231 lines
8.2 KiB
C++
231 lines
8.2 KiB
C++
// Copyright 2020 yuzu Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <array>
|
|
|
|
extern "C" {
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wconversion"
|
|
#endif
|
|
#include <libswscale/swscale.h>
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
}
|
|
|
|
#include "common/assert.h"
|
|
#include "common/bit_field.h"
|
|
#include "common/logging/log.h"
|
|
|
|
#include "video_core/command_classes/nvdec.h"
|
|
#include "video_core/command_classes/vic.h"
|
|
#include "video_core/engines/maxwell_3d.h"
|
|
#include "video_core/gpu.h"
|
|
#include "video_core/memory_manager.h"
|
|
#include "video_core/textures/decoders.h"
|
|
|
|
namespace Tegra {
|
|
namespace {
|
|
enum class VideoPixelFormat : u64_le {
|
|
RGBA8 = 0x1f,
|
|
BGRA8 = 0x20,
|
|
RGBX8 = 0x23,
|
|
Yuv420 = 0x44,
|
|
};
|
|
} // Anonymous namespace
|
|
|
|
union VicConfig {
|
|
u64_le raw{};
|
|
BitField<0, 7, VideoPixelFormat> pixel_format;
|
|
BitField<7, 2, u64_le> chroma_loc_horiz;
|
|
BitField<9, 2, u64_le> chroma_loc_vert;
|
|
BitField<11, 4, u64_le> block_linear_kind;
|
|
BitField<15, 4, u64_le> block_linear_height_log2;
|
|
BitField<32, 14, u64_le> surface_width_minus1;
|
|
BitField<46, 14, u64_le> surface_height_minus1;
|
|
};
|
|
|
|
Vic::Vic(GPU& gpu_, std::shared_ptr<Nvdec> nvdec_processor_)
|
|
: gpu(gpu_),
|
|
nvdec_processor(std::move(nvdec_processor_)), converted_frame_buffer{nullptr, av_free} {}
|
|
|
|
Vic::~Vic() = default;
|
|
|
|
void Vic::ProcessMethod(Method method, u32 argument) {
|
|
LOG_DEBUG(HW_GPU, "Vic method 0x{:X}", static_cast<u32>(method));
|
|
const u64 arg = static_cast<u64>(argument) << 8;
|
|
switch (method) {
|
|
case Method::Execute:
|
|
Execute();
|
|
break;
|
|
case Method::SetConfigStructOffset:
|
|
config_struct_address = arg;
|
|
break;
|
|
case Method::SetOutputSurfaceLumaOffset:
|
|
output_surface_luma_address = arg;
|
|
break;
|
|
case Method::SetOutputSurfaceChromaOffset:
|
|
output_surface_chroma_address = arg;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void Vic::Execute() {
|
|
if (output_surface_luma_address == 0) {
|
|
LOG_ERROR(Service_NVDRV, "VIC Luma address not set.");
|
|
return;
|
|
}
|
|
const VicConfig config{gpu.MemoryManager().Read<u64>(config_struct_address + 0x20)};
|
|
const AVFramePtr frame_ptr = nvdec_processor->GetFrame();
|
|
const auto* frame = frame_ptr.get();
|
|
if (!frame) {
|
|
return;
|
|
}
|
|
switch (config.pixel_format) {
|
|
case VideoPixelFormat::RGBA8:
|
|
case VideoPixelFormat::BGRA8:
|
|
case VideoPixelFormat::RGBX8:
|
|
WriteRGBFrame(frame, config);
|
|
break;
|
|
case VideoPixelFormat::Yuv420:
|
|
WriteYUVFrame(frame, config);
|
|
break;
|
|
default:
|
|
UNIMPLEMENTED_MSG("Unknown video pixel format {:X}", config.pixel_format.Value());
|
|
break;
|
|
}
|
|
}
|
|
|
|
void Vic::WriteRGBFrame(const AVFrame* frame, const VicConfig& config) {
|
|
LOG_TRACE(Service_NVDRV, "Writing RGB Frame");
|
|
|
|
if (!scaler_ctx || frame->width != scaler_width || frame->height != scaler_height) {
|
|
const AVPixelFormat target_format = [pixel_format = config.pixel_format]() {
|
|
switch (pixel_format) {
|
|
case VideoPixelFormat::RGBA8:
|
|
return AV_PIX_FMT_RGBA;
|
|
case VideoPixelFormat::BGRA8:
|
|
return AV_PIX_FMT_BGRA;
|
|
case VideoPixelFormat::RGBX8:
|
|
return AV_PIX_FMT_RGB0;
|
|
default:
|
|
return AV_PIX_FMT_RGBA;
|
|
}
|
|
}();
|
|
|
|
sws_freeContext(scaler_ctx);
|
|
// Frames are decoded into either YUV420 or NV12 formats. Convert to desired RGB format
|
|
scaler_ctx = sws_getContext(frame->width, frame->height,
|
|
static_cast<AVPixelFormat>(frame->format), frame->width,
|
|
frame->height, target_format, 0, nullptr, nullptr, nullptr);
|
|
scaler_width = frame->width;
|
|
scaler_height = frame->height;
|
|
converted_frame_buffer.reset();
|
|
}
|
|
// Get Converted frame
|
|
const u32 width = static_cast<u32>(frame->width);
|
|
const u32 height = static_cast<u32>(frame->height);
|
|
const std::size_t linear_size = width * height * 4;
|
|
|
|
// Only allocate frame_buffer once per stream, as the size is not expected to change
|
|
if (!converted_frame_buffer) {
|
|
converted_frame_buffer = AVMallocPtr{static_cast<u8*>(av_malloc(linear_size)), av_free};
|
|
}
|
|
const std::array<int, 4> converted_stride{frame->width * 4, frame->height * 4, 0, 0};
|
|
u8* const converted_frame_buf_addr{converted_frame_buffer.get()};
|
|
|
|
sws_scale(scaler_ctx, frame->data, frame->linesize, 0, frame->height, &converted_frame_buf_addr,
|
|
converted_stride.data());
|
|
|
|
const u32 blk_kind = static_cast<u32>(config.block_linear_kind);
|
|
if (blk_kind != 0) {
|
|
// swizzle pitch linear to block linear
|
|
const u32 block_height = static_cast<u32>(config.block_linear_height_log2);
|
|
const auto size = Texture::CalculateSize(true, 4, width, height, 1, block_height, 0);
|
|
luma_buffer.resize(size);
|
|
Texture::SwizzleSubrect(width, height, width * 4, width, 4, luma_buffer.data(),
|
|
converted_frame_buffer.get(), block_height, 0, 0);
|
|
|
|
gpu.MemoryManager().WriteBlock(output_surface_luma_address, luma_buffer.data(), size);
|
|
} else {
|
|
// send pitch linear frame
|
|
gpu.MemoryManager().WriteBlock(output_surface_luma_address, converted_frame_buf_addr,
|
|
linear_size);
|
|
}
|
|
}
|
|
|
|
void Vic::WriteYUVFrame(const AVFrame* frame, const VicConfig& config) {
|
|
LOG_TRACE(Service_NVDRV, "Writing YUV420 Frame");
|
|
|
|
const std::size_t surface_width = config.surface_width_minus1 + 1;
|
|
const std::size_t surface_height = config.surface_height_minus1 + 1;
|
|
const auto frame_width = std::min(surface_width, static_cast<size_t>(frame->width));
|
|
const auto frame_height = std::min(surface_height, static_cast<size_t>(frame->height));
|
|
const std::size_t aligned_width = (surface_width + 0xff) & ~0xffUL;
|
|
|
|
const auto stride = static_cast<size_t>(frame->linesize[0]);
|
|
|
|
luma_buffer.resize(aligned_width * surface_height);
|
|
chroma_buffer.resize(aligned_width * surface_height / 2);
|
|
|
|
// Populate luma buffer
|
|
const u8* luma_src = frame->data[0];
|
|
for (std::size_t y = 0; y < frame_height; ++y) {
|
|
const std::size_t src = y * stride;
|
|
const std::size_t dst = y * aligned_width;
|
|
for (std::size_t x = 0; x < frame_width; ++x) {
|
|
luma_buffer[dst + x] = luma_src[src + x];
|
|
}
|
|
}
|
|
gpu.MemoryManager().WriteBlock(output_surface_luma_address, luma_buffer.data(),
|
|
luma_buffer.size());
|
|
|
|
// Chroma
|
|
const std::size_t half_height = frame_height / 2;
|
|
const auto half_stride = static_cast<size_t>(frame->linesize[1]);
|
|
|
|
switch (frame->format) {
|
|
case AV_PIX_FMT_YUV420P: {
|
|
// Frame from FFmpeg software
|
|
// Populate chroma buffer from both channels with interleaving.
|
|
const std::size_t half_width = frame_width / 2;
|
|
const u8* chroma_b_src = frame->data[1];
|
|
const u8* chroma_r_src = frame->data[2];
|
|
for (std::size_t y = 0; y < half_height; ++y) {
|
|
const std::size_t src = y * half_stride;
|
|
const std::size_t dst = y * aligned_width;
|
|
|
|
for (std::size_t x = 0; x < half_width; ++x) {
|
|
chroma_buffer[dst + x * 2] = chroma_b_src[src + x];
|
|
chroma_buffer[dst + x * 2 + 1] = chroma_r_src[src + x];
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case AV_PIX_FMT_NV12: {
|
|
// Frame from VA-API hardware
|
|
// This is already interleaved so just copy
|
|
const u8* chroma_src = frame->data[1];
|
|
for (std::size_t y = 0; y < half_height; ++y) {
|
|
const std::size_t src = y * stride;
|
|
const std::size_t dst = y * aligned_width;
|
|
for (std::size_t x = 0; x < frame_width; ++x) {
|
|
chroma_buffer[dst + x] = chroma_src[src + x];
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
gpu.MemoryManager().WriteBlock(output_surface_chroma_address, chroma_buffer.data(),
|
|
chroma_buffer.size());
|
|
}
|
|
|
|
} // namespace Tegra
|