citra/src/video_core/command_classes/vic.cpp

180 lines
6.7 KiB
C++

// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <array>
extern "C" {
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wconversion"
#endif
#include <libswscale/swscale.h>
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic pop
#endif
}
#include "common/assert.h"
#include "common/logging/log.h"
#include "video_core/command_classes/nvdec.h"
#include "video_core/command_classes/vic.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/gpu.h"
#include "video_core/memory_manager.h"
#include "video_core/textures/decoders.h"
namespace Tegra {
Vic::Vic(GPU& gpu_, std::shared_ptr<Nvdec> nvdec_processor_)
: gpu(gpu_),
nvdec_processor(std::move(nvdec_processor_)), converted_frame_buffer{nullptr, av_free} {}
Vic::~Vic() = default;
void Vic::ProcessMethod(Method method, u32 argument) {
LOG_DEBUG(HW_GPU, "Vic method 0x{:X}", static_cast<u32>(method));
const u64 arg = static_cast<u64>(argument) << 8;
switch (method) {
case Method::Execute:
Execute();
break;
case Method::SetConfigStructOffset:
config_struct_address = arg;
break;
case Method::SetOutputSurfaceLumaOffset:
output_surface_luma_address = arg;
break;
case Method::SetOutputSurfaceChromaUOffset:
output_surface_chroma_u_address = arg;
break;
case Method::SetOutputSurfaceChromaVOffset:
output_surface_chroma_v_address = arg;
break;
default:
break;
}
}
void Vic::Execute() {
if (output_surface_luma_address == 0) {
LOG_ERROR(Service_NVDRV, "VIC Luma address not set.");
return;
}
const VicConfig config{gpu.MemoryManager().Read<u64>(config_struct_address + 0x20)};
const AVFramePtr frame_ptr = nvdec_processor->GetFrame();
const auto* frame = frame_ptr.get();
if (!frame || frame->width == 0 || frame->height == 0) {
return;
}
const VideoPixelFormat pixel_format =
static_cast<VideoPixelFormat>(config.pixel_format.Value());
switch (pixel_format) {
case VideoPixelFormat::BGRA8:
case VideoPixelFormat::RGBA8: {
LOG_TRACE(Service_NVDRV, "Writing RGB Frame");
if (scaler_ctx == nullptr || frame->width != scaler_width ||
frame->height != scaler_height) {
const AVPixelFormat target_format =
(pixel_format == VideoPixelFormat::RGBA8) ? AV_PIX_FMT_RGBA : AV_PIX_FMT_BGRA;
sws_freeContext(scaler_ctx);
scaler_ctx = nullptr;
// FFmpeg returns all frames in YUV420, convert it into expected format
scaler_ctx =
sws_getContext(frame->width, frame->height, AV_PIX_FMT_YUV420P, frame->width,
frame->height, target_format, 0, nullptr, nullptr, nullptr);
scaler_width = frame->width;
scaler_height = frame->height;
}
// Get Converted frame
const std::size_t linear_size = frame->width * frame->height * 4;
// Only allocate frame_buffer once per stream, as the size is not expected to change
if (!converted_frame_buffer) {
converted_frame_buffer = AVMallocPtr{static_cast<u8*>(av_malloc(linear_size)), av_free};
}
const int converted_stride{frame->width * 4};
u8* const converted_frame_buf_addr{converted_frame_buffer.get()};
sws_scale(scaler_ctx, frame->data, frame->linesize, 0, frame->height,
&converted_frame_buf_addr, &converted_stride);
const u32 blk_kind = static_cast<u32>(config.block_linear_kind);
if (blk_kind != 0) {
// swizzle pitch linear to block linear
const u32 block_height = static_cast<u32>(config.block_linear_height_log2);
const auto size = Tegra::Texture::CalculateSize(true, 4, frame->width, frame->height, 1,
block_height, 0);
luma_buffer.resize(size);
Tegra::Texture::SwizzleSubrect(frame->width, frame->height, frame->width * 4,
frame->width, 4, luma_buffer.data(),
converted_frame_buffer.get(), block_height, 0, 0);
gpu.MemoryManager().WriteBlock(output_surface_luma_address, luma_buffer.data(), size);
} else {
// send pitch linear frame
gpu.MemoryManager().WriteBlock(output_surface_luma_address, converted_frame_buf_addr,
linear_size);
}
break;
}
case VideoPixelFormat::Yuv420: {
LOG_TRACE(Service_NVDRV, "Writing YUV420 Frame");
const std::size_t surface_width = config.surface_width_minus1 + 1;
const std::size_t surface_height = config.surface_height_minus1 + 1;
const std::size_t half_width = surface_width / 2;
const std::size_t half_height = config.surface_height_minus1 / 2;
const std::size_t aligned_width = (surface_width + 0xff) & ~0xff;
const auto* luma_ptr = frame->data[0];
const auto* chroma_b_ptr = frame->data[1];
const auto* chroma_r_ptr = frame->data[2];
const auto stride = frame->linesize[0];
const auto half_stride = frame->linesize[1];
luma_buffer.resize(aligned_width * surface_height);
chroma_buffer.resize(aligned_width * half_height);
// Populate luma buffer
for (std::size_t y = 0; y < surface_height - 1; ++y) {
const std::size_t src = y * stride;
const std::size_t dst = y * aligned_width;
const std::size_t size = surface_width;
for (std::size_t offset = 0; offset < size; ++offset) {
luma_buffer[dst + offset] = luma_ptr[src + offset];
}
}
gpu.MemoryManager().WriteBlock(output_surface_luma_address, luma_buffer.data(),
luma_buffer.size());
// Populate chroma buffer from both channels with interleaving.
for (std::size_t y = 0; y < half_height; ++y) {
const std::size_t src = y * half_stride;
const std::size_t dst = y * aligned_width;
for (std::size_t x = 0; x < half_width; ++x) {
chroma_buffer[dst + x * 2] = chroma_b_ptr[src + x];
chroma_buffer[dst + x * 2 + 1] = chroma_r_ptr[src + x];
}
}
gpu.MemoryManager().WriteBlock(output_surface_chroma_u_address, chroma_buffer.data(),
chroma_buffer.size());
break;
}
default:
UNIMPLEMENTED_MSG("Unknown video pixel format {}", config.pixel_format.Value());
break;
}
}
} // namespace Tegra