427 lines
15 KiB
C++
427 lines
15 KiB
C++
// Copyright 2018 yuzu emulator team
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include "common/alignment.h"
|
|
#include "common/assert.h"
|
|
#include "common/logging/log.h"
|
|
#include "core/core.h"
|
|
#include "core/memory.h"
|
|
#include "video_core/gpu.h"
|
|
#include "video_core/memory_manager.h"
|
|
#include "video_core/rasterizer_interface.h"
|
|
#include "video_core/renderer_base.h"
|
|
|
|
namespace Tegra {
|
|
|
|
MemoryManager::MemoryManager() {
|
|
std::fill(page_table.pointers.begin(), page_table.pointers.end(), nullptr);
|
|
std::fill(page_table.attributes.begin(), page_table.attributes.end(),
|
|
Common::PageType::Unmapped);
|
|
page_table.Resize(address_space_width);
|
|
|
|
// Initialize the map with a single free region covering the entire managed space.
|
|
VirtualMemoryArea initial_vma;
|
|
initial_vma.size = address_space_end;
|
|
vma_map.emplace(initial_vma.base, initial_vma);
|
|
|
|
UpdatePageTableForVMA(initial_vma);
|
|
}
|
|
|
|
GPUVAddr MemoryManager::AllocateSpace(u64 size, u64 align) {
|
|
const GPUVAddr gpu_addr{
|
|
FindFreeRegion(address_space_base, size, align, VirtualMemoryArea::Type::Unmapped)};
|
|
AllocateMemory(gpu_addr, 0, size);
|
|
return gpu_addr;
|
|
}
|
|
|
|
GPUVAddr MemoryManager::AllocateSpace(GPUVAddr gpu_addr, u64 size, u64 align) {
|
|
AllocateMemory(gpu_addr, 0, size);
|
|
return gpu_addr;
|
|
}
|
|
|
|
GPUVAddr MemoryManager::MapBufferEx(GPUVAddr cpu_addr, u64 size) {
|
|
const GPUVAddr gpu_addr{
|
|
FindFreeRegion(address_space_base, size, page_size, VirtualMemoryArea::Type::Unmapped)};
|
|
MapBackingMemory(gpu_addr, Memory::GetPointer(cpu_addr), ((size + page_mask) & ~page_mask),
|
|
cpu_addr);
|
|
return gpu_addr;
|
|
}
|
|
|
|
GPUVAddr MemoryManager::MapBufferEx(GPUVAddr cpu_addr, GPUVAddr gpu_addr, u64 size) {
|
|
ASSERT((gpu_addr & page_mask) == 0);
|
|
|
|
MapBackingMemory(gpu_addr, Memory::GetPointer(cpu_addr), ((size + page_mask) & ~page_mask),
|
|
cpu_addr);
|
|
|
|
return gpu_addr;
|
|
}
|
|
|
|
GPUVAddr MemoryManager::UnmapBuffer(GPUVAddr gpu_addr, u64 size) {
|
|
ASSERT((gpu_addr & page_mask) == 0);
|
|
|
|
const CacheAddr cache_addr{ToCacheAddr(GetPointer(gpu_addr))};
|
|
Core::System::GetInstance().Renderer().Rasterizer().FlushAndInvalidateRegion(cache_addr, size);
|
|
|
|
UnmapRange(gpu_addr, ((size + page_mask) & ~page_mask));
|
|
|
|
return gpu_addr;
|
|
}
|
|
|
|
GPUVAddr MemoryManager::FindFreeRegion(GPUVAddr region_start, u64 size, u64 align,
|
|
VirtualMemoryArea::Type vma_type) {
|
|
|
|
align = (align + page_mask) & ~page_mask;
|
|
|
|
// Find the first Free VMA.
|
|
const GPUVAddr base = region_start;
|
|
const VMAHandle vma_handle = std::find_if(vma_map.begin(), vma_map.end(), [&](const auto& vma) {
|
|
if (vma.second.type != vma_type)
|
|
return false;
|
|
|
|
const VAddr vma_end = vma.second.base + vma.second.size;
|
|
return vma_end > base && vma_end >= base + size;
|
|
});
|
|
|
|
if (vma_handle == vma_map.end()) {
|
|
return {};
|
|
}
|
|
|
|
return std::max(base, vma_handle->second.base);
|
|
}
|
|
|
|
std::optional<VAddr> MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) {
|
|
VAddr cpu_addr = page_table.backing_addr[gpu_addr >> page_bits];
|
|
if (cpu_addr) {
|
|
return cpu_addr + (gpu_addr & page_mask);
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
template <typename T>
|
|
T MemoryManager::Read(GPUVAddr vaddr) {
|
|
const u8* page_pointer = page_table.pointers[vaddr >> page_bits];
|
|
if (page_pointer) {
|
|
// NOTE: Avoid adding any extra logic to this fast-path block
|
|
T value;
|
|
std::memcpy(&value, &page_pointer[vaddr & page_mask], sizeof(T));
|
|
return value;
|
|
}
|
|
|
|
Common::PageType type = page_table.attributes[vaddr >> page_bits];
|
|
switch (type) {
|
|
case Common::PageType::Unmapped:
|
|
LOG_ERROR(HW_GPU, "Unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, vaddr);
|
|
return 0;
|
|
case Common::PageType::Memory:
|
|
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
return {};
|
|
}
|
|
|
|
template <typename T>
|
|
void MemoryManager::Write(GPUVAddr vaddr, T data) {
|
|
u8* page_pointer = page_table.pointers[vaddr >> page_bits];
|
|
if (page_pointer) {
|
|
// NOTE: Avoid adding any extra logic to this fast-path block
|
|
std::memcpy(&page_pointer[vaddr & page_mask], &data, sizeof(T));
|
|
return;
|
|
}
|
|
|
|
Common::PageType type = page_table.attributes[vaddr >> page_bits];
|
|
switch (type) {
|
|
case Common::PageType::Unmapped:
|
|
LOG_ERROR(HW_GPU, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8,
|
|
static_cast<u32>(data), vaddr);
|
|
return;
|
|
case Common::PageType::Memory:
|
|
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
template u8 MemoryManager::Read<u8>(GPUVAddr addr);
|
|
template u16 MemoryManager::Read<u16>(GPUVAddr addr);
|
|
template u32 MemoryManager::Read<u32>(GPUVAddr addr);
|
|
template u64 MemoryManager::Read<u64>(GPUVAddr addr);
|
|
template void MemoryManager::Write<u8>(GPUVAddr addr, u8 data);
|
|
template void MemoryManager::Write<u16>(GPUVAddr addr, u16 data);
|
|
template void MemoryManager::Write<u32>(GPUVAddr addr, u32 data);
|
|
template void MemoryManager::Write<u64>(GPUVAddr addr, u64 data);
|
|
|
|
u8* MemoryManager::GetPointer(GPUVAddr addr) {
|
|
u8* page_pointer = page_table.pointers[addr >> page_bits];
|
|
if (page_pointer) {
|
|
return page_pointer + (addr & page_mask);
|
|
}
|
|
|
|
LOG_ERROR(HW_GPU, "Unknown GetPointer @ 0x{:016X}", addr);
|
|
return {};
|
|
}
|
|
|
|
void MemoryManager::ReadBlock(GPUVAddr src_addr, void* dest_buffer, std::size_t size) {
|
|
std::memcpy(dest_buffer, GetPointer(src_addr), size);
|
|
}
|
|
void MemoryManager::WriteBlock(GPUVAddr dest_addr, const void* src_buffer, std::size_t size) {
|
|
std::memcpy(GetPointer(dest_addr), src_buffer, size);
|
|
}
|
|
|
|
void MemoryManager::CopyBlock(GPUVAddr dest_addr, GPUVAddr src_addr, std::size_t size) {
|
|
std::memcpy(GetPointer(dest_addr), GetPointer(src_addr), size);
|
|
}
|
|
|
|
void MemoryManager::MapPages(GPUVAddr base, u64 size, u8* memory, Common::PageType type,
|
|
VAddr backing_addr) {
|
|
LOG_DEBUG(HW_GPU, "Mapping {} onto {:016X}-{:016X}", fmt::ptr(memory), base * page_size,
|
|
(base + size) * page_size);
|
|
|
|
VAddr end = base + size;
|
|
ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
|
|
base + page_table.pointers.size());
|
|
|
|
std::fill(page_table.attributes.begin() + base, page_table.attributes.begin() + end, type);
|
|
|
|
if (memory == nullptr) {
|
|
std::fill(page_table.pointers.begin() + base, page_table.pointers.begin() + end, memory);
|
|
std::fill(page_table.backing_addr.begin() + base, page_table.backing_addr.begin() + end,
|
|
backing_addr);
|
|
} else {
|
|
while (base != end) {
|
|
page_table.pointers[base] = memory;
|
|
page_table.backing_addr[base] = backing_addr;
|
|
|
|
base += 1;
|
|
memory += page_size;
|
|
backing_addr += page_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MemoryManager::MapMemoryRegion(GPUVAddr base, u64 size, u8* target, VAddr backing_addr) {
|
|
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size);
|
|
ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base);
|
|
MapPages(base / page_size, size / page_size, target, Common::PageType::Memory, backing_addr);
|
|
}
|
|
|
|
void MemoryManager::UnmapRegion(GPUVAddr base, u64 size) {
|
|
ASSERT_MSG((size & page_mask) == 0, "non-page aligned size: {:016X}", size);
|
|
ASSERT_MSG((base & page_mask) == 0, "non-page aligned base: {:016X}", base);
|
|
MapPages(base / page_size, size / page_size, nullptr, Common::PageType::Unmapped);
|
|
}
|
|
|
|
bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
|
|
ASSERT(base + size == next.base);
|
|
if (type != next.type) {
|
|
return {};
|
|
}
|
|
if (type == VirtualMemoryArea::Type::Allocated && (offset + size != next.offset)) {
|
|
return {};
|
|
}
|
|
if (type == VirtualMemoryArea::Type::Mapped && backing_memory + size != next.backing_memory) {
|
|
return {};
|
|
}
|
|
return true;
|
|
}
|
|
|
|
MemoryManager::VMAHandle MemoryManager::FindVMA(GPUVAddr target) const {
|
|
if (target >= address_space_end) {
|
|
return vma_map.end();
|
|
} else {
|
|
return std::prev(vma_map.upper_bound(target));
|
|
}
|
|
}
|
|
|
|
MemoryManager::VMAHandle MemoryManager::AllocateMemory(GPUVAddr target, std::size_t offset,
|
|
u64 size) {
|
|
|
|
// This is the appropriately sized VMA that will turn into our allocation.
|
|
VMAIter vma_handle = CarveVMA(target, size);
|
|
VirtualMemoryArea& final_vma = vma_handle->second;
|
|
ASSERT(final_vma.size == size);
|
|
|
|
final_vma.type = VirtualMemoryArea::Type::Allocated;
|
|
final_vma.offset = offset;
|
|
UpdatePageTableForVMA(final_vma);
|
|
|
|
return MergeAdjacent(vma_handle);
|
|
}
|
|
|
|
MemoryManager::VMAHandle MemoryManager::MapBackingMemory(GPUVAddr target, u8* memory, u64 size,
|
|
VAddr backing_addr) {
|
|
// This is the appropriately sized VMA that will turn into our allocation.
|
|
VMAIter vma_handle = CarveVMA(target, size);
|
|
VirtualMemoryArea& final_vma = vma_handle->second;
|
|
ASSERT(final_vma.size == size);
|
|
|
|
final_vma.type = VirtualMemoryArea::Type::Mapped;
|
|
final_vma.backing_memory = memory;
|
|
final_vma.backing_addr = backing_addr;
|
|
UpdatePageTableForVMA(final_vma);
|
|
|
|
return MergeAdjacent(vma_handle);
|
|
}
|
|
|
|
MemoryManager::VMAIter MemoryManager::Unmap(VMAIter vma_handle) {
|
|
VirtualMemoryArea& vma = vma_handle->second;
|
|
vma.type = VirtualMemoryArea::Type::Allocated;
|
|
vma.offset = 0;
|
|
vma.backing_memory = nullptr;
|
|
|
|
UpdatePageTableForVMA(vma);
|
|
|
|
return MergeAdjacent(vma_handle);
|
|
}
|
|
|
|
void MemoryManager::UnmapRange(GPUVAddr target, u64 size) {
|
|
VMAIter vma = CarveVMARange(target, size);
|
|
const VAddr target_end = target + size;
|
|
|
|
const VMAIter end = vma_map.end();
|
|
// The comparison against the end of the range must be done using addresses since VMAs can be
|
|
// merged during this process, causing invalidation of the iterators.
|
|
while (vma != end && vma->second.base < target_end) {
|
|
vma = std::next(Unmap(vma));
|
|
}
|
|
|
|
ASSERT(FindVMA(target)->second.size >= size);
|
|
}
|
|
|
|
MemoryManager::VMAIter MemoryManager::StripIterConstness(const VMAHandle& iter) {
|
|
// This uses a neat C++ trick to convert a const_iterator to a regular iterator, given
|
|
// non-const access to its container.
|
|
return vma_map.erase(iter, iter); // Erases an empty range of elements
|
|
}
|
|
|
|
MemoryManager::VMAIter MemoryManager::CarveVMA(GPUVAddr base, u64 size) {
|
|
ASSERT_MSG((size & Tegra::MemoryManager::page_mask) == 0, "non-page aligned size: 0x{:016X}",
|
|
size);
|
|
ASSERT_MSG((base & Tegra::MemoryManager::page_mask) == 0, "non-page aligned base: 0x{:016X}",
|
|
base);
|
|
|
|
VMAIter vma_handle = StripIterConstness(FindVMA(base));
|
|
if (vma_handle == vma_map.end()) {
|
|
// Target address is outside the range managed by the kernel
|
|
return {};
|
|
}
|
|
|
|
const VirtualMemoryArea& vma = vma_handle->second;
|
|
if (vma.type == VirtualMemoryArea::Type::Mapped) {
|
|
// Region is already allocated
|
|
return {};
|
|
}
|
|
|
|
const VAddr start_in_vma = base - vma.base;
|
|
const VAddr end_in_vma = start_in_vma + size;
|
|
|
|
if (end_in_vma < vma.size) {
|
|
// Split VMA at the end of the allocated region
|
|
SplitVMA(vma_handle, end_in_vma);
|
|
}
|
|
if (start_in_vma != 0) {
|
|
// Split VMA at the start of the allocated region
|
|
vma_handle = SplitVMA(vma_handle, start_in_vma);
|
|
}
|
|
|
|
return vma_handle;
|
|
}
|
|
|
|
MemoryManager::VMAIter MemoryManager::CarveVMARange(GPUVAddr target, u64 size) {
|
|
ASSERT_MSG((size & Tegra::MemoryManager::page_mask) == 0, "non-page aligned size: 0x{:016X}",
|
|
size);
|
|
ASSERT_MSG((target & Tegra::MemoryManager::page_mask) == 0, "non-page aligned base: 0x{:016X}",
|
|
target);
|
|
|
|
const VAddr target_end = target + size;
|
|
ASSERT(target_end >= target);
|
|
ASSERT(size > 0);
|
|
|
|
VMAIter begin_vma = StripIterConstness(FindVMA(target));
|
|
const VMAIter i_end = vma_map.lower_bound(target_end);
|
|
if (std::any_of(begin_vma, i_end, [](const auto& entry) {
|
|
return entry.second.type == VirtualMemoryArea::Type::Unmapped;
|
|
})) {
|
|
return {};
|
|
}
|
|
|
|
if (target != begin_vma->second.base) {
|
|
begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
|
|
}
|
|
|
|
VMAIter end_vma = StripIterConstness(FindVMA(target_end));
|
|
if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
|
|
end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
|
|
}
|
|
|
|
return begin_vma;
|
|
}
|
|
|
|
MemoryManager::VMAIter MemoryManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
|
|
VirtualMemoryArea& old_vma = vma_handle->second;
|
|
VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA
|
|
|
|
// For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
|
|
// a bug. This restriction might be removed later.
|
|
ASSERT(offset_in_vma < old_vma.size);
|
|
ASSERT(offset_in_vma > 0);
|
|
|
|
old_vma.size = offset_in_vma;
|
|
new_vma.base += offset_in_vma;
|
|
new_vma.size -= offset_in_vma;
|
|
|
|
switch (new_vma.type) {
|
|
case VirtualMemoryArea::Type::Unmapped:
|
|
break;
|
|
case VirtualMemoryArea::Type::Allocated:
|
|
new_vma.offset += offset_in_vma;
|
|
break;
|
|
case VirtualMemoryArea::Type::Mapped:
|
|
new_vma.backing_memory += offset_in_vma;
|
|
break;
|
|
}
|
|
|
|
ASSERT(old_vma.CanBeMergedWith(new_vma));
|
|
|
|
return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma);
|
|
}
|
|
|
|
MemoryManager::VMAIter MemoryManager::MergeAdjacent(VMAIter iter) {
|
|
const VMAIter next_vma = std::next(iter);
|
|
if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
|
|
iter->second.size += next_vma->second.size;
|
|
vma_map.erase(next_vma);
|
|
}
|
|
|
|
if (iter != vma_map.begin()) {
|
|
VMAIter prev_vma = std::prev(iter);
|
|
if (prev_vma->second.CanBeMergedWith(iter->second)) {
|
|
prev_vma->second.size += iter->second.size;
|
|
vma_map.erase(iter);
|
|
iter = prev_vma;
|
|
}
|
|
}
|
|
|
|
return iter;
|
|
}
|
|
|
|
void MemoryManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
|
|
switch (vma.type) {
|
|
case VirtualMemoryArea::Type::Unmapped:
|
|
UnmapRegion(vma.base, vma.size);
|
|
break;
|
|
case VirtualMemoryArea::Type::Allocated:
|
|
MapMemoryRegion(vma.base, vma.size, nullptr, vma.backing_addr);
|
|
break;
|
|
case VirtualMemoryArea::Type::Mapped:
|
|
MapMemoryRegion(vma.base, vma.size, vma.backing_memory, vma.backing_addr);
|
|
break;
|
|
}
|
|
}
|
|
|
|
} // namespace Tegra
|