citra/src/video_core/shader/shader_ir.h

791 lines
28 KiB
C++

// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <cstring>
#include <map>
#include <set>
#include <string>
#include <tuple>
#include <variant>
#include <vector>
#include "common/common_types.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/engines/shader_header.h"
namespace VideoCommon::Shader {
class OperationNode;
class ConditionalNode;
class GprNode;
class ImmediateNode;
class InternalFlagNode;
class PredicateNode;
class AbufNode; ///< Attribute buffer
class CbufNode; ///< Constant buffer
class LmemNode; ///< Local memory
class GmemNode; ///< Global memory
class CommentNode;
using ProgramCode = std::vector<u64>;
using NodeData =
std::variant<OperationNode, ConditionalNode, GprNode, ImmediateNode, InternalFlagNode,
PredicateNode, AbufNode, CbufNode, LmemNode, GmemNode, CommentNode>;
using Node = const NodeData*;
using BasicBlock = std::vector<Node>;
constexpr u32 MAX_PROGRAM_LENGTH = 0x1000;
enum class OperationCode {
Assign, /// (float& dest, float src) -> void
AssignComposite, /// (MetaComponents, float4 src, float&[4] dst) -> void
AssignCompositeHalf, /// (MetaComponents, float4 src, float&[2] dst) -> void
Composite, /// (float[4] values) -> float4
Select, /// (MetaArithmetic, bool pred, float a, float b) -> float
FAdd, /// (MetaArithmetic, float a, float b) -> float
FMul, /// (MetaArithmetic, float a, float b) -> float
FDiv, /// (MetaArithmetic, float a, float b) -> float
FFma, /// (MetaArithmetic, float a, float b, float c) -> float
FNegate, /// (MetaArithmetic, float a) -> float
FAbsolute, /// (MetaArithmetic, float a) -> float
FClamp, /// (MetaArithmetic, float value, float min, float max) -> float
FMin, /// (MetaArithmetic, float a, float b) -> float
FMax, /// (MetaArithmetic, float a, float b) -> float
FCos, /// (MetaArithmetic, float a) -> float
FSin, /// (MetaArithmetic, float a) -> float
FExp2, /// (MetaArithmetic, float a) -> float
FLog2, /// (MetaArithmetic, float a) -> float
FInverseSqrt, /// (MetaArithmetic, float a) -> float
FSqrt, /// (MetaArithmetic, float a) -> float
FRoundEven, /// (MetaArithmetic, float a) -> float
FFloor, /// (MetaArithmetic, float a) -> float
FCeil, /// (MetaArithmetic, float a) -> float
FTrunc, /// (MetaArithmetic, float a) -> float
FCastInteger, /// (MetaArithmetic, int a) -> float
FCastUInteger, /// (MetaArithmetic, uint a) -> float
IAdd, /// (MetaArithmetic, int a, int b) -> int
IMul, /// (MetaArithmetic, int a, int b) -> int
IDiv, /// (MetaArithmetic, int a, int b) -> int
INegate, /// (MetaArithmetic, int a) -> int
IAbsolute, /// (MetaArithmetic, int a) -> int
IMin, /// (MetaArithmetic, int a, int b) -> int
IMax, /// (MetaArithmetic, int a, int b) -> int
ICastFloat, /// (MetaArithmetic, float a) -> int
ICastUnsigned, /// (MetaArithmetic, uint a) -> int
ILogicalShiftLeft, /// (MetaArithmetic, int a, uint b) -> int
ILogicalShiftRight, /// (MetaArithmetic, int a, uint b) -> int
IArithmeticShiftRight, /// (MetaArithmetic, int a, uint b) -> int
IBitwiseAnd, /// (MetaArithmetic, int a, int b) -> int
IBitwiseOr, /// (MetaArithmetic, int a, int b) -> int
IBitwiseXor, /// (MetaArithmetic, int a, int b) -> int
IBitwiseNot, /// (MetaArithmetic, int a) -> int
IBitfieldInsert, /// (MetaArithmetic, int base, int insert, int offset, int bits) -> int
IBitfieldExtract, /// (MetaArithmetic, int value, int offset, int offset) -> int
IBitCount, /// (MetaArithmetic, int) -> int
UAdd, /// (MetaArithmetic, uint a, uint b) -> uint
UMul, /// (MetaArithmetic, uint a, uint b) -> uint
UDiv, /// (MetaArithmetic, uint a, uint b) -> uint
UMin, /// (MetaArithmetic, uint a, uint b) -> uint
UMax, /// (MetaArithmetic, uint a, uint b) -> uint
UCastFloat, /// (MetaArithmetic, float a) -> uint
UCastSigned, /// (MetaArithmetic, int a) -> uint
ULogicalShiftLeft, /// (MetaArithmetic, uint a, uint b) -> uint
ULogicalShiftRight, /// (MetaArithmetic, uint a, uint b) -> uint
UArithmeticShiftRight, /// (MetaArithmetic, uint a, uint b) -> uint
UBitwiseAnd, /// (MetaArithmetic, uint a, uint b) -> uint
UBitwiseOr, /// (MetaArithmetic, uint a, uint b) -> uint
UBitwiseXor, /// (MetaArithmetic, uint a, uint b) -> uint
UBitwiseNot, /// (MetaArithmetic, uint a) -> uint
UBitfieldInsert, /// (MetaArithmetic, uint base, uint insert, int offset, int bits) -> uint
UBitfieldExtract, /// (MetaArithmetic, uint value, int offset, int offset) -> uint
UBitCount, /// (MetaArithmetic, uint) -> uint
HAdd, /// (MetaHalfArithmetic, f16vec2 a, f16vec2 b) -> f16vec2
HMul, /// (MetaHalfArithmetic, f16vec2 a, f16vec2 b) -> f16vec2
HFma, /// (MetaHalfArithmetic, f16vec2 a, f16vec2 b, f16vec2 c) -> f16vec2
HAbsolute, /// (f16vec2 a) -> f16vec2
HNegate, /// (f16vec2 a, bool first, bool second) -> f16vec2
HMergeF32, /// (f16vec2 src) -> float
HMergeH0, /// (f16vec2 dest, f16vec2 src) -> f16vec2
HMergeH1, /// (f16vec2 dest, f16vec2 src) -> f16vec2
LogicalAssign, /// (bool& dst, bool src) -> void
LogicalAnd, /// (bool a, bool b) -> bool
LogicalOr, /// (bool a, bool b) -> bool
LogicalXor, /// (bool a, bool b) -> bool
LogicalNegate, /// (bool a) -> bool
LogicalPick2, /// (bool2 pair, uint index) -> bool
LogicalAll2, /// (bool2 a) -> bool
LogicalAny2, /// (bool2 a) -> bool
LogicalFLessThan, /// (float a, float b) -> bool
LogicalFEqual, /// (float a, float b) -> bool
LogicalFLessEqual, /// (float a, float b) -> bool
LogicalFGreaterThan, /// (float a, float b) -> bool
LogicalFNotEqual, /// (float a, float b) -> bool
LogicalFGreaterEqual, /// (float a, float b) -> bool
LogicalFIsNan, /// (float a) -> bool
LogicalILessThan, /// (int a, int b) -> bool
LogicalIEqual, /// (int a, int b) -> bool
LogicalILessEqual, /// (int a, int b) -> bool
LogicalIGreaterThan, /// (int a, int b) -> bool
LogicalINotEqual, /// (int a, int b) -> bool
LogicalIGreaterEqual, /// (int a, int b) -> bool
LogicalULessThan, /// (uint a, uint b) -> bool
LogicalUEqual, /// (uint a, uint b) -> bool
LogicalULessEqual, /// (uint a, uint b) -> bool
LogicalUGreaterThan, /// (uint a, uint b) -> bool
LogicalUNotEqual, /// (uint a, uint b) -> bool
LogicalUGreaterEqual, /// (uint a, uint b) -> bool
Logical2HLessThan, /// (MetaHalfArithmetic, f16vec2 a, f16vec2) -> bool2
Logical2HEqual, /// (MetaHalfArithmetic, f16vec2 a, f16vec2) -> bool2
Logical2HLessEqual, /// (MetaHalfArithmetic, f16vec2 a, f16vec2) -> bool2
Logical2HGreaterThan, /// (MetaHalfArithmetic, f16vec2 a, f16vec2) -> bool2
Logical2HNotEqual, /// (MetaHalfArithmetic, f16vec2 a, f16vec2) -> bool2
Logical2HGreaterEqual, /// (MetaHalfArithmetic, f16vec2 a, f16vec2) -> bool2
F4Texture, /// (MetaTexture, float[N] coords, float[M] params) -> float4
F4TextureLod, /// (MetaTexture, float[N] coords, float[M] params) -> float4
F4TextureGather, /// (MetaTexture, float[N] coords, float[M] params) -> float4
F4TextureQueryDimensions, /// (MetaTexture, float a) -> float4
F4TextureQueryLod, /// (MetaTexture, float[N] coords) -> float4
F4TexelFetch, /// (MetaTexture, int[N], int) -> float4
Bra, /// (uint branch_target) -> void
Ssy, /// (uint branch_target) -> void
Pbk, /// (uint branch_target) -> void
Sync, /// () -> void
Brk, /// () -> void
Exit, /// () -> void
Kil, /// () -> void
EmitVertex, /// () -> void
EndPrimitive, /// () -> void
YNegate, /// () -> float
Amount,
};
enum class InternalFlag {
Zero = 0,
Sign = 1,
Carry = 2,
Overflow = 3,
Amount = 4,
};
/// Describes the behaviour of code path of a given entry point and a return point.
enum class ExitMethod {
Undetermined, ///< Internal value. Only occur when analyzing JMP loop.
AlwaysReturn, ///< All code paths reach the return point.
Conditional, ///< Code path reaches the return point or an END instruction conditionally.
AlwaysEnd, ///< All code paths reach a END instruction.
};
class Sampler {
public:
explicit Sampler(std::size_t offset, std::size_t index, Tegra::Shader::TextureType type,
bool is_array, bool is_shadow)
: offset{offset}, index{index}, type{type}, is_array{is_array}, is_shadow{is_shadow} {}
std::size_t GetOffset() const {
return offset;
}
std::size_t GetIndex() const {
return index;
}
Tegra::Shader::TextureType GetType() const {
return type;
}
bool IsArray() const {
return is_array;
}
bool IsShadow() const {
return is_shadow;
}
bool operator<(const Sampler& rhs) const {
return std::tie(offset, index, type, is_array, is_shadow) <
std::tie(rhs.offset, rhs.index, rhs.type, rhs.is_array, rhs.is_shadow);
}
private:
/// Offset in TSC memory from which to read the sampler object, as specified by the sampling
/// instruction.
std::size_t offset{};
std::size_t index{}; ///< Value used to index into the generated GLSL sampler array.
Tegra::Shader::TextureType type{}; ///< The type used to sample this texture (Texture2D, etc)
bool is_array{}; ///< Whether the texture is being sampled as an array texture or not.
bool is_shadow{}; ///< Whether the texture is being sampled as a depth texture or not.
};
class ConstBuffer {
public:
void MarkAsUsed(u64 offset) {
max_offset = std::max(max_offset, static_cast<u32>(offset));
}
void MarkAsUsedIndirect() {
is_indirect = true;
}
bool IsIndirect() const {
return is_indirect;
}
u32 GetSize() const {
return max_offset + 1;
}
private:
u32 max_offset{};
bool is_indirect{};
};
struct MetaArithmetic {
bool precise{};
};
struct MetaHalfArithmetic {
bool precise{};
std::array<Tegra::Shader::HalfType, 3> types = {Tegra::Shader::HalfType::H0_H1,
Tegra::Shader::HalfType::H0_H1,
Tegra::Shader::HalfType::H0_H1};
};
struct MetaTexture {
const Sampler& sampler;
u32 coords_count{};
std::optional<u32> array_index;
};
struct MetaComponents {
std::array<u32, 4> components_map{};
u32 count{};
u32 GetSourceComponent(u32 dest_index) const {
return components_map[dest_index];
}
};
constexpr MetaArithmetic PRECISE = {true};
constexpr MetaArithmetic NO_PRECISE = {false};
constexpr MetaHalfArithmetic HALF_NO_PRECISE = {false};
using Meta = std::variant<MetaArithmetic, MetaHalfArithmetic, MetaTexture, MetaComponents>;
/// Holds any kind of operation that can be done in the IR
class OperationNode final {
public:
template <typename... T>
explicit constexpr OperationNode(OperationCode code) : code{code}, meta{} {}
template <typename... T>
explicit constexpr OperationNode(OperationCode code, Meta&& meta)
: code{code}, meta{std::move(meta)} {}
template <typename... T>
explicit constexpr OperationNode(OperationCode code, const T*... operands)
: OperationNode(code, {}, operands...) {}
template <typename... T>
explicit constexpr OperationNode(OperationCode code, Meta&& meta, const T*... operands_)
: code{code}, meta{std::move(meta)} {
auto operands_list = {operands_...};
for (auto& operand : operands_list) {
operands.push_back(operand);
}
}
explicit OperationNode(OperationCode code, Meta&& meta, std::vector<Node>&& operands)
: code{code}, meta{meta}, operands{std::move(operands)} {}
explicit OperationNode(OperationCode code, std::vector<Node>&& operands)
: code{code}, meta{}, operands{std::move(operands)} {}
OperationCode GetCode() const {
return code;
}
const Meta& GetMeta() const {
return meta;
}
std::size_t GetOperandsCount() const {
return operands.size();
}
Node operator[](std::size_t operand_index) const {
return operands.at(operand_index);
}
private:
const OperationCode code;
const Meta meta;
std::vector<Node> operands;
};
/// Encloses inside any kind of node that returns a boolean conditionally-executed code
class ConditionalNode final {
public:
explicit ConditionalNode(Node condition, std::vector<Node>&& code)
: condition{condition}, code{std::move(code)} {}
Node GetCondition() const {
return condition;
}
const std::vector<Node>& GetCode() const {
return code;
}
private:
const Node condition; ///< Condition to be satisfied
std::vector<Node> code; ///< Code to execute
};
/// A general purpose register
class GprNode final {
public:
explicit constexpr GprNode(Tegra::Shader::Register index) : index{index} {}
u32 GetIndex() const {
return static_cast<u32>(index);
}
private:
const Tegra::Shader::Register index;
};
/// A 32-bits value that represents an immediate value
class ImmediateNode final {
public:
explicit constexpr ImmediateNode(u32 value) : value{value} {}
u32 GetValue() const {
return value;
}
private:
const u32 value;
};
/// One of Maxwell's internal flags
class InternalFlagNode final {
public:
explicit constexpr InternalFlagNode(InternalFlag flag) : flag{flag} {}
InternalFlag GetFlag() const {
return flag;
}
private:
const InternalFlag flag;
};
/// A predicate register, it can be negated without aditional nodes
class PredicateNode final {
public:
explicit constexpr PredicateNode(Tegra::Shader::Pred index, bool negated)
: index{index}, negated{negated} {}
Tegra::Shader::Pred GetIndex() const {
return index;
}
bool IsNegated() const {
return negated;
}
private:
const Tegra::Shader::Pred index;
const bool negated;
};
/// Attribute buffer memory (known as attributes or varyings in GLSL terms)
class AbufNode final {
public:
explicit constexpr AbufNode(Tegra::Shader::Attribute::Index index, u32 element,
const Tegra::Shader::IpaMode& input_mode, Node buffer = {})
: input_mode{input_mode}, index{index}, element{element}, buffer{buffer} {}
explicit constexpr AbufNode(Tegra::Shader::Attribute::Index index, u32 element,
Node buffer = {})
: input_mode{}, index{index}, element{element}, buffer{buffer} {}
Tegra::Shader::IpaMode GetInputMode() const {
return input_mode;
}
Tegra::Shader::Attribute::Index GetIndex() const {
return index;
}
u32 GetElement() const {
return element;
}
Node GetBuffer() const {
return buffer;
}
private:
const Tegra::Shader::IpaMode input_mode;
const Node buffer;
const Tegra::Shader::Attribute::Index index;
const u32 element;
};
/// Constant buffer node, usually mapped to uniform buffers in GLSL
class CbufNode final {
public:
explicit constexpr CbufNode(u32 index, Node offset) : index{index}, offset{offset} {}
u32 GetIndex() const {
return index;
}
Node GetOffset() const {
return offset;
}
private:
const u32 index;
const Node offset;
};
/// Local memory node
class LmemNode final {
public:
explicit constexpr LmemNode(Node address) : address{address} {}
Node GetAddress() const {
return address;
}
private:
const Node address;
};
/// Global memory node
class GmemNode final {
public:
explicit constexpr GmemNode(Node address) : address{address} {}
Node GetAddress() const {
return address;
}
private:
const Node address;
};
/// Commentary, can be dropped
class CommentNode final {
public:
explicit CommentNode(std::string text) : text{std::move(text)} {}
const std::string& GetText() const {
return text;
}
private:
std::string text;
};
class ShaderIR final {
public:
explicit ShaderIR(const ProgramCode& program_code, u32 main_offset)
: program_code{program_code}, main_offset{main_offset} {
Decode();
}
const std::map<u32, BasicBlock>& GetBasicBlocks() const {
return basic_blocks;
}
const std::set<u32>& GetRegisters() const {
return used_registers;
}
const std::set<Tegra::Shader::Pred>& GetPredicates() const {
return used_predicates;
}
const std::map<Tegra::Shader::Attribute::Index, std::set<Tegra::Shader::IpaMode>>&
GetInputAttributes() const {
return used_input_attributes;
}
const std::set<Tegra::Shader::Attribute::Index>& GetOutputAttributes() const {
return used_output_attributes;
}
const std::map<u32, ConstBuffer>& GetConstantBuffers() const {
return used_cbufs;
}
const std::set<Sampler>& GetSamplers() const {
return used_samplers;
}
const std::array<bool, Tegra::Engines::Maxwell3D::Regs::NumClipDistances>& GetClipDistances()
const {
return used_clip_distances;
}
std::size_t GetLength() const {
return static_cast<std::size_t>(coverage_end * sizeof(u64));
}
const Tegra::Shader::Header& GetHeader() const {
return header;
}
private:
void Decode();
ExitMethod Scan(u32 begin, u32 end, std::set<u32>& labels);
BasicBlock DecodeRange(u32 begin, u32 end);
/**
* Decodes a single instruction from Tegra to IR.
* @param bb Basic block where the nodes will be written to.
* @param pc Program counter. Offset to decode.
* @return Next address to decode.
*/
u32 DecodeInstr(BasicBlock& bb, u32 pc);
u32 DecodeArithmetic(BasicBlock& bb, u32 pc);
u32 DecodeArithmeticImmediate(BasicBlock& bb, u32 pc);
u32 DecodeBfe(BasicBlock& bb, u32 pc);
u32 DecodeBfi(BasicBlock& bb, u32 pc);
u32 DecodeShift(BasicBlock& bb, u32 pc);
u32 DecodeArithmeticInteger(BasicBlock& bb, u32 pc);
u32 DecodeArithmeticIntegerImmediate(BasicBlock& bb, u32 pc);
u32 DecodeArithmeticHalf(BasicBlock& bb, u32 pc);
u32 DecodeArithmeticHalfImmediate(BasicBlock& bb, u32 pc);
u32 DecodeFfma(BasicBlock& bb, u32 pc);
u32 DecodeHfma2(BasicBlock& bb, u32 pc);
u32 DecodeConversion(BasicBlock& bb, u32 pc);
u32 DecodeMemory(BasicBlock& bb, u32 pc);
u32 DecodeFloatSetPredicate(BasicBlock& bb, u32 pc);
u32 DecodeIntegerSetPredicate(BasicBlock& bb, u32 pc);
u32 DecodeHalfSetPredicate(BasicBlock& bb, u32 pc);
u32 DecodePredicateSetRegister(BasicBlock& bb, u32 pc);
u32 DecodePredicateSetPredicate(BasicBlock& bb, u32 pc);
u32 DecodeRegisterSetPredicate(BasicBlock& bb, u32 pc);
u32 DecodeFloatSet(BasicBlock& bb, u32 pc);
u32 DecodeIntegerSet(BasicBlock& bb, u32 pc);
u32 DecodeHalfSet(BasicBlock& bb, u32 pc);
u32 DecodeVideo(BasicBlock& bb, u32 pc);
u32 DecodeXmad(BasicBlock& bb, u32 pc);
u32 DecodeOther(BasicBlock& bb, u32 pc);
/// Internalizes node's data and returns a managed pointer to a clone of that node
Node StoreNode(NodeData&& node_data);
/// Creates a conditional node
Node Conditional(Node condition, std::vector<Node>&& code);
/// Creates a commentary
Node Comment(const std::string& text);
/// Creates an u32 immediate
Node Immediate(u32 value);
/// Creates a s32 immediate
Node Immediate(s32 value) {
return Immediate(static_cast<u32>(value));
}
/// Creates a f32 immediate
Node Immediate(f32 value) {
u32 integral;
std::memcpy(&integral, &value, sizeof(u32));
return Immediate(integral);
}
/// Generates a node for a passed register.
Node GetRegister(Tegra::Shader::Register reg);
/// Generates a node representing a 19-bit immediate value
Node GetImmediate19(Tegra::Shader::Instruction instr);
/// Generates a node representing a 32-bit immediate value
Node GetImmediate32(Tegra::Shader::Instruction instr);
/// Generates a node representing a constant buffer
Node GetConstBuffer(u64 index, u64 offset);
/// Generates a node representing a constant buffer with a variadic offset
Node GetConstBufferIndirect(u64 index, u64 offset, Node node);
/// Generates a node for a passed predicate. It can be optionally negated
Node GetPredicate(u64 pred, bool negated = false);
/// Generates a predicate node for an immediate true or false value
Node GetPredicate(bool immediate);
/// Generates a node representing an input atttribute. Keeps track of used attributes.
Node GetInputAttribute(Tegra::Shader::Attribute::Index index, u64 element,
const Tegra::Shader::IpaMode& input_mode, Node buffer = {});
/// Generates a node representing an output atttribute. Keeps track of used attributes.
Node GetOutputAttribute(Tegra::Shader::Attribute::Index index, u64 element, Node buffer);
/// Generates a node representing an internal flag
Node GetInternalFlag(InternalFlag flag, bool negated = false);
/// Generates a node representing a local memory address
Node GetLocalMemory(Node address);
/// Sets a register. src value must be a number-evaluated node.
void SetRegister(BasicBlock& bb, Tegra::Shader::Register dest, Node src);
/// Sets a predicate. src value must be a bool-evaluated node
void SetPredicate(BasicBlock& bb, u64 dest, Node src);
/// Sets an internal flag. src value must be a bool-evaluated node
void SetInternalFlag(BasicBlock& bb, InternalFlag flag, Node value);
/// Sets a local memory address. address and value must be a number-evaluated node
void SetLocalMemory(BasicBlock& bb, Node address, Node value);
/// Conditionally absolute/negated float. Absolute is applied first
Node GetOperandAbsNegFloat(Node value, bool absolute, bool negate);
/// Conditionally saturates a float
Node GetSaturatedFloat(Node value, bool saturate = true);
/// Converts an integer to different sizes.
Node ConvertIntegerSize(Node value, Tegra::Shader::Register::Size size, bool is_signed);
/// Conditionally absolute/negated integer. Absolute is applied first
Node GetOperandAbsNegInteger(Node value, bool absolute, bool negate, bool is_signed);
/// Unpacks a half immediate from an instruction
Node UnpackHalfImmediate(Tegra::Shader::Instruction instr, bool has_negation);
/// Merges a half pair into another value
Node HalfMerge(Node dest, Node src, Tegra::Shader::HalfMerge merge);
/// Conditionally absolute/negated half float pair. Absolute is applied first
Node GetOperandAbsNegHalf(Node value, bool absolute, bool negate);
/// Returns a predicate comparing two floats
Node GetPredicateComparisonFloat(Tegra::Shader::PredCondition condition, Node op_a, Node op_b);
/// Returns a predicate comparing two integers
Node GetPredicateComparisonInteger(Tegra::Shader::PredCondition condition, bool is_signed,
Node op_a, Node op_b);
/// Returns a predicate comparing two half floats. meta consumes how both pairs will be compared
Node GetPredicateComparisonHalf(Tegra::Shader::PredCondition condition,
const MetaHalfArithmetic& meta, Node op_a, Node op_b);
/// Returns a predicate combiner operation
OperationCode GetPredicateCombiner(Tegra::Shader::PredOperation operation);
/// Returns a condition code evaluated from internal flags
Node GetConditionCode(Tegra::Shader::ConditionCode cc);
/// Accesses a texture sampler
const Sampler& GetSampler(const Tegra::Shader::Sampler& sampler,
Tegra::Shader::TextureType type, bool is_array, bool is_shadow);
/// Extracts a sequence of bits from a node
Node BitfieldExtract(Node value, u32 offset, u32 bits);
void WriteTexsInstructionFloat(BasicBlock& bb, Tegra::Shader::Instruction instr, Node texture);
void WriteTexsInstructionHalfFloat(BasicBlock& bb, Tegra::Shader::Instruction instr,
Node texture);
Node GetTexCode(Tegra::Shader::Instruction instr, Tegra::Shader::TextureType texture_type,
Tegra::Shader::TextureProcessMode process_mode, bool depth_compare,
bool is_array);
Node GetTexsCode(Tegra::Shader::Instruction instr, Tegra::Shader::TextureType texture_type,
Tegra::Shader::TextureProcessMode process_mode, bool depth_compare,
bool is_array);
Node GetTld4Code(Tegra::Shader::Instruction instr, Tegra::Shader::TextureType texture_type,
bool depth_compare, bool is_array);
Node GetTldsCode(Tegra::Shader::Instruction instr, Tegra::Shader::TextureType texture_type,
bool is_array);
std::tuple<std::size_t, std::size_t> ValidateAndGetCoordinateElement(
Tegra::Shader::TextureType texture_type, bool depth_compare, bool is_array,
bool lod_bias_enabled, std::size_t max_coords, std::size_t max_inputs);
Node GetTextureCode(Tegra::Shader::Instruction instr, Tegra::Shader::TextureType texture_type,
Tegra::Shader::TextureProcessMode process_mode, bool depth_compare,
bool is_array, std::size_t array_offset, std::size_t bias_offset,
std::vector<Node>&& coords);
Node GetVideoOperand(Node op, bool is_chunk, bool is_signed, Tegra::Shader::VideoType type,
u64 byte_height);
void WriteLogicOperation(BasicBlock& bb, Tegra::Shader::Register dest,
Tegra::Shader::LogicOperation logic_op, Node op_a, Node op_b,
Tegra::Shader::PredicateResultMode predicate_mode,
Tegra::Shader::Pred predicate);
void WriteLop3Instruction(BasicBlock& bb, Tegra::Shader::Register dest, Node op_a, Node op_b,
Node op_c, Node imm_lut);
template <typename... T>
Node Operation(OperationCode code, const T*... operands) {
return StoreNode(OperationNode(code, operands...));
}
template <typename... T>
Node Operation(OperationCode code, Meta&& meta, const T*... operands) {
return StoreNode(OperationNode(code, std::move(meta), operands...));
}
template <typename... T>
Node Operation(OperationCode code, std::vector<Node>&& operands) {
return StoreNode(OperationNode(code, std::move(operands)));
}
template <typename... T>
Node Operation(OperationCode code, Meta&& meta, std::vector<Node>&& operands) {
return StoreNode(OperationNode(code, std::move(meta), std::move(operands)));
}
template <typename... T>
Node SignedOperation(OperationCode code, bool is_signed, const T*... operands) {
return StoreNode(OperationNode(SignedToUnsignedCode(code, is_signed), operands...));
}
template <typename... T>
Node SignedOperation(OperationCode code, bool is_signed, Meta&& meta, const T*... operands) {
return StoreNode(
OperationNode(SignedToUnsignedCode(code, is_signed), std::move(meta), operands...));
}
static OperationCode SignedToUnsignedCode(OperationCode operation_code, bool is_signed);
const ProgramCode& program_code;
const u32 main_offset;
u32 coverage_begin{};
u32 coverage_end{};
std::map<std::pair<u32, u32>, ExitMethod> exit_method_map;
std::map<u32, BasicBlock> basic_blocks;
std::vector<std::unique_ptr<NodeData>> stored_nodes;
std::set<u32> used_registers;
std::set<Tegra::Shader::Pred> used_predicates;
std::map<Tegra::Shader::Attribute::Index, std::set<Tegra::Shader::IpaMode>>
used_input_attributes;
std::set<Tegra::Shader::Attribute::Index> used_output_attributes;
std::map<u32, ConstBuffer> used_cbufs;
std::set<Sampler> used_samplers;
std::array<bool, Tegra::Engines::Maxwell3D::Regs::NumClipDistances> used_clip_distances{};
Tegra::Shader::Header header;
};
} // namespace VideoCommon::Shader