channel, temp_mix_offset);
break;
case SampleFormat::Pcm32:
samples_decoded =
DecodePcm<s32>(voice_info, dsp_state, samples_offset_start, samples_offset_end,
samples_to_read - samples_read, channel, temp_mix_offset);
break;
case SampleFormat::PcmFloat:
samples_decoded =
DecodePcm<f32>(voice_info, dsp_state, samples_offset_start, samples_offset_end,
samples_to_read - samples_read, channel, temp_mix_offset);
break;
case SampleFormat::Adpcm:
samples_decoded =
DecodeAdpcm(voice_info, dsp_state, samples_offset_start, samples_offset_end,
samples_to_read - samples_read, channel, temp_mix_offset);
break;
default:
UNREACHABLE_MSG("Unimplemented sample format={}", in_params.sample_format);
}
temp_mix_offset += samples_decoded;
samples_read += samples_decoded;
dsp_state.offset += samples_decoded;
dsp_state.played_sample_count += samples_decoded;
if (dsp_state.offset >= (samples_offset_end - samples_offset_start) ||
samples_decoded == 0) {
// Reset our sample offset
dsp_state.offset = 0;
if (wave_buffer.is_looping) {
dsp_state.loop_count++;
if (wave_buffer.loop_count > 0 &&
(dsp_state.loop_count > wave_buffer.loop_count || samples_decoded == 0)) {
// End of our buffer
voice_info.SetWaveBufferCompleted(dsp_state, wave_buffer);
}
if (samples_decoded == 0) {
break;
}
if (in_params.behavior_flags.is_played_samples_reset_at_loop_point.Value()) {
dsp_state.played_sample_count = 0;
}
} else {
// Update our wave buffer states
voice_info.SetWaveBufferCompleted(dsp_state, wave_buffer);
}
}
}
if (in_params.behavior_flags.is_pitch_and_src_skipped.Value()) {
// No need to resample
std::memcpy(output.data() + samples_output, sample_buffer.data(),
samples_read * sizeof(s32));
} else {
std::fill(sample_buffer.begin() + temp_mix_offset,
sample_buffer.begin() + temp_mix_offset + (samples_to_read - samples_read),
0);
AudioCore::Resample(output.data() + samples_output, sample_buffer.data(), resample_rate,
dsp_state.fraction, samples_to_output);
// Resample
for (std::size_t i = 0; i < AudioCommon::MAX_SAMPLE_HISTORY; i++) {
dsp_state.sample_history[i] = sample_buffer[samples_to_read + i];
}
}
samples_remaining -= samples_to_output;
samples_output += samples_to_output;
}
}
} // namespace AudioCore