// Licensed under GPLv2 or any later version // Refer to the license.txt file included. // Copyright 2014 Tony Wasserka // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of the owner nor the names of its contributors may // be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #pragma once #include <cmath> #include <type_traits> namespace Math { template<typename T> class Vec2; template<typename T> class Vec3; template<typename T> class Vec4; template<typename T> static inline Vec2<T> MakeVec(const T& x, const T& y); template<typename T> static inline Vec3<T> MakeVec(const T& x, const T& y, const T& z); template<typename T> static inline Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w); template<typename T> class Vec2 { public: T x; T y; T* AsArray() { return &x; } Vec2() = default; Vec2(const T a[2]) : x(a[0]), y(a[1]) {} Vec2(const T& _x, const T& _y) : x(_x), y(_y) {} template<typename T2> Vec2<T2> Cast() const { return Vec2<T2>((T2)x, (T2)y); } static Vec2 AssignToAll(const T& f) { return Vec2<T>(f, f); } void Write(T a[2]) { a[0] = x; a[1] = y; } Vec2<decltype(T{}+T{})> operator +(const Vec2& other) const { return MakeVec(x+other.x, y+other.y); } void operator += (const Vec2 &other) { x+=other.x; y+=other.y; } Vec2<decltype(T{}-T{})> operator -(const Vec2& other) const { return MakeVec(x-other.x, y-other.y); } void operator -= (const Vec2& other) { x-=other.x; y-=other.y; } template<typename Q = T,class = typename std::enable_if<std::is_signed<Q>::value>::type> Vec2<decltype(-T{})> operator -() const { return MakeVec(-x,-y); } Vec2<decltype(T{}*T{})> operator * (const Vec2& other) const { return MakeVec(x*other.x, y*other.y); } template<typename V> Vec2<decltype(T{}*V{})> operator * (const V& f) const { return MakeVec(x*f,y*f); } template<typename V> void operator *= (const V& f) { x*=f; y*=f; } template<typename V> Vec2<decltype(T{}/V{})> operator / (const V& f) const { return MakeVec(x/f,y/f); } template<typename V> void operator /= (const V& f) { *this = *this / f; } T Length2() const { return x*x + y*y; } // Only implemented for T=float float Length() const; void SetLength(const float l); Vec2 WithLength(const float l) const; float Distance2To(Vec2 &other); Vec2 Normalized() const; float Normalize(); // returns the previous length, which is often useful T& operator [] (int i) //allow vector[1] = 3 (vector.y=3) { return *((&x) + i); } T operator [] (const int i) const { return *((&x) + i); } void SetZero() { x=0; y=0; } // Common aliases: UV (texel coordinates), ST (texture coordinates) T& u() { return x; } T& v() { return y; } T& s() { return x; } T& t() { return y; } const T& u() const { return x; } const T& v() const { return y; } const T& s() const { return x; } const T& t() const { return y; } // swizzlers - create a subvector of specific components const Vec2 yx() const { return Vec2(y, x); } const Vec2 vu() const { return Vec2(y, x); } const Vec2 ts() const { return Vec2(y, x); } }; template<typename T, typename V> Vec2<T> operator * (const V& f, const Vec2<T>& vec) { return Vec2<T>(f*vec.x,f*vec.y); } typedef Vec2<float> Vec2f; template<typename T> class Vec3 { public: T x; T y; T z; T* AsArray() { return &x; } Vec3() = default; Vec3(const T a[3]) : x(a[0]), y(a[1]), z(a[2]) {} Vec3(const T& _x, const T& _y, const T& _z) : x(_x), y(_y), z(_z) {} template<typename T2> Vec3<T2> Cast() const { return MakeVec<T2>((T2)x, (T2)y, (T2)z); } // Only implemented for T=int and T=float static Vec3 FromRGB(unsigned int rgb); unsigned int ToRGB() const; // alpha bits set to zero static Vec3 AssignToAll(const T& f) { return MakeVec(f, f, f); } void Write(T a[3]) { a[0] = x; a[1] = y; a[2] = z; } Vec3<decltype(T{}+T{})> operator +(const Vec3 &other) const { return MakeVec(x+other.x, y+other.y, z+other.z); } void operator += (const Vec3 &other) { x+=other.x; y+=other.y; z+=other.z; } Vec3<decltype(T{}-T{})> operator -(const Vec3 &other) const { return MakeVec(x-other.x, y-other.y, z-other.z); } void operator -= (const Vec3 &other) { x-=other.x; y-=other.y; z-=other.z; } template<typename Q = T,class = typename std::enable_if<std::is_signed<Q>::value>::type> Vec3<decltype(-T{})> operator -() const { return MakeVec(-x,-y,-z); } Vec3<decltype(T{}*T{})> operator * (const Vec3 &other) const { return MakeVec(x*other.x, y*other.y, z*other.z); } template<typename V> Vec3<decltype(T{}*V{})> operator * (const V& f) const { return MakeVec(x*f,y*f,z*f); } template<typename V> void operator *= (const V& f) { x*=f; y*=f; z*=f; } template<typename V> Vec3<decltype(T{}/V{})> operator / (const V& f) const { return MakeVec(x/f,y/f,z/f); } template<typename V> void operator /= (const V& f) { *this = *this / f; } T Length2() const { return x*x + y*y + z*z; } // Only implemented for T=float float Length() const; void SetLength(const float l); Vec3 WithLength(const float l) const; float Distance2To(Vec3 &other); Vec3 Normalized() const; float Normalize(); // returns the previous length, which is often useful T& operator [] (int i) //allow vector[2] = 3 (vector.z=3) { return *((&x) + i); } T operator [] (const int i) const { return *((&x) + i); } void SetZero() { x=0; y=0; z=0; } // Common aliases: UVW (texel coordinates), RGB (colors), STQ (texture coordinates) T& u() { return x; } T& v() { return y; } T& w() { return z; } T& r() { return x; } T& g() { return y; } T& b() { return z; } T& s() { return x; } T& t() { return y; } T& q() { return z; } const T& u() const { return x; } const T& v() const { return y; } const T& w() const { return z; } const T& r() const { return x; } const T& g() const { return y; } const T& b() const { return z; } const T& s() const { return x; } const T& t() const { return y; } const T& q() const { return z; } // swizzlers - create a subvector of specific components // e.g. Vec2 uv() { return Vec2(x,y); } // _DEFINE_SWIZZLER2 defines a single such function, DEFINE_SWIZZLER2 defines all of them for all component names (x<->r) and permutations (xy<->yx) #define _DEFINE_SWIZZLER2(a, b, name) const Vec2<T> name() const { return Vec2<T>(a, b); } #define DEFINE_SWIZZLER2(a, b, a2, b2, a3, b3, a4, b4) \ _DEFINE_SWIZZLER2(a, b, a##b); \ _DEFINE_SWIZZLER2(a, b, a2##b2); \ _DEFINE_SWIZZLER2(a, b, a3##b3); \ _DEFINE_SWIZZLER2(a, b, a4##b4); \ _DEFINE_SWIZZLER2(b, a, b##a); \ _DEFINE_SWIZZLER2(b, a, b2##a2); \ _DEFINE_SWIZZLER2(b, a, b3##a3); \ _DEFINE_SWIZZLER2(b, a, b4##a4) DEFINE_SWIZZLER2(x, y, r, g, u, v, s, t); DEFINE_SWIZZLER2(x, z, r, b, u, w, s, q); DEFINE_SWIZZLER2(y, z, g, b, v, w, t, q); #undef DEFINE_SWIZZLER2 #undef _DEFINE_SWIZZLER2 }; template<typename T, typename V> Vec3<T> operator * (const V& f, const Vec3<T>& vec) { return Vec3<T>(f*vec.x,f*vec.y,f*vec.z); } template<> inline float Vec3<float>::Length() const { return std::sqrt(x * x + y * y + z * z); } template<> inline Vec3<float> Vec3<float>::Normalized() const { return *this / Length(); } typedef Vec3<float> Vec3f; template<typename T> class Vec4 { public: T x; T y; T z; T w; T* AsArray() { return &x; } Vec4() = default; Vec4(const T a[4]) : x(a[0]), y(a[1]), z(a[2]), w(a[3]) {} Vec4(const T& _x, const T& _y, const T& _z, const T& _w) : x(_x), y(_y), z(_z), w(_w) {} template<typename T2> Vec4<T2> Cast() const { return Vec4<T2>((T2)x, (T2)y, (T2)z, (T2)w); } // Only implemented for T=int and T=float static Vec4 FromRGBA(unsigned int rgba); unsigned int ToRGBA() const; static Vec4 AssignToAll(const T& f) { return Vec4<T>(f, f, f, f); } void Write(T a[4]) { a[0] = x; a[1] = y; a[2] = z; a[3] = w; } Vec4<decltype(T{}+T{})> operator +(const Vec4& other) const { return MakeVec(x+other.x, y+other.y, z+other.z, w+other.w); } void operator += (const Vec4& other) { x+=other.x; y+=other.y; z+=other.z; w+=other.w; } Vec4<decltype(T{}-T{})> operator -(const Vec4 &other) const { return MakeVec(x-other.x, y-other.y, z-other.z, w-other.w); } void operator -= (const Vec4 &other) { x-=other.x; y-=other.y; z-=other.z; w-=other.w; } template<typename Q = T,class = typename std::enable_if<std::is_signed<Q>::value>::type> Vec4<decltype(-T{})> operator -() const { return MakeVec(-x,-y,-z,-w); } Vec4<decltype(T{}*T{})> operator * (const Vec4 &other) const { return MakeVec(x*other.x, y*other.y, z*other.z, w*other.w); } template<typename V> Vec4<decltype(T{}*V{})> operator * (const V& f) const { return MakeVec(x*f,y*f,z*f,w*f); } template<typename V> void operator *= (const V& f) { x*=f; y*=f; z*=f; w*=f; } template<typename V> Vec4<decltype(T{}/V{})> operator / (const V& f) const { return MakeVec(x/f,y/f,z/f,w/f); } template<typename V> void operator /= (const V& f) { *this = *this / f; } T Length2() const { return x*x + y*y + z*z + w*w; } // Only implemented for T=float float Length() const; void SetLength(const float l); Vec4 WithLength(const float l) const; float Distance2To(Vec4 &other); Vec4 Normalized() const; float Normalize(); // returns the previous length, which is often useful T& operator [] (int i) //allow vector[2] = 3 (vector.z=3) { return *((&x) + i); } T operator [] (const int i) const { return *((&x) + i); } void SetZero() { x=0; y=0; z=0; } // Common alias: RGBA (colors) T& r() { return x; } T& g() { return y; } T& b() { return z; } T& a() { return w; } const T& r() const { return x; } const T& g() const { return y; } const T& b() const { return z; } const T& a() const { return w; } // Swizzlers - Create a subvector of specific components // e.g. Vec2 uv() { return Vec2(x,y); } // _DEFINE_SWIZZLER2 defines a single such function // DEFINE_SWIZZLER2_COMP1 defines one-component functions for all component names (x<->r) // DEFINE_SWIZZLER2_COMP2 defines two component functions for all component names (x<->r) and permutations (xy<->yx) #define _DEFINE_SWIZZLER2(a, b, name) const Vec2<T> name() const { return Vec2<T>(a, b); } #define DEFINE_SWIZZLER2_COMP1(a, a2) \ _DEFINE_SWIZZLER2(a, a, a##a); \ _DEFINE_SWIZZLER2(a, a, a2##a2) #define DEFINE_SWIZZLER2_COMP2(a, b, a2, b2) \ _DEFINE_SWIZZLER2(a, b, a##b); \ _DEFINE_SWIZZLER2(a, b, a2##b2); \ _DEFINE_SWIZZLER2(b, a, b##a); \ _DEFINE_SWIZZLER2(b, a, b2##a2) DEFINE_SWIZZLER2_COMP2(x, y, r, g); DEFINE_SWIZZLER2_COMP2(x, z, r, b); DEFINE_SWIZZLER2_COMP2(x, w, r, a); DEFINE_SWIZZLER2_COMP2(y, z, g, b); DEFINE_SWIZZLER2_COMP2(y, w, g, a); DEFINE_SWIZZLER2_COMP2(z, w, b, a); DEFINE_SWIZZLER2_COMP1(x, r); DEFINE_SWIZZLER2_COMP1(y, g); DEFINE_SWIZZLER2_COMP1(z, b); DEFINE_SWIZZLER2_COMP1(w, a); #undef DEFINE_SWIZZLER2_COMP1 #undef DEFINE_SWIZZLER2_COMP2 #undef _DEFINE_SWIZZLER2 #define _DEFINE_SWIZZLER3(a, b, c, name) const Vec3<T> name() const { return Vec3<T>(a, b, c); } #define DEFINE_SWIZZLER3_COMP1(a, a2) \ _DEFINE_SWIZZLER3(a, a, a, a##a##a); \ _DEFINE_SWIZZLER3(a, a, a, a2##a2##a2) #define DEFINE_SWIZZLER3_COMP3(a, b, c, a2, b2, c2) \ _DEFINE_SWIZZLER3(a, b, c, a##b##c); \ _DEFINE_SWIZZLER3(a, c, b, a##c##b); \ _DEFINE_SWIZZLER3(b, a, c, b##a##c); \ _DEFINE_SWIZZLER3(b, c, a, b##c##a); \ _DEFINE_SWIZZLER3(c, a, b, c##a##b); \ _DEFINE_SWIZZLER3(c, b, a, c##b##a); \ _DEFINE_SWIZZLER3(a, b, c, a2##b2##c2); \ _DEFINE_SWIZZLER3(a, c, b, a2##c2##b2); \ _DEFINE_SWIZZLER3(b, a, c, b2##a2##c2); \ _DEFINE_SWIZZLER3(b, c, a, b2##c2##a2); \ _DEFINE_SWIZZLER3(c, a, b, c2##a2##b2); \ _DEFINE_SWIZZLER3(c, b, a, c2##b2##a2) DEFINE_SWIZZLER3_COMP3(x, y, z, r, g, b); DEFINE_SWIZZLER3_COMP3(x, y, w, r, g, a); DEFINE_SWIZZLER3_COMP3(x, z, w, r, b, a); DEFINE_SWIZZLER3_COMP3(y, z, w, g, b, a); DEFINE_SWIZZLER3_COMP1(x, r); DEFINE_SWIZZLER3_COMP1(y, g); DEFINE_SWIZZLER3_COMP1(z, b); DEFINE_SWIZZLER3_COMP1(w, a); #undef DEFINE_SWIZZLER3_COMP1 #undef DEFINE_SWIZZLER3_COMP3 #undef _DEFINE_SWIZZLER3 }; template<typename T, typename V> Vec4<decltype(V{}*T{})> operator * (const V& f, const Vec4<T>& vec) { return MakeVec(f*vec.x,f*vec.y,f*vec.z,f*vec.w); } typedef Vec4<float> Vec4f; template<typename T> static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec2<T>& a, const Vec2<T>& b) { return a.x*b.x + a.y*b.y; } template<typename T> static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec3<T>& a, const Vec3<T>& b) { return a.x*b.x + a.y*b.y + a.z*b.z; } template<typename T> static inline decltype(T{}*T{}+T{}*T{}) Dot(const Vec4<T>& a, const Vec4<T>& b) { return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w; } template<typename T> static inline Vec3<decltype(T{}*T{}-T{}*T{})> Cross(const Vec3<T>& a, const Vec3<T>& b) { return MakeVec(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x); } // linear interpolation via float: 0.0=begin, 1.0=end template<typename X> static inline decltype(X{}*float{}+X{}*float{}) Lerp(const X& begin, const X& end, const float t) { return begin*(1.f-t) + end*t; } // linear interpolation via int: 0=begin, base=end template<typename X, int base> static inline decltype((X{}*int{}+X{}*int{}) / base) LerpInt(const X& begin, const X& end, const int t) { return (begin*(base-t) + end*t) / base; } // Utility vector factories template<typename T> static inline Vec2<T> MakeVec(const T& x, const T& y) { return Vec2<T>{x, y}; } template<typename T> static inline Vec3<T> MakeVec(const T& x, const T& y, const T& z) { return Vec3<T>{x, y, z}; } template<typename T> static inline Vec4<T> MakeVec(const T& x, const T& y, const Vec2<T>& zw) { return MakeVec(x, y, zw[0], zw[1]); } template<typename T> static inline Vec3<T> MakeVec(const Vec2<T>& xy, const T& z) { return MakeVec(xy[0], xy[1], z); } template<typename T> static inline Vec3<T> MakeVec(const T& x, const Vec2<T>& yz) { return MakeVec(x, yz[0], yz[1]); } template<typename T> static inline Vec4<T> MakeVec(const T& x, const T& y, const T& z, const T& w) { return Vec4<T>{x, y, z, w}; } template<typename T> static inline Vec4<T> MakeVec(const Vec2<T>& xy, const T& z, const T& w) { return MakeVec(xy[0], xy[1], z, w); } template<typename T> static inline Vec4<T> MakeVec(const T& x, const Vec2<T>& yz, const T& w) { return MakeVec(x, yz[0], yz[1], w); } // NOTE: This has priority over "Vec2<Vec2<T>> MakeVec(const Vec2<T>& x, const Vec2<T>& y)". // Even if someone wanted to use an odd object like Vec2<Vec2<T>>, the compiler would error // out soon enough due to misuse of the returned structure. template<typename T> static inline Vec4<T> MakeVec(const Vec2<T>& xy, const Vec2<T>& zw) { return MakeVec(xy[0], xy[1], zw[0], zw[1]); } template<typename T> static inline Vec4<T> MakeVec(const Vec3<T>& xyz, const T& w) { return MakeVec(xyz[0], xyz[1], xyz[2], w); } template<typename T> static inline Vec4<T> MakeVec(const T& x, const Vec3<T>& yzw) { return MakeVec(x, yzw[0], yzw[1], yzw[2]); } } // namespace